next up previous
Next: About this document ... Up: The New AI: General Previous: Acknowledgments


M. Beeson.
Foundations of Constructive Mathematics.
Springer-Verlag, Heidelberg, 1985.

J. S. Bell.
On the problem of hidden variables in quantum mechanics.
Rev. Mod. Phys., 38:447-452, 1966.

C. H. Bennett and D. P. DiVicenzo.
Quantum information and computation.
Nature, 404(6775):256-259, 2000.

C. M. Bishop.
Neural networks for pattern recognition.
Oxford University Press, 1995.

L. E. J. Brouwer.
Over de Grondslagen der Wiskunde. Dissertation, Doctoral Thesis, University of Amsterdam, 1907.

F. Cajori.
History of mathematics (2nd edition).
Macmillan, New York, 1919.

G. Cantor.
Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen.
Crelle's Journal für Mathematik, 77:258-263, 1874.

G.J. Chaitin.
A theory of program size formally identical to information theory.
Journal of the ACM, 22:329-340, 1975.

G.J. Chaitin.
Algorithmic Information Theory.
Cambridge University Press, Cambridge, 1987.

D. Deutsch.
The Fabric of Reality.
Allen Lane, New York, NY, 1997.

T. Erber and S. Putterman.
Randomness in quantum mechanics - nature's ultimate cryptogram?
Nature, 318(7):41-43, 1985.

H. Everett III.
`Relative State' formulation of quantum mechanics.
Reviews of Modern Physics, 29:454-462, 1957.

E. F. Fredkin and T. Toffoli.
Conservative logic.
International Journal of Theoretical Physics, 21(3/4):219-253, 1982.

R. V. Freyvald.
Functions and functionals computable in the limit.
Transactions of Latvijas Vlasts Univ. Zinatn. Raksti, 210:6-19, 1977.

P. Gács.
On the relation between descriptional complexity and algorithmic probability.
Theoretical Computer Science, 22:71-93, 1983.

K. Gödel.
Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I.
Monatshefte für Mathematik und Physik, 38:173-198, 1931.

E. M. Gold.
Limiting recursion.
Journal of Symbolic Logic, 30(1):28-46, 1965.

M.B. Green, J.H. Schwarz, and E. Witten.
Superstring Theory.
Cambridge University Press, 1987.

S. Hochreiter, A. S. Younger, and P. R. Conwell.
Learning to learn using gradient descent.
In Lecture Notes on Comp. Sci. 2130, Proc. Intl. Conf. on Artificial Neural Networks (ICANN-2001), pages 87-94. Springer: Berlin, Heidelberg, 2001.

M. Hutter.
Convergence and error bounds of universal prediction for general alphabet.
Proceedings of the 12th European Conference on Machine Learning (ECML-2001), (TR IDSIA-07-01, cs.AI/0103015), 2001.
(On J. Schmidhuber's SNF grant 20-61847).

M. Hutter.
General loss bounds for universal sequence prediction.
In C. E. Brodley and A. P. Danyluk, editors, Proceedings of the $18^{th}$ International Conference on Machine Learning (ICML-2001), pages 210-217. Morgan Kaufmann, 2001.
(On J. Schmidhuber's SNF grant 20-61847).

M. Hutter.
Towards a universal theory of artificial intelligence based on algorithmic probability and sequential decisions.
Proceedings of the 12$^{th}$ European Conference on Machine Learning (ECML-2001), pages 226-238, 2001.
(On J. Schmidhuber's SNF grant 20-61847).

M. Hutter.
The fastest and shortest algorithm for all well-defined problems.
International Journal of Foundations of Computer Science, 13(3):431-443, 2002.
(On J. Schmidhuber's SNF grant 20-61847).

M. Hutter.
Self-optimizing and Pareto-optimal policies in general environments based on Bayes-mixtures.
In J. Kivinen and R. H. Sloan, editors, Proceedings of the 15th Annual Conference on Computational Learning Theory (COLT 2002), Lecture Notes in Artificial Intelligence, pages 364-379, Sydney, Australia, 2002. Springer.
(On J. Schmidhuber's SNF grant 20-61847).

M. Hutter.
A gentle introduction to the universal algorithmic agent AIXI.
In B. Goertzel and C. Pennachin, editors, Real AI: New Approaches to Artificial General Intelligence. Plenum Press, New York, 2003.
To appear.

M. I. Jordan and D. E. Rumelhart.
Supervised learning with a distal teacher.
Technical Report Occasional Paper #40, Center for Cog. Sci., Massachusetts Institute of Technology, 1990.

L.P. Kaelbling, M.L. Littman, and A.W. Moore.
Reinforcement learning: a survey.
Journal of AI research, 4:237-285, 1996.

A.N. Kolmogorov.
Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1:1-11, 1965.

L. A. Levin.
Universal sequential search problems.
Problems of Information Transmission, 9(3):265-266, 1973.

L. A. Levin.
Laws of information (nongrowth) and aspects of the foundation of probability theory.
Problems of Information Transmission, 10(3):206-210, 1974.

M. Li and P. M. B. Vitányi.
An Introduction to Kolmogorov Complexity and its Applications (2nd edition).
Springer, 1997.

L. Löwenheim.
Über Möglichkeiten im Relativkalkül.
Mathematische Annalen, 76:447-470, 1915.

N. Merhav and M. Feder.
Universal prediction.
IEEE Transactions on Information Theory, 44(6):2124-2147, 1998.

T. Mitchell.
Machine Learning.
McGraw Hill, 1997.

C. H. Moore and G. C. Leach.
FORTH - a language for interactive computing, 1970.

A. Newell and H. Simon.
GPS, a program that simulates human thought.
In E. Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279-293. McGraw-Hill, New York, 1963.

Nguyen and B. Widrow.
The truck backer-upper: An example of self learning in neural networks.
In Proceedings of the International Joint Conference on Neural Networks, pages 357-363. IEEE Press, 1989.

R. Penrose.
The Emperor's New Mind.
Oxford University Press, 1989.

K. R. Popper.
The Logic of Scientific Discovery.
Hutchinson, London, 1934.

H. Putnam.
Trial and error predicates and the solution to a problem of Mostowski.
Journal of Symbolic Logic, 30(1):49-57, 1965.

J. Rissanen.
Stochastic complexity and modeling.
The Annals of Statistics, 14(3):1080-1100, 1986.

H. Rogers, Jr.
Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

P. S. Rosenbloom, J. E. Laird, and A. Newell.
The SOAR Papers.
MIT Press, 1993.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.
In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, pages 318-362. MIT Press, 1986.

C. Schmidhuber.
Strings from logic.
Technical Report CERN-TH/2000-316, CERN, Theory Division, 2000.

J. Schmidhuber.
Reinforcement learning in Markovian and non-Markovian environments.
In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 500-506. Morgan Kaufmann, 1991.

J. Schmidhuber.
Discovering solutions with low Kolmogorov complexity and high generalization capability.
In A. Prieditis and S. Russell, editors, Machine Learning: Proceedings of the Twelfth International Conference, pages 488-496. Morgan Kaufmann Publishers, San Francisco, CA, 1995.

J. Schmidhuber.
A computer scientist's view of life, the universe, and everything.
In C. Freksa, M. Jantzen, and R. Valk, editors, Foundations of Computer Science: Potential - Theory - Cognition, volume 1337, pages 201-208. Lecture Notes in Computer Science, Springer, Berlin, 1997.

J. Schmidhuber.
Discovering neural nets with low Kolmogorov complexity and high generalization capability.
Neural Networks, 10(5):857-873, 1997.

J. Schmidhuber.
Algorithmic theories of everything.
Technical Report IDSIA-20-00, quant-ph/0011122, IDSIA, Manno (Lugano), Switzerland, 2000.
Sections 1-5: see [52]; Section 6: see [54].

J. Schmidhuber.
Sequential decision making based on direct search.
In R. Sun and C. L. Giles, editors, Sequence Learning: Paradigms, Algorithms, and Applications. Springer, 2001.
Lecture Notes on AI 1828.

J. Schmidhuber.
Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit.
International Journal of Foundations of Computer Science, 13(4):587-612, 2002.

J. Schmidhuber.
Optimal ordered problem solver.
Technical Report IDSIA-12-02, IDSIA, Manno-Lugano, Switzerland, 2002.
Available at arXiv:cs.AI/0207097 or juergen/oops.html. Machine Learning Journal, Kluwer, 2003, accepted.

J. Schmidhuber.
The Speed Prior: a new simplicity measure yielding near-optimal computable predictions.
In J. Kivinen and R. H. Sloan, editors, Proceedings of the 15th Annual Conference on Computational Learning Theory (COLT 2002), Lecture Notes in Artificial Intelligence, pages 216-228. Springer, Sydney, Australia, 2002.

J. Schmidhuber.
Bias-optimal incremental problem solving.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 1571-1578, Cambridge, MA, 2003. MIT Press.

J. Schmidhuber.
Gödel machines: self-referential universal problem solvers making provably optimal self-improvements.
Technical Report IDSIA-19-03, arXiv:cs.LO/0309048 v2, IDSIA, Manno-Lugano, Switzerland, October 2003.

J. Schmidhuber.
The new AI: General & sound & relevant for physics.
Technical Report TR IDSIA-04-03, Version 1.0, cs.AI/0302012 v1, February 2003.

J. Schmidhuber.
Towards solving the grand problem of AI.
In P. Quaresma, A. Dourado, E. Costa, and J. F. Costa, editors, Soft Computing and complex systems, pages 77-97. Centro Internacional de Mathematica, Coimbra, Portugal, 2003.
Based on [57].

J. Schmidhuber and M. Hutter.
NIPS 2002 workshop on universal learning algorithms and optimal search. Additional speakers: R. Solomonoff, P. M. B. Vitányi, N. Cesa-Bianchi, I. Nemenmann. Whistler, CA, 2002.

J. Schmidhuber, J. Zhao, and M. Wiering.
Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement.
Machine Learning, 28:105-130, 1997.

T. Skolem.
Logisch-kombinatorische Untersuchungen über Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen.
Skrifter utgit av Videnskapsselskapet in Kristiania, I, Mat.-Nat. Kl., N4:1-36, 1919.

R.J. Solomonoff.
A formal theory of inductive inference. Part I.
Information and Control, 7:1-22, 1964.

R.J. Solomonoff.
Complexity-based induction systems.
IEEE Transactions on Information Theory, IT-24(5):422-432, 1978.

R.J. Solomonoff.
An application of algorithmic probability to problems in artificial intelligence.
In L. N. Kanal and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, pages 473-491. Elsevier Science Publishers, 1986.

R.J. Solomonoff.
A system for incremental learning based on algorithmic probability.
In Proceedings of the Sixth Israeli Conference on Artificial Intelligence, Computer Vision and Pattern Recognition, pages 515-527. Tel Aviv, Israel, 1989.

G. 't Hooft.
Quantum gravity as a dissipative deterministic system.
Technical Report SPIN-1999/07/gr-gc/9903084,, Institute for Theoretical Physics, Univ. of Utrecht, and Spinoza Institute, Netherlands, 1999.
Also published in Classical and Quantum Gravity 16, 3263.

A. M. Turing.
On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, Series 2, 41:230-267, 1936.

S. Ulam.
Random processes and transformations.
In Proceedings of the International Congress on Mathematics, volume 2, pages 264-275, 1950.

V. Vapnik.
The Nature of Statistical Learning Theory.
Springer, New York, 1995.

J. von Neumann.
Theory of Self-Reproducing Automata.
University of Illionois Press, Champain, IL, 1966.

C. S. Wallace and D. M. Boulton.
An information theoretic measure for classification.
Computer Journal, 11(2):185-194, 1968.

P. J. Werbos.
Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
PhD thesis, Harvard University, 1974.

P. J. Werbos.
Learning how the world works: Specifications for predictive networks in robots and brains.
In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, N.Y., 1987.

M.A. Wiering and J. Schmidhuber.
Solving POMDPs with Levin search and EIRA.
In L. Saitta, editor, Machine Learning: Proceedings of the Thirteenth International Conference, pages 534-542. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

K. Zuse.
Rechnender Raum.
Elektronische Datenverarbeitung, 8:336-344, 1967.

K. Zuse.
Rechnender Raum.
Friedrich Vieweg & Sohn, Braunschweig, 1969.
English translation: Calculating Space, MIT Technical Translation AZT-70-164-GEMIT, Massachusetts Institute of Technology (Proj. MAC), Cambridge, Mass. 02139, Feb. 1970.

A. K. Zvonkin and L. A. Levin.
The complexity of finite objects and the algorithmic concepts of information and randomness.
Russian Math. Surveys, 25(6):83-124, 1970.

Juergen Schmidhuber 2003-11-27