
LETTER Communicated by Yoshua Bengio

Training Recurrent Networks by Evolino

Jürgen Schmidhuber
juergen@idsia.ch
IDSIA, 6928 Manno (Lugano), Switzerland, and TU Munich, 85748 Garching,
München, Germany
Daan Wierstra
daan@idsia.ch
Matteo Gagliolo
matteo@idsia.ch
Faustino Gomez
tino@idsia.ch
IDSIA, 6928 Manno (Lugano), Switzerland

In recent years, gradient-based LSTM recurrent neural networks (RNNs)
solved many previously RNN-unlearnable tasks. Sometimes, however,
gradient information is of little use for training RNNs, due to numer-
ous local minima. For such cases, we present a novel method: EVOlution
of systems with LINear Outputs (Evolino). Evolino evolves weights to
the nonlinear, hidden nodes of RNNs while computing optimal linear
mappings from hidden state to output, using methods such as pseudo-
inverse-based linear regression. If we instead use quadratic programming
to maximize the margin, we obtain the first evolutionary recurrent sup-
port vector machines. We show that Evolino-based LSTM can solve tasks
that Echo State nets (Jaeger, 2004a) cannot and achieves higher accuracy in
certain continuous function generation tasks than conventional gradient
descent RNNs, including gradient-based LSTM.

1 Introduction

Recurrent neural networks (RNNs; Pearlmutter, 1995; Robinson & Fallside,
1987; Rumelhart & McClelland, 1986; Werbos, 1974; Williams, 1989) are
mathematical abstractions of biological nervous systems that can perform
complex mappings from input sequences to output sequences. In principle,
one can wire them up just like microprocessors; hence, RNNs can com-
pute anything a traditional computer can compute (Schmidhuber, 1990).
In particular, they can approximate any dynamical system with arbitrary
precision (Siegelmann & Sontag, 1991). However, unlike traditional, pro-
grammed computers, RNNs learn their behavior from a training set of
correct example sequences. As training sequences are fed to the network,
the error between the actual and desired network output is minimized using

Neural Computation 19, 757–779 (2007) C© 2007 Massachusetts Institute of Technology

758 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

gradient descent, whereby the connection weights are gradually adjusted in
the direction that reduces this error most rapidly. Potential applications in-
clude adaptive robotics, speech recognition, attentive vision, music compo-
sition, and innumerable others where retaining information from arbitrarily
far in the past can be critical to making optimal decisions.

Recently, echo state networks (ESNs; Jaeger, 2004a) and a similar ap-
proach, liquid state machines (Maass, Natschläger, & Markram, 2002), have
attracted significant attention. Composed primarily of a large pool of hid-
den neurons (typically hundreds or thousands) with fixed random weights,
ESNs are trained by computing a set of weights from the pool to the output
units using fast, linear regression. The idea is that with so many random
hidden units, the pool is capable of very rich dynamics that just need to be
correctly tapped by setting the output weights appropriately. ESNs have
the best-known error rates on the Mackey-Glass time-series prediction task
(Jaeger, 2004a).

The drawback of ESNs is that the only truly computationally power-
ful, nonlinear part of the net does not learn, whereas previous supervised,
gradient-based learning algorithms for sequence-processing RNNs (Pearl-
mutter, 1995; Robinson & Fallside, 1987; Schmidhuber, 1992; Werbos, 1988;
Williams, 1989) adjust all weights of the net, not just the output weights.
Unfortunately, early RNN architectures could not learn to look far back into
the past because they made gradients either vanish or blow up exponen-
tially with the size of the time lag (Hochreiter, 1991; Hochreiter, Bengio,
Frasconi, & Schmidhuber, 2001).

A recent RNN called long short-term memory (LSTM; Hochreiter
& Schmidhuber, 1997a), however, overcomes this fundamental problem
through a specialized architecture that does not impose any unrealistic bias
toward recent events by maintaining constant error flow back through time.
Using gradient-based learning for both linear and nonlinear nodes, LSTM
networks can efficiently solve many tasks that were previously unlearnable
using RNNs, (e.g., Gers & Schmidhuber, 2001; Gers, Schmidhuber, & Cum-
mins, 2000; Gers, Schraudolph, & Schmidhuber, 2002; Graves & Schmid-
huber, 2005; Hochreiter & Schmidhuber, 1997a; Pérez-Ortiz, Gers, Eck, &
Schmidhuber, 2003; Schmidhuber, Gers, & Eck, 2002).

However, even when using LSTM, gradient-based learning algorithms
can sometimes yield suboptimal results because rough error surfaces can
often lead to inescapable local minima. As we showed (Hochreiter &
Schmidhuber, 1997b; Schmidhuber, Hochreiter, & Bengio, 2001), many RNN
problems involving long-term dependencies that were considered chal-
lenging benchmarks in the 1990s turned out to be trivial in that they
could be solved by random weight guessing. That is, these problems
were difficult only because learning relied solely on gradient informa-
tion. There was actually a high density of solutions in the weight space,
but the error surface was too rough to be exploited using the local gradi-
ent. By repeatedly selecting weights at random, the network does not get

Training Recurrent Networks by Evolino 759

stuck in a local minimum and eventually happens on one of the plentiful
solutions.

One popular method that uses the advantage of random weight guess-
ing in a more efficient and principled way is to search the space of RNN
weight matrices (Miglino, Lund, & Nolfi, 1995; Miller, Todd, & Hedge, 1989;
Nolfi, Floreano, Miglino, & Mondada, 1994; Sims, 1994; Yamauchi & Beer,
1994; Yao, 1993), using evolutionary algorithms (Holland, 1975; Rechen-
berg, 1973; Schwefel, 1977). The applicability of such methods is actually
broader than that of gradient-based algorithms, since no teacher is required
to specify target trajectories for the RNN output nodes. In particular, recent
progress has been made with cooperatively coevolving recurrent neurons,
each with its own rather small, local search space of possible weight vec-
tors (Gomez, 2003; Moriarty & Miikkulainen, 1996; Potter & De Jong, 1995).
This approach can quickly learn to solve difficult reinforcement learning
control tasks (Gomez & Schmidhuber, 2005a; Gomez, 2003; Moriarty, 1997),
including ones that require use of deep memory (Gomez & Schmidhuber,
2005b).

Successfully evolved networks of this type are currently still rather small,
with not more than several hundred weights or so. At least for supervised
applications, however, such methods may be unnecessarily slow, since they
do not exploit gradient information about good directions in the search
space.

To overcome such drawbacks, in what follows, we limit the domain
of evolutionary methods to weight vectors of hidden units, while using
fast traditional methods for finding optimal linear maps from hidden to
output units. We present a general framework for training RNNs called
EVOlution of recurrent systems with LINear Outputs (Evolino) (Schmid-
huber, Wierstra, & Gomez, 2005; Wierstra, Gomez, & Schmidhuber, 2005).
Evolino evolves weights to the nonlinear, hidden nodes while comput-
ing optimal linear mappings from hidden state to output, using methods
such as pseudo-inverse-based linear regression (Penrose, 1955) or support
vector machines (Vapnik, 1995), depending on the notion of optimality em-
ployed. This generalizes methods such as those of Maillard (Maillard &
Gueriot, 1997) and Ishii et al. (Ishii, van der Zant, Bečanović, & Plöger, 2004;
van der Zant, Bečanović, Ishii, Kobialka, & Plöger, 2004) that evolve radial
basis functions and ESNs, respectively. Applied to the LSTM architecture,
Evolino can solve tasks that ESNs (Jaeger, 2004a) cannot and achieves higher
accuracy in certain continuous function generation tasks than conventional
gradient descent RNNs, including gradient-based LSTM (G-LSTM).

The next section describes the Evolino framework as well as two spe-
cific instances, PI-Evolino (section 2.3), and Evoke (section 2.4), that both
combine a cooperative coevolution algorithm called Enforced SubPopula-
tions (section 2.1) with LSTM (section 2.2). In section 3, we apply Evolino
to four time series prediction problems, and in section 4 we provide some
concluding remarks.

760 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

Recurrent
Neural Network

Linear Output
Layer W

m

u (t) u (t) u (t)

(t)(t) (t) (t)(t)

y1(t) y (t)2

1 2 3 4 u (t)p

y

φ φ φ φφ 2 n1 3 4

u

(t)

(t)

Figure 1: Evolino network: A recurrent neural network receives sequential in-
puts u(t) and produces the vector (φ1, φ2, . . . , φn) at every time step t. These
values are linearly combined with the weight matrix W to yield the network’s
output vector y(t). While the RNN is evolved, the output layer weights are
computed using a fast, optimal method such as linear regression or quadratic
programming.

2 Evolino

Evolino is a general framework for supervised sequence learning that com-
bines neuroevolution (i.e., the evolution of neural networks) and analytical
linear methods that are optimal in some sense, such as linear regression
or quadratic programming (see section 2.4). The underlying principle of
Evolino is that often a linear model can account for a large number of prop-
erties of a problem. Properties that require nonlinearity and recurrence are
then dealt with by evolution.

Figure 1 illustrates the basic operation of an Evolino network. The output
of the network at time t, y(t)∈Rm, is computed by the following formulas:

y(t) = Wφ(t), (2.1)

φ(t) = f (u(t), u(t − 1), . . . , u(0)), (2.2)

where φ(t)∈Rn is the output of a recurrent neural network f (·) and W is a
weight matrix. Note that because the networks are recurrent, f (·) is indeed

Training Recurrent Networks by Evolino 761

a function of the entire input history, u(t), u(t − 1), . . . , u(0). In the case of
maximum margin classification problems (Vapnik, 1995), we may compute
W by quadratic programming. In what follows, however, we focus on mean
squared error minimization problems and compute W by linear regression.

In order to evolve an f (·) that minimizes the error between y and the
correct output, d , of the system being modeled, Evolino does not specify a
particular evolutionary algorithm, but rather stipulates only that networks
be evaluated using the following two-phase procedure.

In the first phase, a training set of sequences obtained from the system,
{ui , di }, i = 1..k, each of length li , is presented to the network. For each
sequence ui , starting at time t = 0, each input pattern ui (t) is successively
propagated through the recurrent network to produce a vector of activations
φi (t) that is stored as a row in a

∑k
i li × n matrix ". Associated with each

φi (t), is a target vector di (t) in matrix D containing the correct output values
for each time step. Once all k sequences have been seen, the output weights
W (the output layer in Figure 1) are computed using linear regression from
" to D. The row vectors in " (i.e., the values of each of the n outputs over
the entire training set) form a nonorthogonal basis that is combined linearly
by W to approximate D.

In the second phase, the training set is presented to the network again, but
now the inputs are propagated through the recurrent network f (·) and the
newly computed output connections to produce predictions y(t). The error
in the prediction, or the residual error, is then used as the fitness measure to
be minimized by evolution. Alternatively, the error on a previously unseen
validation set, or the sum of training and validation error, can be minimized.

Neuroevolution is normally applied to reinforcement learning tasks
where correct network outputs (i.e., targets) are not known a priori. Evolino
uses neuroevolution for supervised learning to circumvent the problems of
gradient-based approaches. In order to obtain the precision required for
time-series prediction, we do not try to evolve a network that makes pre-
dictions directly. Instead, the network outputs a set of vectors that form a
basis for linear regression. The intuition is that finding a sufficiently good
basis is easier than trying to find a network that models the system accu-
rately on its own.

One possible instantiation of Evolino that we have explored thus far with
promising results coevolves the recurrent nodes of LSTM networks using
a variant of the enforced subpopulations (ESP) neuroevolution algorithm.
The next sections describe ESP, LSTM, and the details of how they are
combined in the Evolino framework to form two algorithms: PI-Evolino,
which uses the mean squared error optimality criterion, and Evoke, which
uses the maximum margin.

2.1 Enforced SubPopulations (ESP). Enforced SubPopulations differs
from standard neuroevolution methods in that instead of evolving complete

762 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

ESP

LSTM Network

output

input

pseudo−inverse
weights

Time series

fitness

Figure 2: Enforced subpopulations (ESP). The population of neurons is segre-
gated into subpopulations. Networks are formed by randomly selecting one
neuron from each subpopulation. A neuron accumulates a fitness score by
adding the fitness of each network in which it participates. The best neurons
within each subpopulation are mated to form new neurons. The network shown
here is an LSTM network with four memory cells (the triangular shapes).

networks, it coevolves separate subpopulations of network components or
neurons (see Figure 2). ESP searches the space of networks indirectly by
sampling the possible networks that can be constructed from the subpopu-
lations of neurons. Network evaluations serve to provide a fitness statistic
that is used to produce better neurons that can eventually be combined
to form a successful network. This cooperative coevolutionary approach
is an extension to symbiotic, adaptive neuroevolution (SANE; Moriarty, &
Miikkulainen, 1996), which also evolves neurons, but in a single popula-
tion. By using separate subpopulations, ESP accelerates the specialization
of neurons into different subfunctions needed to form good networks be-
cause members of different evolving subfunction types are prevented from
mating. Subpopulations also reduce noise in the neuron fitness measure be-
cause each evolving neuron type is guaranteed to be represented in every
network that is formed. Both of these features allow ESP to evolve networks
more efficiently than SANE (Gomez & Miikkulainen, 1999).

ESP normally uses crossover to recombine neurons. However, for the
Evolino variant, where fine local search is desirable, ESP uses Cauchy-
distributed mutation to produce all new individuals, making the approach
in effect an evolution strategy (Schwefel, 1995). More concretely, evolution
proceeds as follows:

Training Recurrent Networks by Evolino 763

1. Initialization. The number of hidden units H in the networks that will
be evolved is specified, and a subpopulation of n neuron chromo-
somes is created for each hidden unit. Each chromosome encodes
a neuron’s input and recurrent connection weights with a string of
random real numbers.

2. Evaluation. A neuron is selected at random from each of the H subpop-
ulations and combined to form a recurrent network. The network is
evaluated on the task and awarded a fitness score. The score is added
to the cumulative fitness of each neuron that participated in the net-
work. This procedure is repeated until each neuron participated in m
evaluations.

3. Reproduction. For each subpopulation, the neurons are ranked by fit-
ness, and the top quarter of the chromosomes, or parents, in each sub-
population are duplicated, and the copies, or children, are mutated
by adding noise to all of their weight values from the Cauchy distri-
bution f (x) = α

π (α2+x2) , where the parameter α determines the width
of the distribution. The children then replace the lowest-ranking half
of their corresponding subpopulation.

4. Repeat the evaluation–reproduction cycle until a sufficiently fit net-
work is found.

If during evolution, the fitness of the best network evaluated so far does
not improve for a predetermined number of generations, a technique called
burst mutation is used. The idea of burst mutation is to search the space
of modifications to the best solution found so far. When burst mutation is
activated, the best neuron in each subpopulation is saved, the other neurons
are deleted, and new neurons are created for each subpopulation by adding
Cauchy distributed noise to its saved neuron. Evolution then resumes, but
now searching in a neighborhood around the previous best solution. Burst
mutation injects new diversity into the subpopulations and allows ESP to
continue evolving after the initial subpopulations have converged.

2.2 Long Short-Term Memory. LSTM is a recurrent neural network
purposely designed to learn long-term dependencies via gradient descent.
The unique feature of the LSTM architecture is the memory cell, which is
capable of maintaining its activation indefinitely (see Figure 3). Memory
cells consist of a linear unit, which holds the state of the cell, and three gates
that can open or close over time. The input gate “protects” a neuron from
its input: only when the gate is open can inputs affect the internal state of
the neuron. The output gate lets the state out to other parts of the network,
and the forget gate enables the state to “leak” activity when it is no longer
useful.

764 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

output

peephole

external inputs

Σ

G

F

GI

o

G

S

Figure 3: Long short-term Memory. The figure shows an LSTM memory cell.
The cell has an internal state S together with a forget gate (G F) that determines
how much the state is attenuated at each time step. The input gate (G I) controls
access to the cell by the external inputs that are summed into the % unit, and
the output gate (G O) controls when and how much the cell fires. Small, dark
nodes represent the multiplication function.

The state of cell i is computed by

si (t) = neti (t)gin
i (t) + g f orget

i (t)si (t − 1), (2.3)

where gin and gforget are the activation of the input and forget gates, respec-
tively, and net is the weighted sum of the external inputs (indicated by the
%s in Figure 3),

neti (t) = h

(
∑

j

wcell
i j c j (t − 1) +

∑

k

wcell
ik uk(t)

)

, (2.4)

where h is usually the identity function and c j is the output of cell j :

c j (t) = tanh(gout
j (t)s j (t)), (2.5)

Training Recurrent Networks by Evolino 765

where gout is the output gate of cell j . The amount each gate gi of memory
cell i is open or closed at time t is calculated by:

gtype
i (t) = σ

(
∑

j

w
type
i j c j (t − 1) +

∑

k

w
type
ik uk(t)

)

, (2.6)

where type can be input, output, or forget, and σ is the standard sigmoid
function. The gates receive input from the output of other cells c j and from
the external inputs to the network.

2.3 Combining LSTM, ESP, and Pseudoinverse in Evolino. We apply
our general Evolino framework to the LSTM architecture, using ESP for
evolution and regression for computing linear mappings from hidden state
to outputs. ESP coevolves subpopulations of LSTM memory cells instead
of standard recurrent neurons (see Figure 2). Each chromosome is a string
containing the external input weights and the input, output, and forget gate
weights, for a total of 4 ∗ (I + H) weights in each memory cell chromosome,
where I is the number of external inputs and H is the number of memory
cells in the network. There are four sets of I + H weights because the three
gates and the cell itself receive input from outside the cell and the other cells.
Figure 4 shows how the memory cells are encoded in an ESP chromosome.
Each chromosome in a subpopulation encodes the connection weights for
a cell’s input, output, and forget gates, and external inputs.

The linear regression method used to compute the output weights (W in
equation 2.2) is the Moore-Penrose pseudoinverse method, which is both
fast and optimal in the sense that it minimizes the summed squared error
(Penrose, 1955) (compare Maillard & Gueriot, 1997, for an application to
feedforward RBF nets and Ishii et al., 2004, for an application to echo state
networks). The vector φ(t) consists of both the cell outputs ci and their in-
ternal states si , so that the pseudoinverse computes two connection weights
for each memory cell. We refer to the connections from internal states to
the output units as “output peephole” connections, since they peer into the
interior of the cells.

For continuous function generation, backprojection (or teacher forc-
ing, in standard RNN terminology) is used where the predicted out-
puts are fed back as inputs in the next time step: φ(t) = f (u(t), y(t − 1),
u(t − 1), . . . , y(0), u(0)).

During training, the correct target values are backprojected, in effect
“clamping” the network’s outputs to the right values. During testing, the
network backprojects its own predictions. This technique is also used by
ESNs, but whereas ESNs do not change the backprojection connection
weights, Evolino evolves them, treating them like any other input to the net-
work. In the experiments described below, backprojection was found useful

766 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

Phenotype

ex
te

rn
al

 in
pu

ts
in

pu
t g

at
e

fo
rg

et
 g

at
e

ou
tp

ut
 g

at
e

Genotype

Σ

G

GF

GI

S

o

O

Figure 4: Genotype-phenotype mapping. Each chromosome (genotype, left) in
a subpopulation encodes the external input, and input, output, and forget gate
weights of an LSTM memory cell (phenotype, right). The weights leading out
of the state (S) and output (O) units are not encoded in the genotype, but are
instead computed at evaluation time by linear regression.

for continuous-function generation tasks, but interferes to some extent with
performance in the discrete context-sensitive language task.

2.4 Evoke: Evolino for Recurrent Support Vector Machines. As out-
lined in section 2, the Evolino framework does not prescribe a particular
optimality criterion for computing the output weights. If we replace mean
squared error with the maximum margin criterion of support vector ma-
chines (SVMs; Vapnik, 1995), the optimal linear output weights can be eval-
uated using, for example, quadratic programming, as in traditional SVMs.
We call this Evolino variant EVOlution of systems with KErnel-based outputs
(Evoke; Schmidhuber, Gagliolo, Wierstra, & Gomez, 2006). The Evoke vari-
ant of equation 2.1 becomes

y(t) = w0 +
k∑

i=1

li∑

j=0

wi j K (φ(t), φi (j)), (2.7)

Training Recurrent Networks by Evolino 767

where φ(t)∈Rn is, again, the output of the recurrent neural network f (·)
at time t (see equation 2.2), K (·, ·) is a predefined kernel function, and the
weights wi j correspond to k training sequences φi , each of length li , and are
computed with the support vector algorithm.

SVMs are powerful regressors and classifiers that make predictions based
on a linear combination of kernel basis functions. The kernel maps the input
feature space to a higher-dimensional space where the data are linearly sep-
arable (in classification) or can be approximated well with a hyperplane (in
regression). A limited way of applying existing SVMs to time-series predic-
tion (Mukherjee, Osuna, & Girosi, 1997; Müller et al., 1997) or classification
(Salomon et al., 2002) is to build a training set, either by transforming the
sequential input into some static domain (e.g., a frequency and phase repre-
sentation) or by considering restricted, fixed time windows of m sequential
input values. One alternative presented in Shimodaira, Noma, Nakai, &
Sagayama, (2002) is to average kernel distance between elements of input
sequences aligned to m points. Of course, such approaches are bound to
fail if there are temporal dependencies exceeding m steps. In a more so-
phisticated approach by Suykens and Vandewalle (2000), a window of m
previous output values is fed back as input to a recurrent model with a
fixed kernel. So far, however, there has not been any recurrent SVM that
learns to create internal state representations for sequence learning tasks
involving time lags of arbitrary length between important input events. For
example, consider the task of correctly classifying arbitrary instances of the
context-free language anbn (n a’s followed by n b’s, for arbitrary integers
n > 0).

For Evoke, the evolved RNN is a preprocessor for a standard SVM ker-
nel. The combination of both can be viewed as an adaptive kernel learning a
task-specific distance measure between pairs of input sequences. Although
Evoke uses SVM methods, it can solve several tasks that traditional SVMs
cannot solve even in principle. We will see that it also outperforms recent
state-of-the-art RNNs on certain tasks, including echo state networks (ESNs)
(Jaeger, 2004a) and previous gradient descent RNNs (Hochreiter & Schmid-
huber, 1997a; Pearlmutter, 1995; Robinson & Fallside, 1987; Rumelhart &
McClelland, 1986; Werbos, 1974; Williams, 1989).

3 Experiments

Experiments with PI-Evolino were carried out on four test problems:
context-sensitive languages, multiple superimposed sine waves, parity
problem with display, and the Mackey-Glass time series. The first two were
chosen to highlight Evolino’s ability to perform well in both discrete and
continuous domains, and to solve tasks that neither ESNs (Jaeger, 2004a)
nor traditional gradient-descent RNNs (Pearlmutter, 1995; Robinson, &
Fallside, 1987; Rumelhart, & McClelland, 1986; Werbos, 1974; Williams,
1989) can solve well. We also report successful experiments with

768 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

Evoke-trained RSVMs on these tasks. The parity problem with display
demonstrates PI-Evolino’s ability to cope with rough error surfaces that
confound gradient-based approaches, including G-LSTM. Although the
Mackey-Glass system can be modeled accurately by nonrecurrent systems
(Jaeger, 2004a), it was selected to compare PI-Evolino with ESNs, the refer-
ence method on this widely used time-series benchmark.

3.1 Context-Sensitive Grammars. Context-sensitive languages are lan-
guages that cannot be recognized by deterministic finite-state automata
and are therefore more complex in some respects than regular languages.
In general, determining whether a string of symbols belongs to a context-
sensitive language requires remembering all the symbols in the string seen
so far, ruling out the use of nonrecurrent architectures.

To compare Evolino-based LSTM with published results for G-LSTM
(Gers & Schmidhuber, 2001), we chose the language anbncn. The task was
implemented using networks with four input units—one for each sym-
bol (a , b, c) plus the start symbol S—and four output units—one for each
symbol plus the termination symbol T . Symbol strings were presented se-
quentially to the network, with each symbol’s corresponding input unit set
to 1 and the other three set to −1. At each time step, the network must pre-
dict the possible symbols that could come next in a legal string. Legal strings
in anbncn are those in which the number of a ’s, b’s, and c’s is equal—for
example, ST , SabcT , SaabbccT , and SaaabbbcccT . So for n = 3, the set of
input and target values would be:

Input: S a a a b b b c c c
Target: a/T a/b a/b a/b b b c c c T

Evolino-based LSTM networks were evolved using eight different train-
ing sets, each containing legal strings with values for n as shown in the
first column of Table 1. In the first four sets, n ranges from 1 to k, where
k = 10, 20, 30, 40. The second four sets consist of just two training samples
and were intended to test how well the methods could induce the language
from a nearly minimal number of examples.

LSTM networks with memory cells were evolved (four for PI-Evolino
and five for Evoke), with random initial values for the weights between −0.1
and 0.1 for Evolino and between −5.0 and 5.0 for Evoke, and the inputs
were multiplied by 100. The Cauchy noise parameter α for both mutation
and burst mutation was set to 0.00001 for Evolino and to 0.1 for Evoke; 50%
of the mutations are kept within these bounds. In keeping with the setup
in Gers and Schmidhuber (2001), we added a bias unit to the Forget gates
and Output gates with values of +1.5 and −1.5, respectively. For Evoke, the
parameters of the SVM module were chosen heuristically: a gaussian kernel
with standard deviation 2.0 and capacity 100.0. Evolino evaluates fitness on

Training Recurrent Networks by Evolino 769

Table 1: Results for the a nbncn Language.

Training Data
Standard

PI-Evolino
Tuned

PI-Evolino
Gradient-

LSTM

1..10 1..29 1..53 1..28
1..20 1..67 1..95 1..66
1..30 1..93 1..355 1..91
1..40 1..101 1..804 1..120

10,11 4..14 3..35 10..11
20,21 13..36 5..39 17..23
30,31 26..39 3..305 29..32
40,41 32..53 1..726 35..45

Notes: The table compares pseudoinverse-based Evolino (PI-
Evolino) with gradient-based LSTM (G-LSTM) on the anbncn lan-
guage task. “Standard” refers to Evolino with the parameter settings
used for both discrete and continuous domains (anbncn and super-
imposed sine waves). The “tuned” version is biased to the language
task: we additionally squash the cell input with the tanh function.
The left-most column shows the set of strings used for training in
each of the experiments. The other three columns show the set of
legal strings to which each method could generalize after 50 genera-
tions (3000 evaluations), averaged over 20 runs. The upper training
sets contain all strings up to the indicated length. The lower train-
ing sets contain only a single pair. PI-Evolino generalizes better
than G-LSTM, most notably when trained on only two examples
of correct behavior. The G-LSTM results are taken from Gers and
Schmidhuber (2001).

the entire training set, but Evoke uses a slightly different way of evaluating
fitness: while the training set consists of the first half of the strings, fitness
was defined as performance on the second half of the data, the validation
set. Evolution was terminated after 50 generations, after which the best
network in each simulation was tested.

Table 1 compares the results of Evolino-based LSTM, using pseudoin-
verse as supervised learning module (PI-Evolino), with those of G-LSTM
from (Gers & Schmidhuber, 2001); standard PI-Evolino uses parameter set-
tings that are a compromise between discrete and continuous domains. If we
set h to the tanh function, we obtain tuned PI-Evolino. We never managed
to train ESNs to solve this task, presumably because the random prewiring
of ESNs rarely represents an algorithm for solving such context-sensitive
language problems.

The standard PI-Evolino networks had generalization very similar to that
of G-LSTM on the 1..k training sets, but slightly better on the two-example
training sets. Tuned PI-Evolino showed a dramatic improvement over
G-LSTM on all of the training sets, most remarkably on the two-example

770 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

time steps

cell 3

 0

 500

 1000

 1500

 2000

0 500 1000 1500 2000 2500
−1000

cell 4

cell 2
cell 1

−500

Figure 5: Internal state activations. The state activations for the four memory
cells of an Evolino network being presented the string a 800b800c800. The plot
clearly shows how some units function as “counters,” recording how many a ’s
and b’s have been seen. More complex, nonlinear behavior by the gates is not
shown.

sets, where it was able to generalize on average to all strings up to n = 726
after being trained on only n = {40, 41}. Evoke’s performance was superior
for N = 10 and N = 20, generalizing up to n = 257 and n = 374, respec-
tively, but degraded for larger values of N, for which both PI-Evolino and
G-LSTM achieved better results. Figure 5, shows the internal states of each
of the four memory cells of one of the networks evolved by PI-Evolino while
processing a800b800c800.

3.2 Parity Problem with Display. The parity problem with display in-
volves classifying sequences consisting of 1’s and −1’s according to whether
the number of 1’s is even or odd. The target, which depends on the entire
sequence, is a display of 10 × 10 output neurons depicting O for odd and E
for even. The display prevents the task from being solved by guessing the
network weights (Hochreiter & Schmidhuber, 1997b) and makes the error
gradient very rough.

We trained PI-Evolino with two memory cells on 50 random sequences of
length between 100 and 110. Unlike G-LSTM, which typically cannot solve
this task due to a lack of global gradient information, PI-Evolino learned
a perfect display classification on a test set within 30 generations in all 20
experiments.

3.3 Mackey-Glass Time-Series Prediction. The Mackey-Glass system
(MGS; Mackey & Glass, 1977) is a standard benchmark for chaotic time-
series prediction. The system produces an irregular time series that is

Training Recurrent Networks by Evolino 771

generated by the following differential equation: ẏ(t) = αy(t − τ)/(1 + y(t −
τ)β) − γ y(t), where the parameters are usually set to α = 0.2, β = 10, γ =
0.1. The system is chaotic whenever the delay τ > 16.8. We use the most
common value for the delay, τ = 17.

Although the MGS can be modeled accurately using feedforward net-
works with a time window on the input, we compare PI-Evolino to ESNs
(currently the best method for MGS) in this domain to show its capacity for
making precise predictions. We used the same setup in our experiments as
in Jaeger (2004a).

Networks were evolved in the following way. During the first phase of
an evaluation, the network predicts the next function value for 3000 time
steps with the benefit of the backprojected target from the previous time
step. For the first 100 washout time steps, the vectors φ(t) are not collected;
only the φ(t), t = 101..3000, are used to calculate the output weights using
the pseudoinverse. During the second phase, the previous target is backpro-
jected only during the washout time, after which the network runs freely
by backprojecting its own predictions. The fitness score assigned to the
network is the MSE on time steps 101..3000.

Networks with 30 memory cells were evolved for 200 generations and a
Cauchy noise α of 10−7. A bias input of 1.0 was added to the network, the
backprojection values were scaled by a factor of 0.1, and the cell input was
squashed with the tanh function.

At the end of an evolutionary run, the best network found was tested
by having it predict using the backprojected previous target for the first
3000 steps and then run freely from time step 3001 to 3084.1 The average
NRMSE84 for PI-Evolino with 30 cells over the 15 runs was 1.9 × 10−3 com-
pared to 10−4.2 for ESNs with 1000 neurons (Jaeger, 2004a). The PI-Evolino
results are currently the second-best reported so far.

Figure 6 shows the performance of an Evolino network on the MG time
series with even fewer memory cells, after 50 generations. Because this
network has fewer parameters, it is unable to achieve the same precision as
with 30 neurons, but it demonstrates how Evolino can learn such functions
very quickly—in this case, within approximately 3 minutes of CPU time.

3.4 Multiple Superimposed Sine Waves. Learning to generate a sinu-
soidal signal is a relatively simple task that requires only one bit of memory
to indicate whether the current network output is greater or less than the
previous output. When sine waves with frequencies that are not integer
multiples of each other are superimposed, the resulting signal becomes
much harder to predict because its wavelength can be extremely long; there
is a large number of time steps before the periodic signal repeats. Generating

1The normalized root mean square error (NRMSE84) 84 steps after the end of the
training sequence is the standard comparison measure used for this problem.

772 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

Mackey−Glass
Evolino

Evolino Mackey−Glass

800

 0.8

 0.6

1200400200
 0.4

 1

 1.2

 1.4

0 14001000600

Figure 6: Performance of PI-Evolino on the Mackey-Glass time series. The plot
shows both the Mackey-Glass system and the prediction made by a typical
Evolino-based LSTM network evolved for 50 generations. The obvious differ-
ence between the system and the prediction during the first 100 steps is due to
the washout time. The inset shows a magnification that illustrates more clearly
the deviation between the two curves.

Table 2: PI-Evolino Results for Multiple Superimposed Sine Waves.

Number of
Sines

Number of
Cells

Training
NRMSE

Generalization
NRMSE

2 10 2.01 × 10−3 4.15 × 10−3

3 15 2.44 × 10−3 8.04 × 10−3

4 20 1.51 × 10−2 1.10 × 10−1

5 20 1.60 × 10−2 1.66 × 10−1

Notes: The training NRMSE is calculated on time steps 100 to 400 (i.e., the
washout time is not included in the measure). The generalization NRMSE
is calculated for time steps 400 to 700 (averaged over 20 experiments).

such a signal accurately without recurrency would require a prohibitively
large time delay window using a feedforward architecture.

Jaeger (2004b) reports that echo state networks are unable to learn
functions composed of even two superimposed oscillators, in particular
sin(0.2x) + sin(0.311x). The reason is that the dynamics of all the neurons
in the ESN pool are coupled, while this task requires that both of the two
underlying oscillators be represented by the network’s internal state.

Here we show how Evolino-based LSTM can not only solve the two-
sine function mentioned above, but also more complex functions formed
by superimposing up to three more sine waves. Each of the functions was
constructed by

∑n
i=1 sin(λi x), where n is the number of sine waves and

λ1 = 0.2, λ2 = 0.311, λ3 = 0.42, λ4 = 0.51, and λ5 = 0.74.
For this task, PI-Evolino networks were evolved using the same setup

and procedure as for the Mackey-Glass system except that steps 101..400
were used to calculate the output weights in the first evaluation phase and
fitness in the second phase. Also, the inputs were multiplied by 0.01 instead
of 100. Again, during the first 100 washout time steps, the vectors φ(t) were
not collected for computing the pseudoinverse.

Training Recurrent Networks by Evolino 773

5

Training

time steps

Generalization

4

3

2

4

 250 300 350 400

4

3

2

1

 0

 1

 2

 3

 4

 100 150 200 250 300 350 400

3

-2

1

 0

 1

 2

-

-

3

 100 150 200 250 300 350 400

−4

−3

−2

−1

 0

 1

 2

 3

 4

 400 450 500 550 600 650 700

−3

−2

−1

 0

 1

 2

 3

 2700 2750 2800 2850 2900 2950 3000

−4

−2

 0

 2

 4

 400 450 500 550 600 650 700

2

1

0

1

2

 100 150 200 250 300 350 400

−2

−1

 0

 1

 2

 9700 9750 9800 9850 9900 9950 10000

 150 100

 4

 2

 0

2

 200

−

−

−

−

−

−

−

−

Figure 7: Performance of PI-Evolino on the superimposed sine wave tasks. The
plots show the behavior of a typical network produced after a specified number
of generations: 50 for the two-, three-, and four-sine functions and 150 for the
five-sine function. The first 300 steps of each function, in the left column, were
used for training. The curves in the right column show values predicted by
the networks (dashed curves) further into the future versus the corresponding
reference signal (solid curves). While the onset of noticeable prediction error
occurs earlier as more sines are added, the networks still track the correct
behavior for hundreds of time steps, even for the five-sine case.

The first three tasks, n = 2, 3, 4, used subpopulations of size 40, and
simulations were run for 50 generations. The five-sine wave task, n = 5,
proved much more difficult to learn, requiring a larger subpopulation size
of 100, and simulations were allowed to run for 150 generations. At the end
of each run, the best network was tested for generalization on data points

774 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

 793.6

 1914

 18

 8

−1568

−1556

−1562

time steps

 14

 11

−1168.6

−1169.1

−1169.6

 1909.5

 11

 792.8

 1911.5

 793

 14

net prediction

cell 1

ouput

ouput

ouput

peephole

cell 2

cell 3 peephole

peephole

 2

 1700 1750 1800 1850 1900 1950 2000 1600

 1

−1

 0

−2

 1650

Figure 8: Internal representation of two-sine function. The upper graph shows
the output of a PI-Evolino LSTM network with three cells predicting the two-sine
function. The three pairs of lower graphs show the output (upper) and output
peephole (lower) values of each cell in the network multiplied by their respec-
tive (pseudoinverse-generated) output weight. These six signals are added to
generate the signal in the upper graph.

from time steps 401..700, making predictions using backprojected previous
predictions.

For Evoke, a slightly different setting was used, in which networks were
evolved to minimize the sum of training and validation error, on points
100..400 and 400..700, respectively, and tested on points 700..1000. The

Training Recurrent Networks by Evolino 775

weight range was set to [−1.0, 1.0], and a gaussian kernel with standard
deviation 2.0 and capacity 10.0 was used for the SVM.

Table 2 shows the number of memory cells used for each task and the
average summed squared error on both the training set and the testing set
for the best network found during each evolutionary run of PI-Evolino.
Evoke achieved a relatively low generalization NRMSE of 1.03 × 10−2 on
the double sines problem, but gave unsatisfactory results for three or more
sines.

Figure 7 shows the behavior of one of the successful networks from each
of the tasks. The column on the left shows the target signal from Table 2 and
the output generated by the network on the training set. The column on
the right shows the same curves forward in time to show the generalization
capability of the networks. For the two-sine function, even after 9000 time
steps, the network continues to generate the signal accurately. As more
sines are added, the prediction error grows more quickly, but the overall
behavior of the signal is still retained.

Figure 8 reveals how the two-sine wave is represented internally by a
typical PI-Evolino network. For illustration, a less accurate network con-
taining only 3 cells instead of 10 is shown. The upper graph shows the
overall output of the network, while the other graphs show the output
peephole and output activity of each cell multiplied by the corresponding
pseudoinverse-generated output weight.

Although the network can generate the function accurately for thousands
of time steps, it does not do so by implementing sinusoidal oscillators.
Instead, each cell by itself behaves in a manner that is qualitatively similar
to the two-sine, but scaled, translated, and phase-shifted. These six separate
signals are added together to produce the network output.

4 Conclusion

The human brain is a biological, learning RNN. Previous successes with
artificial RNNs have been limited by problems overcome by the LSTM
architecture. Its algorithms for shaping not only the linear but also the
nonlinear parts allow LSTM to learn to solve tasks unlearnable by stan-
dard feedforward nets, support vector machines, hidden markov models,
and previous RNNs. Previous work on LSTM has focused on gradient-
based G-LSTM (Gers & Schmidhuber, 2001; Gers et al., 2000,2002; Graves
& Schmidhuber, 2005; Hochreiter & Schmidhuber, 1997a; Pérez-Ortiz et al.,
2003; Schmidhuber et al., 2002). Here we introduced the novel Evolino class
of supervised learning algorithms for such nets that overcomes certain
problems of gradient-based RNNs with local minima. Successfully tested
instances with hidden coevolving recurrent neurons use either the pseu-
doinverse to minimize the MSE of the linear mapping from hidden units to
outputs (PI-Evolino), or quadratic programming to maximize the margin.

776 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

The latter yields the first evolutionary recurrent SVMs or RSVMs, trained
by an Evolino variant called Evoke.

In the experiments of our pilot study, RSVMs generally performed better
than G-LSTM and previous gradient-based RNNs but typically worse than
PI-Evolino. One possible reason for this could be that the kernel mapping
of the SVM component induces a more rugged fitness landscape that makes
evolutionary search harder.

All of the evolved networks were comparatively small, usually featuring
fewer than 3000 weights. For large data sets, such as those used in speech
recognition, we typically need much larger LSTM networks with on the
order of 100,000 weights (Graves & Schmidhuber, 2005). On such problems,
we have so far generally obtained better results with G-LSTM than with
Evolino. This seems to reaffirm the heuristic that evolution of large param-
eter sets is often harder than gradient search in such sets. Currently it is
unclear when exactly to favor one over the other. Future work will explore
hybrids combining G-LSTM and Evolino in an attempt to leverage the best
of both worlds. We will also explore ways of improving the performance of
Evoke, including the coevolution of SVM kernel parameters.

We have barely tapped the set of possible applications of our new ap-
proaches; in principle, any learning task that requires some sort of adaptive
short-term memory may benefit.

Acknowledgments

This research was partially funded by SNF grant 200020-107534, EU Min-
dRaces project FP6 511931, and a CSEM Alpnach grant to J. S.

References

Gers, F. A., & Schmidhuber, J. (2001). LSTM recurrent networks learn simple context
free and context sensitive languages. IEEE Transactions on Neural Networks, 12(6),
1333–1340.

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual
prediction with LSTM. Neural Computation, 12(10), 2451–2471.

Gers, F. A., Schraudolph, N., & Schmidhuber, J. (2002). Learning precise timing with
LSTM recurrent networks. Journal of Machine Learning Research, 3, 115–143.

Gomez, F. J. (2003). Robust nonlinear control through neuroevolution. Unpublished doc-
toral dissertation, University of Texas at Austin.

Gomez, F., & Miikkulainen, R. (1999). Solving non-Markovian control tasks with
neuroevolution. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence. San Francisco: Morgan Kaufmann.

Gomez, F., & Schmidhuber, J. (2005a). Evolving modular fast-weight networks for
control. In W. Duch, J. Kacprzyk, E. Oja, & S. Zadrozny (Eds.), Proceedings
of the Fifteenth International Conference on Artificial Neural Networks: ICANN-05
(pp. 383–389). Berlin: Springer.

Training Recurrent Networks by Evolino 777

Gomez, F. J., & Schmidhuber, J. (2005b). Co-evolving recurrent neurons learn deep
memory POMDPS. In Proceedings of the Genetic Evolutionary Computation Confer-
ence (GECCO-05). Berlin: Springer-Verlag.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidi-
rectional LSTM and other neural network architectures. Neural Networks, 18, 602–
610.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Technische Universität München.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in
recurrent nets: The difficulty of learning long-term dependencies. In S. C. Kremer,
& J. F. Kolen (Eds.), A field guide to dynamical recurrent neural networks. Piscataway,
NJ: IEEE Press.

Hochreiter, S., & Schmidhuber, J. (1997a). Long short-term memory. Neural Compu-
tation, 9(8), 1735–1780.

Hochreiter, S., & Schmidhuber, J. (1997b). LSTM can solve hard long time lag prob-
lems. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural infor-
mation processing systems, 9 (pp. 473–479). Cambridge, MA: MIT Press.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor. University
of Michigan Press.

Ishii, K., van der Zant, T., Bečanović, V., & Plöger, P. G. (2004). Identification of
motion with echo state network. In Proc. IEEE Oceans04, (pp. 1205–1230). Kobe,
Japan: IEEE.

Jaeger, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science, 304, 78–80.

Jaeger, W. (2004b). The echo state approach to recurrent neural networks. Available on-
line at http://www.faculty.iu-bremen.de/hjaeger/courses/SeminarSpring04/
ESNStandardSlides.pdf.

Maass, W., Natschläger, T., & Markram, H. (2002). A fresh look at real-time computa-
tion in generic recurrent neural circuits (Tech. Rep.) Graz: Institute for Theoretical
Computer Science, TU Graz.

Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control
systems. Science, 197, 287–289.

Maillard, E. P., & Gueriot, D. (1997). RBF neural network, basis functions and genetic
algorithms. In IEEE International Conference on Neural Networks (pp. 2187–2190).
Piscataway, NJ: IEEE.

Miglino, O., Lund, H., & Nolfi, S. (1995). Evolving mobile robots in simulated and
real environments. Artificial Life, 2(4), 417–434.

Miller, G., Todd, P., & Hedge, S. (1989). Designing neural networks using genetic
algorithms. In Proceedings of the 3rd International Conference on Genetic Algorithms
(pp. 379–384). San Francisco: Morgan Kaufmann.

Moriarty, D. E. (1997). Symbiotic evolution of neural networks in sequential decision tasks.
PhD thesis, Dept. of Computer Sciences, University of Texas at Austin. Technical
Report UT-AI97-257.

Moriarty, D. E., & Miikkulainen, R. (1996). Efficient reinforcement learning through
symbiotic evolution. Machine Learning, 22, 11–32.

Mukherjee, S., Osuna, E., & Girosi, F. (1997). Nonlinear prediction of chaotic time
series using support vector machines. In J. Principe, L. Giles, N. Morgan, &

778 J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez

E. Wilson (Eds.), IEEE Workshop on Neural Networks for Signal Processing VII
(pp. 511). Piscataway, NJ: IEEE Press.

Müller, K., Smola, A., G.Rätsch, Schölkopf, B., Kohlmorgen, J., & Vapnik, V. (1997).
Predicting time series with support vector machines. In W. Gerstner, A. Germond,
M. Hasler, & J.-O. Nicoud (Eds.), Proceedings of the Seventh International Conference
on Artificial Neural Networks: ICANN-97 (pp. 999–1004). Berlin: Springer-Verlag.

Nolfi, S., Floreano, D., Miglino, O., & Mondada, F. (1994). How to evolve autonomous
robots: Different approaches in evolutionary robotics. In R. A. Brooks & P. Maes,
P (Eds.), Proceedings of the Fourth International Workshop on the Synthesis and Sim-
ulation of Living Systems (Artificial Life IV) (pp. 190–197). Cambridge, MA: MIT
Press.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural net-
works: A survey. IEEE Transactions on Neural Networks, 6(5), 1212–1228.

Penrose, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge
Philosophy Society, 51, 406–413.

Pérez-Ortiz, J. A., Gers, F. A., Eck, D., & Schmidhuber, J. (2003). Kalman filters
improve LSTM network performance in problems unsolvable by traditional re-
current nets. Neural Networks, 16(2), 241–250.

Potter, M. A., & De Jong, K. A. (1995). Evolving neural networks with collabora-
tive species. In Proceedings of the 1995 Summer Computer Simulation Conference
(pp. 340–345). Ottawa: Society of Computer Simulation.

Rechenberg, I. (1973). Evolutionsstrategie—Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Stuttgart, Germany: Fromman-Holzboog.

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation
network (Tech. Rep. CUED/F-INFENG/TR.1). Cambridge: Cambridge University,
Engineering Department.

Rumelhart, D. E., & McClelland, J. L. (Eds.). (1986). Parallel distributed processing
(vol. 1). Cambridge, MA: MIT Press.

Salomon, J., King, S., & Osborne, M. (2002). Framewise phone classification using
support vector machines. In Proceedings of the International Conference on Spoken
Language Processing. Denver.

Schmidhuber, J. (1990). Dynamische neuronale Netze und das fundamentale
raumzeitliche Lernproblem. Unpublished doctoral dissertation, Technische Univer-
sität München.

Schmidhuber, J. (1992). A fixed size storage O(n3) time complexity learning algorithm
for fully recurrent continually running networks. Neural Computation, 4(2), 243–
248.

Schmidhuber, J., Gagliolo, M., Wierstra, D., & Gomez, F. (2006). Evolino for recurrent
support vector machines. In Proceedings of ESANN’06. Evere, Belgium: d-side.

Schmidhuber, J., Gers, F., & Eck, D. (2002). Learning nonregular languages: A com-
parison of simple recurrent networks and LSTM. Neural Computation, 14(9), 2039–
2041.

Schmidhuber, J., Hochreiter, S., & Bengio, Y. (2001). Evaluating benchmark problems
by random guessing. In S. C. Kremer and J. F. Kolen (Eds.), A field guide to dynamical
recurrent neural networks. Piscataway, NJ: IEEE Press.

Schmidhuber, J., Wierstra, D., & Gomez, F. J. (2005). Evolino: Hybrid
neuroevolution/optimal linear search for sequence prediction. In Proceedings of

Training Recurrent Networks by Evolino 779

the 19th International Joint Conference on Artificial Intelligence (IJCAI). San Francisco:
Morgan Kaufman.

Schwefel, H. P. (1977). Numerische Optimierung von Computer-Modellen. Basel:
Birkhäuser.

Schwefel, H. P. (1995). Evolution and optimum seeking. New York: Wiley Interscience.
Shimodaira, H., Noma, K.-I., Nakai, M., & Sagayama, S. (2002). Dynamic time-

alignment kernel in support vector machine. In T. G. Dietterich, S. Becker,
and Z. Ghahramani (Eds.), Advances in neural information processing systems, 14.
Cambridge, MA: MIT Press.

Siegelmann, H. T., & Sontag, E. D. (1991). Turing computability with neural nets.
Applied Mathematics Letters, 4(6), 77–80.

Sims, K. (1994). Evolving virtual creatures. In A. Glassner (Ed.), Proceedings of SIG-
GRAPH ’94 (Orlando, Florida, July 1994) (pp. 15–22). New York: ACM Press.

Suykens, J., & Vandewalle, J. (2000). Recurrent least squares support vector machines.
IEEE Transactions on Circuits and Systems-I, 47(7), 1109–1114.

van der Zant, T., Bečanović, V., Ishii, K., Kobialka, H.-U., & Plöger, P. G. (2004). Find-
ing good echo state networks to control an underwater robot using evolutionary
computations. In Proceedings of the 5th IFAC symposium on Intelligent Autonomous
Vehicles (IAV04). New York: Elsevier.

Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in the

behavioral sciences. Unpublished doctoral dissertation, Harvard University.
Werbos, P. J. (1988). Generalization of backpropagation with application to a recur-

rent gas market model. Neural Networks, 1, 339–365.
Wierstra, D., Gomez, F. J., & Schmidhuber, J. (2005). Modeling non-linear dynamical

systems with Evolino. In Proc. GECCO 2005. New York: ACM Press.
Williams, R. J. (1989). Complexity of exact gradient computation algorithms for recur-

rent neural networks (Tech. Rep. NU-CCS-89-27). Boston: Northeastern University,
College of Computer Science.

Yamauchi, B. M., & Beer, R. D. (1994). Sequential behavior and learning in evolved
dynamical neural networks. Adaptive Behavior, 2(3), 219–246.

Yao, X. (1993). A review of evolutionary artificial neural networks. International
Journal of Intelligent Systems, 8, 539–567.

Received December 2, 2005; accepted May 15, 2006.

