
Modular Deep Belief Networks that do not Forget

Leo Pape, Faustino Gomez, Mark Ring and Jürgen Schmidhuber

Abstract— Deep belief networks (DBNs) are pop-
ular for learning compact representations of high-
dimensional data. However, most approaches so far
rely on having a single, complete training set. If
the distribution of relevant features changes during
subsequent training stages, the features learned in
earlier stages are gradually forgotten. Often it is
desirable for learning algorithms to retain what they
have previously learned, even if the input distribution
temporarily changes. This paper introduces the M-
DBN, an unsupervised modular DBN that addresses
the forgetting problem. M-DBNs are composed of a
number of modules that are trained only on samples
they best reconstruct. While modularization by itself
does not prevent forgetting, the M-DBN additionally
uses a learning method that adjusts each module’s
learning rate proportionally to the fraction of best
reconstructed samples. On the MNIST handwritten
digit dataset module specialization largely corresponds
to the digits discerned by humans. Furthermore, in
several learning tasks with changing MNIST digits, M-
DBNs retain learned features even after those features
are removed from the training data, while monolithic
DBNs of comparable size forget feature mappings
learned before.

I. INTRODUCTION

DEEP BELIEF NETWORKS (DBNs; [1]) are
popular for learning compact representations

of high-dimensional data. DBNs are neural net-
works consisting of a stack of Boltzmann machine
layers that are trained one at a time, in an un-
supervised fashion to induce increasingly abstract
representations of the inputs in subsequent layers.
This layer-by-layer training procedure facilitates
supervised training of deep networks, which are in
principle more efficient at learning compact rep-
resentations of high-dimensional data than shallow
architectures [2], but are also notoriously difficult to
train with traditional gradient methods (e.g., [3]).

DBNs can be particularly useful as sensory pre-
processors for learning agents that interact with
an environment that requires learning complex ac-
tion mappings from high-dimensional inputs. Often
these input spaces are embedded within a vast state
space where the input distribution may vary widely
between regions. Rather than assemble a single,
monolithic training set covering all eventualities, it
is more efficient to train an agent incrementally such

All authors are at IDSIA, University of Lugano,
SUPSI, Lugano, Switzerland. Email: {pape, tino, mark,
juergen}@idsia.ch.

This work was supported by the EU under contract numbers
FP7-ICT-IP-231722 and FP7-NMP-228844.

that it can build upon what it learned previously.
This continual learning paradigm [4] demands that
the underlying learning algorithms support the re-
tention of earlier training. While DBNs (and the
related approach of stacked autoencoders) have been
successfully applied to many tasks [1, 2, 5–7], most
approaches rely on training data that are sampled
from a stationary distribution. However, in continual
learning, where the statistics of the training data
change over time, DBNs, like most connectionist
approaches, gradually forget previously learned rep-
resentations as new input patterns overwrite those
patterns that become less probable.

A possible remedy to forgetting is to split a
monolithic network into a number of expert mod-
ules, each of which specializes on a subset of the
task. In such an ensemble approach, expert modules
are trained to improve their performance only on
those subtasks they are already good at, ignore the
subtasks of other experts, and thereby protect their
own weights from corruption by unrelated input
patterns. Jacobs et al. [8] introduced a supervised
method for training local experts in which a gating
network is trained to assign each input pattern to
the expert that produced the lowest output error. An
unsupervised version of this algorithm described in
[9] uses the reconstruction error of each module
on a sample to train the modules with the best
reconstruction to become even better, and, option-
ally, to train the other modules to become worse
in reconstructing that sample. While these methods
divide a task over multiple modules, they contain
no mechanism for preventing an expert module
from shifting its expertise when the statistics of
the training data change over time — even a single
deviating sample can significantly alter a module’s
expertise when the subtask in which the module
specialized disappears from the training data.

This paper presents the modular DBN (M-DBN),
an unsupervised method for training expert DBN
modules that avoids catastrophic forgetting when
the dataset changes. Similar to [9], only the module
that best reconstructs a sample gets trained. In ad-
dition, M-DBNs use a batch-wise learning scheme
in which each module is updated in proportion to
the fraction of samples it best reconstructs. If that
fraction is less than a small threshold value, the
module is not trained at all. The experimental results
demonstrate that these modifications to the original
DBN are sufficient to facilitate module specializa-



tion, and prevent the forgetting of learned features
in tasks in which the statistics of the training data
change over time.

In section II we briefly introduce DBNs, give
the details of the M-DBN, and discuss related
approaches. Next, we demonstrate module special-
ization on the MNIST handwritten digit dataset in
section III-A. Section III-B shows that, in tasks
where the digit classes change over time, the M-
DBN retains the digits it has learned, while a mono-
lithic DBN of similar size does not. We discuss our
findings in section IV.

II. MODULAR DEEP BELIEF NETWORKS

A. Deep Belief Networks

The modular DBN introduced here is based on
the DBN presented in [1], which consists of a
stack of restricted Boltzmann machines (RBMs; [1])
trained one at a time (see Figure 1a). Each RBM
has an input layer (visible layer) and a hidden
layer of stochastic binary units. Visible and hidden
layers are connected with a weight matrix and no
connections exist between units in the same layer.
Signal propagation can occur in two ways: recog-
nition, where visible activations propagate to the
hidden units; and reconstruction, where hidden acti-
vations propagate to visible units. The same weight
matrix (transposed) is used for both recognition
and reconstruction. By minimizing the difference
between the original input and its reconstruction
(i.e. reconstruction error) through a procedure called
contrastive divergence [10], the weights can be
trained to generate the input patterns presented to
the RBM with high probability.

In DBNs, subsequent layers usually decrease in
size in order to force the network to learn in-
creasingly compact representations of its inputs.
The training procedure is sometimes augmented to
optimize additional terms, such as the L1 and L2
norms of the weight matrices, or sparsity constraints
on the unit activations. Weights are initialized from
a normal distribution with zero mean and small stan-
dard deviation. Weight updates are applied after the
presentation of a number of samples in a minibatch.
After a number of training cycles through the full
training dataset, the stack of RBMs is unfolded,
such that first recognitions are computed through all
subsequent layers, and next reconstructions through
all layers in reverse order. The recognition and
reconstruction weights are uncoupled, and can then
be fine-tuned with gradient descent, either to be-
come better at reconstructing the inputs, or — in
combination with other supervised or reinforcement
learning methods — to form features relevant to the
task at hand.

readout classi�er 

. .
 .

. .
 .

. . .

. . .

. . .
readout classi�er 

. .
 .

. .
 .

. .
 .

(a) (b)

Fig. 1. Network architectures: (a) monolithic DBN and (b)
modular M-DBN. Both architectures share the first few layers
(gray boxes). Each set of two subsequent layers is trained as
an RBM. Layers (boxes) compute their activations from the
lower layer during the recognition step (black arrows), and
reconstructions from the higher layer in the reconstruction step
(gray arrows).

B. Modular DBNs that do not forget

The M-DBN consists of an ensemble of DBN
modules, where all modules receive the same input
pattern (see Figure 1b). The modules propagate their
input through all layers, and from the final layer
back through the network to reconstruct the input.
Next, the reconstruction error for each module on
its inputs is computed, and only the module with
the smallest reconstruction error is trained one layer
at the time for a small number of epochs. This
procedure is repeated several times, until some
predefined criterion is met.

Training is performed in a batch-wise fashion
with a number of samples in a minibatch (as in
[1]), times the number of modules. Thus, if the
samples are equally distributed over the modules,
each module is trained on the number of samples
in a minibatch. Each module uses a learning rate
that is proportional to the number of samples best
reconstructed by that module. A threshold value
is set for the modular learning rate, such that for
small learning rates no weight updates are com-
puted and applied. This training procedure facili-
tates specialization and prevents forgetting in three
ways: (1) modules do not specialize in samples that
are occasionally assigned to different modules in
subsequent epochs, (2) a module is only updated
if it specializes in features relevant to a sufficient
number of samples (and only by updating can
modules further specialize), and (3) a module will
no longer be updated if the samples in which it
specializes are removed from the training data.



The M-DBN can consist of completely separate
DBNs, or some lower layers can be shared between
modules (an in [11], Figure 1b). Especially in tasks
where the first few layers learn primitive features
that are present in all samples, sharing those layers
among the modules can considerably reduce com-
putational efforts. Of course, splitting a DBN into
modules can be done multiple times in different
layers. The reconstruction error in the first layer of
the modules (which is not necessarily the input layer
of the entire network) determines which module will
be trained.

The computational cost of the M-DBN is similar
to a monolithic DBN with the same number of
weights. The forward and backward passes needed
for computing the reconstruction errors are required
for the training procedure of both architectures,
so they incur no additional cost in the M-DBN.
However, since the M-DBN is no longer trained
one layer at a time, the number of epochs needed
for convergence increases. Every time a layer is up-
dated, the layers that receive input from the updated
layer need to be adjusted as well. Also, the M-DBN
incurs a very slight extra cost for comparing the
module reconstruction errors in order to determine
which module should be trained. On the other hand,
weight updates are much cheaper in the M-DBN
because only a single module is trained per sample.
Additionally, the M-DBN can be easily parallelized,
because each module can be treated independently.

C. Related work

Other methods have been proposed to train mod-
ular DBN architectures, usually based on modi-
fied weight update equations that take into account
the modular reconstruction error. [9] showed that
mixtures of autoencoders are able to specialize in
different handwritten digit classes. [12] used the
reconstruction error of modular autoencoders in the
weight updates to force the output of at least one
module to fit the input, and to force the rest of the
modules to increase the error between the input and
the output. [13] used a neural gas mixture of local
principal component analyses. [14] showed success-
ful specialization of modular DBNs on limited low-
dimensional data.

Compared to the M-DBN presented here, these
methods are more complex, involve additional ad-
justable parameters and are mostly used to demon-
strate module specialization or to achieve increased
performance on fixed datasets. Most existing mod-
ular DBN approaches use module competition to
update the weights in all modules instead of just the
best module. While updating all modules for each
sample may lead to faster and better specialization,
it comes at considerable computational cost and
makes the network prone to forgetting. To prevent

expert modules from forgetting their skills, module
updates must be truly local. However, updating
one module for each sample is necessary, but not
sufficient to prevent forgetting: even a single sample
can cause complete readjustment of the module’s
expertise, in case the class in which the module
specialized is no longer present.

Another related method to prevent forgetting is
to use distinct modules for short term and long-
term memory [15]. In this approach, newly learned
information is transferred slowly to the long-term
memory, with the help of so-called pseudopatterns
(basically pairs of input-output data for random
input patterns). For an overview of related ideas, see
[16]. The modular DBN resembles these approaches
to some extent, because it stores samples for one
training epoch in short term memory, determines
some properties of the sample distribution, and uses
these properties to train the modules, the equivalent
of long-term memory.

III. EXPERIMENTS

We performed a number of experiments to study
the ability of the modular DBN (M-DBN) to spe-
cialize and retain learned skills on several handwrit-
ten digit recognition tasks, and compared it to a non-
modular architecture (simply referred to as DBN) of
comparable size. Figure 1 shows the two competing
architectures used in the experiments. The M-DBN
and DBN share the first few layers, but differ in the
remaining upper layers. Whereas the upper layers in
the DBN are fully connected to each other, just like
the shared layers, the M-DBN has a set of separate
smaller upper layers for each of its modules. The
upper DBN layers were sized such that the total
number of weights in the two networks is roughly
equivalent, and its final-layer size is equal to the
combined final-layer sizes of the modules.

All experiments used the MNIST dataset [17]
which contains 70 000, 28×28, pixel images of
handwritten digits 0-9. To reduce computation time
and to simplify the presentation of the results, the
experiments were restricted to digits 0-5 (two thirds
of the total dataset). Following common practice,
10 000 images were used as test set.

Both the DBN and M-DBN used four shared
layers with layer sizes 1000-500-500-100. These
shared layers were first trained for 50 epochs on
the MNIST training dataset and then frozen, which
greatly reduced computation time, as the subsequent
layers did not have to adjust to changes in the
shared weights. Training the shared layers with a
subset of the MNIST digits only slightly changed
the final outcome, because the shared layers capture
only local feature primitives such as small dots and
stripes that are common to all digit classes.



0
1
2
3
4
5

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

module

fr
ac

tio
n 

be
st

 re
co

ns
tr

uc
te

d

random initialization after one epoch after 100 epochs

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

module
1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

module

Fig. 2. Fraction of best reconstructed samples per module and digit class during different stages of training: immediately after
random weight initialization (left), after one training epoch (center) and after 100 training epochs (right). Note that fractions for each
digit class add up to 1, and are stacked per module.

The M-DBNs used in the experiments consisted
of 10 modules (nM = 10) with increasingly smaller
upper layer sizes of 70-40-20-10-4-1. Weight up-
dates and reconstruction errors for the M-DBNs
were computed and applied in minibatches of size
100nM, yielding a modular minibatch size of 100
in case the samples are equally distributed over all
modules. The learning rate αM of each module M
was set proportional to the fraction of samples xM

that module M reconstructed best:

αM = αxM nM.

The global learning rate α was set to 0.1, and
the modular learning rate αM was not allowed
to become larger than α. If the fraction of best
reconstructed samples by a module was less than
0.3/nM, the module was not trained. The effect
of different layer sizes and number of modules is
discussed below.

The non-modular DBNs had the same number of
layers as the M-DBNs, roughly the same number of
weights, and a final-layer size equal to the combined
final-layer sizes of the M-DBNs. For example, a
ten-module M-DBN with upper layers sizes 70-
40-20-10-4-1 (108 440 weights), was compared to
a DBN with upper layer sizes 314-179-90-45-18-
10 (108 756 weights). Note that a large portion of
the M-DBN weights (≈70%) is found between the
last shared layer and the first module layers. The
DBN used a minibatch size of 100, and learning
rate of 0.1. For a fair comparison with the modu-
lar approach, each DBN layer was trained for 10
consecutive epochs before training the next layer.
The other DBN learning parameters are the same
as in [1]. As the purpose of this work is to study
module specialization and forgetting, not to achieve
best performance on MNIST classification, no fine-
tuning of the weights with gradient descent was
performed.

To test the degree to which the modules special-
ized in a digit class, we computed a specialization
index for each module M as:

sM = max
i

xM
i

xM

where xM
i is the fraction of samples of digit class

i = 0 . . . 5 that were reconstructed best by module
M. The higher the index, the more a module prefers
a single digit class. The average specialization in-
dex:

s =
∑
M

xMsM

indicates the degree to which modules overlap, and
how much the M-DBN is specialized as a whole. An
average specialization index of 1 implies that each
module specialized in exactly one digit class, and a
specialization value lower than 1 indicates that one
or more modules specialized in more than one digit
class.

To determine utility of the learned compact repre-
sentations during the experiments, a support vector
machine (SVM, [18]) was trained every 10 epochs
to classify digits 0-5, based on the M-DBN and
DBN final-layer representations of the MNIST test
set. Two-thirds of the MNIST test set was used to
train the SVM. Classification performance was mea-
sured as the fraction of correctly classified samples
r on the remaining one-third of the test dataset.
For the M-DBN, the activations in the final module
layers were concatenated with a vector containing
a 1 at the element of the best module, and zeros
for all other modules. The SVM used the imple-
mentation from [19] for multi-class classification
with a radial basis kernel. Using a grid-search for
finding the values of adjustable SVM parameters (as
described in [19]), C and γ were set to 16 and 2,
respectively. Changing these values several orders
of magnitude did not significantly alter the results.
Other parameters were set to the defaults from [19].



0 100 200 300 400
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

fr
ac

tio
n 

co
rr

ec
tly

 c
la

ss
i�

ed
 s

am
pl

es

M-DBN r
M-DBN s

DBN r

0 100 200 300 400
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

fr
ac

tio
n 

co
rr

ec
tly

 c
la

ss
i�

ed
 s

am
pl

es

forgetting M-DBN r
forgetting M-DBN s

M-DBN r
M-DBN s

Fig. 3. Performance measures of the DBN and M-DBN (left); and the forgetting M-DBN and M-DBN (right) in the digit removal
task. Training starts with digits 0-5 and continues with digits 0-2 after epoch 200. Classification performance r and specialization
index s are based on digits 0-5 in the MNIST test data.

A. Module specialization

We first investigate the ability of the M-DBN to
specialize its modules to different digit classes. Fig-
ure 2 shows the fraction of digits best reconstructed
digits by each module during several stages of the
training, for an example run. Initially, the modules
do not exhibit obvious digit preferences, but after
just one training epoch, some of the modules have
already specialized in one or two digit classes.
Apparently, the slight initial differences in the dis-
tribution of the digits over the modules are sufficient
to seed significant module specialization. However,
some of the modules specialize in more than one
(usually two) digit classes (e.g., module 1 after one
epoch). In many experiments we found that there
was a module that specialized in both digits 3 and 5.
Often several tens of epochs were needed for further
separation, and complete separation of these digit
classes was not always achieved (e.g., modules 5
and 6 after 100 epochs). While this might be a
problem for tasks in which these digits are not
always available in the training data at the same
time, the performance of the readout classifier was
not affected by the lower specialization indices —
distinctions between digits were still possible based
on the final-layer representations of the unspecial-
ized modules.

These findings reveal that modules specialize in
two stages: (1) rapid adjustment toward one par-
ticular class in the first few epochs, and (2) slow
forgetting of classes that are less frequently assigned
to a module in case initial module specialization was
not fully achieved. If samples from multiple classes
are assigned to a single module, the module will
eventually be tuned toward the class with the highest
number of samples for that module. However, if
there are no other modules specializing in one of
the multiple classes that a module reconstructs best,
no further specialization will occur. For example, if

digits 1, 3 and 5 are supplied to three modules, two
of the modules might initially specialize in upright
and slanted ‘1’s respectively, and the third will
specialize in both digits 3 and 5. This means that
there are not enough modules to make the same dis-
tinctions made by humans, and indicates that some
aspects of the task should be known beforehand in
order to solve it optimally. Increasing the number of
modules (up to 20) improved specialization, but, as
mentioned above, the focus here is not on absolute
performance, but on the ability of modular DBNs
to specialize and not forget.

B. Nonstationary digit tasks
Next, we investigate the capacity of the M-DBN

to retain learned features in two nonstationary digit
tasks: (1) removal of digits classes from the training
data, and (2) replacement of one set of digit classes
with another set of digit classes. In the removal
task, the networks are trained for 200 epochs on
digits 0-5, and then another 200 epochs on digits 0-
2 only. This task tests whether the networks ability
to retain learned features after these features have
disappeared from the training data. In the replace-
ment task, the training set alternated between digit
classes 0-2 and 3-5 every 200 epochs. This task
tests how well the networks retain learned features
after they disappear from the training data, while
simultaneously learning new features. Five differ-
ently initialized DBNs and M-DBNs were trained
in each task. As described before, a readout SVM
was trained each ten epochs to classify digits 0-
5 in the MNIST test data, using the final-layer
representations.

Figure 3 shows the performance of the DBN and
M-DBN on the removal task. For comparison, we
also included the results for an M-DBN that used
the fixed, global learning rate α for all modules,
instead of the module-specific learning rate αM.
As this version uses specializing modules, but has



no mechanism to prevent forgetting, it is called the
“forgetting M-DBN”.

Initially, the readout classifier of the DBN pro-
duces the best classification, but after several hun-
dred epochs, the performance for the M-DBN
catches up. At epoch 200, classes 3-5 are removed
from the training data, and training continues with
only classes 0-2. Shortly after, the performance
for the DBN starts to decrease. However, about
85% of the samples are still correctly classified
by the DBN after epoch 200, even though only
50% of the digit classes are present in the training
data. This is either because the DBN retains some
of the learned features, or because the represen-
tations for the remaining classes can still be used
to correctly classify the missing classes. To verify
which hypothesis is correct, we trained five DBNs
on classes 0-2, and determined the classification
performance of readout SVMs based on final-layer
representations for digits 0-5 in the MNIST test
data. We found a similar classification rate of about
85% as for a DBN that was trained on classes 0-5
before (Figure 3), so the conclusion is that the DBN
does forget the relevant features for distinguishing
digits that are no longer present in the training data.

In contrast, the readout classifier’s performance
for the M-DBN did not decrease after the removal
of classes 3-5. We observed that the distribution
of the removed digit classes 3-5 over the mod-
ules did not change, indicating that these mod-
ules retain their specialization. The specialization
index of the forgetting M-DBN, on the other hand,
sharply decreased after removing digits 3-5 from the
training data. As module specialization was never
completely perfect, modules that largely specialized
in digits 3-5 were often also best at reconstructing
a very small number of digits 0-2. Without an
adjusted learning rate, the small number of best
reconstructed samples from other classes eventually
caused the modules to adjust their expertise in
the forgetting M-DBN to the remaining classes.
Just as for the DBN, the forgetting M-DBN forgot
the relevant features needed to identify the digits
no longer present in the training data, causing a
decrease in the performance of the readout classifier.

Figure 4 shows the results for the replacement
task. As in the removal task, the M-DBN outper-
forms the DBN after replacement of the classes.
Even after several presentations of the different
sets, the DBN still forgets the learned features after
the dataset changes. However, limiting training to
classes 0-2 or 3-5 does not cause the same drop
in performance for the DBN. Again, the represen-
tations learned for one set of digit classes could to
a certain extent be used by the readout classifier to
distinguish digit classes that are not present in the

0 400 800 1200 1600 2000
0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

fr
ac

tio
n 

co
rr

ec
tly

 c
la

ss
i�

ed
 s

am
pl

es

 

 

DBN r
M-DBN r
M-DBN s

Fig. 4. DBN and M-DBN performance on the digit replacement
task. Ticks on the horizontal axis indicate changes in the training
dataset. Classification performance r and specialization index s
are based on digits 0-5 in the MNIST test data.

training data. Sometimes the specialization index
of the M-DBN decreases (e.g., around epoch 900).
Inspection of the distribution of digit classes over
the modules revealed that this is caused by a re-
distribution of part of the samples to a different
module, eventually leading to a better performance
of the readout classifier.

IV. DISCUSSION

The M-DBN is able to learn expert modules that
each specialize in a subset of the MNIST hand-
written images, roughly corresponding to the digits
discerned by human beings. While the modular
approach of [9] was already able to specialize in
different digit classes, as we have shown, modular-
ization alone is not sufficient to prevent forgetting.
The M-DBN presented here is able to retain module
specialization after some of the digits are removed
from the training data, or are replaced with a
different set of digits. The learned features of the M-
DBN can be used by a subsequent readout classifier,
even after removal or replacement of some of the
digits, while a non-modular network of similar size
forgets what it learned before.

We tried different network architectures with
more or less shared layers (no shared layers, shared
layer sizes 500-100, 1000-100, 1000-500-100 and
2000-500-500-100). Smaller shared layers slightly
decreased performance of the readout classifiers,
probably because not all the relevant variability
could be captured. Larger shared layers did not
significantly change the final classification results.
We also tried different sizes for the last shared layer
(10, 20, 40, 80, 100, 150, 400 and 500), and found
that for small layer sizes (<80) no performance
difference occurred between the DBN and M-DBN.
Since shared layers were trained on the MNIST
training set and then frozen, small last-shared-layers
already learned distinctive representations for digit



classes, making modular specialization obsolete.
Larger last-shared-layers represent more local fea-
tures found in many digits, causing specialization
in different digit classes only in subsequent modular
layers. Increasing the size of the final module layers
hardly effected specialization. However, monolithic
networks with large final-layers achieved results
comparable to modular networks in the nonstation-
ary tasks. This is probably because there is no need
to represent global image features, such as digit
class, in larger layers. The more local image features
represented by larger layers can still be used by
the readout classifier to determine the digit class
(though at considerable computational cost for the
readout classifier).

The performance of both architectures on the
nonstationary tasks is lower than most classification
methods on MNIST (e.g., linear classifiers achieve
88% correct; more advanced approaches without
preprocessing achieve above 95% correct classifi-
cation rates [17, 20]; the current published record
is 99.65%, by [21]). The tasks considered here are
different than tasks where all samples are available
to the learning algorithm, and are equally distributed
over the digit classes. Fine-tuning the DBNs with
gradient descent, increasing the number of modules,
module sizes and training epochs might further
improve classification results. However, the purpose
of this study was not to obtain the best results on
MNIST digit classification, but to demonstrate a
modular DBN architecture that does not forget.

Some extensions to the M-DBN may be worth
considering. One is to make the number of modules
flexible, creating and merging modules dynamically.
For example, two modules that achieve almost the
same best reconstruction error for a certain subset
of the samples, could be merged by resetting or
removing one of the two. Finding a good criterion
for module creation is less straightforward. It seems
natural that new modules should be created to
reduce reconstruction error, yet neither large recon-
struction error nor large variance in reconstruction
error implies that a module is failing to specialize.
Rather, these values often indicate that a module
is adapting slowly or is specializing in a class that
is intrinsically difficult to reconstruct. However, it
might be possible to use feedback from a subsequent
supervised or reinforcement learning algorithm as
a criterion for module creation. For example, in
an reinforcement learning task where the M-DBN’s
output is used for predicting state or action values,
a large variance in temporal difference error could
suggest that further specialization is required, and
that more modules should be created.

A possible method to speed up learning is to
randomly reinitialize the weights of the modules

that never reconstructed any of the samples well
during the entire training process. The module’s
new weights might be closer to some subtask of
the training data on which it can subsequently
specialize. An additional method to facilitate spe-
cialization and prevent forgetting is to maintain an
excess number of randomly initialized modules that
are never trained, so that samples that are better
reconstructed by a random module than by a trained
module will not affect the trained modules.

We expect the M-DBN approach to be partic-
ularly useful for continual learning, especially in
tasks where the behavior of a learning agent drives it
to previously unexplored regions of the environment
with a different distribution over observations. In
reinforcement learning, for example, using adaptive
unsupervised preprocessors have become increas-
ingly popular (e.g., [22]). However, features gen-
erated by algorithms that forget what they learned
before, may no longer be valid for parts of the
environment the agent has not visited recently. In
these cases, the M-DBN can be used as a building
block for dimensionality reduction in a learning
agent that does not forget what it learned before.

V. CONCLUSION

This paper has introduced the M-DBN, a modular
DBN architecture and learning algorithm for un-
supervised feature generation in continual learning
tasks. The M-DBN allows features to be devel-
oped that are retained when the distribution over
input patterns changes — a critical property for
continual learning. Experiments using the MNIST
handwritten-character database demonstrated that
M-DBN modules become expert at distilling fea-
tures for the patterns in which they specialized.
Furthermore, that expertise was not lost when the
input distribution changed. In contrast, a monolithic
DBN of comparable size quickly forgot the features
it had learned for input patterns that disappeared
from the training set.

REFERENCES

[1] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learn-
ing algorithm for deep belief nets,” Neural Computation,
vol. 18, pp. 1527–1554, 2006.

[2] Y. Bengio, P. Lamblin, P. Popovici, and H. Larochelle,
“Greedy layer-wise training of deep networks,” in Advances
in Neural Information Processing Systems (NIPS), vol. 19.
Cambridge, MA.: MIT Press, 2007.

[3] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin,
“Exploring strategies for training deep neural networks,”
Journal of Machine Learning Research, vol. 10, pp. 1–40,
2009.

[4] M. B. Ring, “Continual learning in reinforcement envi-
ronments,” Ph.D. dissertation, Department of Computer
Sciences, The University of Texas at Austin, Austin, Texas,
August 1994.

[5] M. Ranzato, F. J. Huang, Y. Boureau, and Y. LeCun,
“Unsupervised learning of invariant feature hierarchies
with applications to object recognition,” in Proceedings



of Computer Vision and Pattern Recognition Conference,
Minneapolis, Minnesota, 2007.

[6] I. Sutskever and G. E. Hinton, “Learning multilevel dis-
tributed representations for high-dimensional sequences,”
in AI and Statistics, Puerto Rico, 2007.

[7] G. W. Taylor, G. E. Hinton, and S. Roweis, “Modeling
human motion using binary latent variables,” in Advances
in Neural Information Processing Systems (NIPS), vol. 19.
Cambridge, MA.: MIT Press, 2007.

[8] R. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton,
“Adaptive mixtures of local experts,” Neural Computation,
vol. 3, pp. 79–87, 1995.

[9] G. E. Hinton, M. Revow, and P. Dayan, “Recognizing hand-
written digits using mixtures of linear model,” Advances in
Neural Information Processing Systems, vol. 7, pp. 1015–
1022, 1995.

[10] G. E. Hinton, “Training products of experts by minimizing
contrastive divergence,” Neural Computation, vol. 14, pp.
1771–1800, 2002.

[11] A. Erkan, R. Hadsell, P. Sermanet, K. Kavukcuoglu,
M. Ranzato, U. Muller, and Y. LeCun, “Selfsupervised
learning from high dimensional data for autonomous of-
froad driving,” in Advances in Neural Information Process-
ing Systems (NIPS), 2007.

[12] H. Ando, S. Suzukia, and T. Fujitaa, “Unpervised visual
learning of three-dimensional objects using a modular
network architecture,” Neural Networks, vol. 7-8, pp. 1037–
1051, 1999.

[13] B. Zhang, M. Fu, and H. Yan, “A nonlinear neural network
model of mixture of local principal component analy-
sis: application to handwritten digits recognition,” Pattern

Recognition, vol. 34, pp. 203–214, 2001.
[14] K. J. Kurtz, “The divergent autoencoder (DIVA) model

of category learning,” Psychonomic Bulletin & Review,
vol. 14, pp. 560–576, 2007.

[15] R. M. French, B. Ans, and S. Rousset, Pseudopatterns and
dual-network memory models: advantages and shortcom-
ings. Berlin: Springer, 2001, pp. 13–22.

[16] A. Robins, “Sequential learning in neural networks: A
review and a discussion of pseudorehearsal based methods,”
Intelligent Data Analysis, vol. 8, pp. 301–322, 2004.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceed-
ings of the IEEE, vol. 86, pp. 2278–2324, 1998.

[18] C. Cortes and V. Vapnik, “Support-vector networks,” Ma-
chine Learning, vol. 20, pp. 273–297, 1995.

[19] C. Chang and C. Lin, LIBSVM: a library for sup-
port vector machines, 2001, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[20] R. Salakhutdinov and G. E. Hinton, “Learning a nonlinear
embedding by preserving class neighbourhood structure,”
AISTATS, vol. 11, 2007.

[21] D. C. Ciresan, U. Meier, L. M. Gambardella, and
J. Schmidhuber, “Deep big simple neural nets excel
on handwritten digit recognition,” Neural Computation,
vol. 22, pp. 3207–3220, 2010.

[22] S. Lange and M. Riedmiller, “Deep auto-encoder neu-
ral networks in reinforcement learning,” in International
Joint Conference on Neural Networks (IJCNN), Barcelona,
Spain, 2010.


