Mit geeigneten konstanten (zeit-invarianten)
,
einfachen konventionellen
Aktivationsfunktionen
,
genügend
`versteckten' Knoten und ausreichender Blockgröße
kann das `selbstreferentielle' Netz durch wiederholte Anwendung
von (8.1) jede beliebige Funktion
![]() |
(8.7) |
Wenigstens der
Ausgabeknoten und der
Eingabeknoten
sollten nicht nur binäre, sondern reelle Werte annehmen können.
Es bereitet jedoch keine größeren Schwierigkeiten, zu zeigen, daß
die Bereiche
in (8.7) für beliebige Knoten durch R
ersetzt werden dürfen.
Dies erlaubt uns,
ohne Rücksicht
auf zusätzliche `hardware'-spezifische Beschränkungen
der Mächtigkeit des Netzes
die Speicherbegrenzung
und die Zeitbegrenzung
durch zwei natürliche Parameter zu identifizieren8.7.
Damit erhalten wir ein allgemeines `selbstreferentielles' Netz mit im wesentlichen unbeschränkter Mächtigkeit (modulo unvermeidlicher Zeit- und Speicherbegrenzungen), welches im Prinzip seine eigene Gewichtsmatrix analysieren und ändern kann, einschließlich jener Teile der Gewichtsmatrix, die für die Analyse und Änderung der Gewichtsmatrix zuständig sind. Der Analyse- und Änderungsprozeß selbst kann beliebig komplex sein - es gibt keine wesentlichen theoretischen Begrenzungen für die Raffinesse der im Netz implementierbaren Gewichtsänderungsalgorithmen. Das gleiche gilt für die Gewichtsänderungsalgorithmen, die die Gewichtsänderungsalgorithmen ändern, und die Gewichtsänderungsalgorithmen, die die Gewichtsänderungsalgorithmen, die die Gewichtsänderungsalgorithmen ändern, ändern, etc.... Dies liegt im wesentlichen daran, daß jeder `Meta-Level' in dasselbe Netz eingebettet ist8.8.