   Next: THE ALGORITHM Up: FLAT MINIMA NEURAL COMPUTATION Previous: BASIC IDEAS / OUTLINE

# TASK / ARCHITECTURE / BOXES

Generalization task. The task is to approximate an unknown function mapping a finite set of possible inputs to a finite set of possible outputs . A data set is obtained from (see appendix A.1). All training information is given by a finite set . is called the training set. The th element of is denoted by an input/target pair .

Architecture/ Net functions. For simplicity, we will focus on a standard feedforward net (but in the experiments, we will use recurrent nets as well). The net has input units, output units, weights, and differentiable activation functions. It maps input vectors to output vectors , where is the -dimensional weight vector, and the weight on the connection from unit to is denoted . The net function induced by is denoted : for , , where denotes the -th component of , corresponding to output unit .

Training error. We use squared error , where denotes the Euclidean norm.

Tolerable error. To define a region in weight space with the property that each weight vector from that region leads to small error and similar output, we introduce the tolerable error , a positive constant (see appendix A.1 for a formal definition of ). Small'' error is defined as being smaller than . implies underfitting''.

Boxes. Each weight satisfying defines an acceptable minimum'' (compare in appendix A.1). We are interested in a large region of connected acceptable minima, where each weight within this region leads to almost identical net functions . Such a region is called a flat minimum. We will see that flat minima correspond to low expected generalization error. To simplify the algorithm for finding a large connected region (see below), we do not consider maximal connected regions but focus on so-called boxes'' within regions: for each acceptable minimum , its box in weight space is a -dimensional hypercuboid with center . For simplicity, each edge of the box is taken to be parallel to one weight axis. Half the length of the box edge in direction of the axis corresponding to weight is denoted by . The are the maximal (positive) values such that for all -dimensional vectors whose components are restricted by , we have: , where , and is a small positive constant defining tolerable output changes (see also equation (1)). Note that depends on . Since our algorithm does not use , however, it is notationally suppressed. gives the precision of . 's box volume is defined by , where denotes the vector with components . Our goal is to find large boxes within flat minima.   Next: THE ALGORITHM Up: FLAT MINIMA NEURAL COMPUTATION Previous: BASIC IDEAS / OUTLINE
Juergen Schmidhuber 2003-02-13

Back to Financial Forecasting page