
In Proceedings of the European Conference on Machine Learning (ECML 2006)

Efficient Non-Linear Control through
Neuroevolution

Faustino Gomez1, Jürgen Schmidhuber1,2, and Risto Miikkulainen3

1 Dalle Molle Institute for Artificial Intelligence (IDSIA), Galleria 2, Lugano, CH
2 Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany

3 Department of Computer Sciences, University of Texas, Austin, TX 78712 USA

Abstract. Many complex control problems are not amenable to tradi-
tional controller design. Not only is it difficult to model real systems,
but often it is unclear what kind of behavior is required. Reinforcement
learning (RL) has made progress through direct interaction with the task
environment, but it has been difficult to scale it up to large and partially
observable state spaces. In recent years, neuroevolution, the artificial
evolution of neural networks, has shown promise in tasks with these two
properties. This paper introduces a novel neuroevolution method called
CoSyNE that evolves networks at the level of weights. In the most exten-
sive comparison of RL methods to date, it was tested in difficult versions
of the pole-balancing problem that involve large state spaces and hidden
state. CoSyNE was found to be significantly more efficient and powerful
than the other methods on these tasks, forming a promising foundation
for solving challenging real-world control tasks.

1 Introduction

In many decision making processes such as manufacturing, aircraft control, and
robotics, researchers are faced with the problem of controlling systems that
are highly complex, noisy, and unstable. The problem with designing or pro-
gramming controllers for such systems by conventional engineering methods is
twofold: (1) The environment is often non-linear and noisy so that it is impossi-
ble to obtain the kind of accurate and tractable mathematical model required by
these methods. (2) The task is complex enough that there is very little a priori

knowledge of what constitutes a reasonable, much less optimal, control strategy.
These two problems have compelled researchers to explore methods based on

reinforcement learning (RL; [1]). Instead of trying to pre-program a response to
every likely situation, an agent learns the task by interacting with the environ-
ment. In principle, RL methods can solve these problems: they do not require a
mathematical model of the environment (i.e. the state transition probabilities),
and can solve many problems where examples of correct behavior are not avail-
able. However, in practice, it has turned out difficult to scale them up to large
state spaces and non-Markov tasks where the state of the environment is not
fully observable. This is an important challenge because the real-world is contin-
uous (i.e. infinite number of states) and artificial agents, like natural organisms,
are necessarily constrained in their ability to fully perceive their environment.



Recently, methods for evolving artificial neural networks or neuroevolution [2],
especially those that coevolve network functional units [3–5], have shown promis-
ing results on continuous, non-Markov tasks. The method introduced in this
paper, Cooperative Synapse NeuroEvolution (CoSyNE), extends the idea of co-
evolving network components to the level of individual synaptic weights. The
goal of this paper is to compare CoSyNE to a wide range of other learning
systems in a setting that is challenging yet practical. To this end, a set of pole-
balancing tasks is used ranging from the familiar simple versions to versions that
are extremely difficult even for the most advanced methods.

2 Cooperative Synapse NeuroEvolution (CoSyNE)

CoSyNE(n, m, Ψ)
————————————————

1: Initialize P = {P1, . . . , Pn}
2: repeat
3: for j = 1 to m do
4: xj ⇐ (x1j , . . . , xnj)
5: Evaluate(xj , Ψ)
6: end for
7: O ⇐ Recombine(P)
8: for k = 1 to l do
9: xi,m−k ⇐ oik

10: end for
11: for i = 1 to n do
12: permute(Pi)
13: end for
14: until solution is found

Fig. 1. The CoSyNE Algorithm.

Cooperative Synapse Neuroevolution
(CoSyNE) uses cooperative coevolution
to construct neural networks, but un-
like other methods of this type (e.g.
SANE [3] and ESP [5]) it searches at
the level of individual network weights
rather than neurons.

Figure 1 describes the CoSyNE pro-
cedure in pseudocode. First (line 1), a
population P consisting of n subpop-
ulations Pi, i = 1..n, is created, where
n is the number of synaptic weights in
the networks to be evolved, determined
by a user-specified network architec-
ture Ψ . Each subpopulation is initial-
ized to contain m real numbers, xij =
Pij ∈ Pi, j = 1..m, chosen from a uni-
form probability distribution in the in-
terval [−α, α]. The population is thereby
represented by an n × m matrix.

CoSyNE then loops through a sequence of generations until a sufficiently
good network is found (lines 2-14). Each generation starts by constructing a
complete network chromosome xj = (x1j , x2j , . . . , xnj) from each row in P .
The m resulting chromosomes are transformed into networks by assigning their
weights to their corresponding synapses, in Ψ .

After all of the networks have been evaluated (line 5) and assigned a fitness,
the top quarter with the highest fitness (i.e. the parents) are recombined (line
7) using crossover and mutation. Recombination produces a pool of offspring O
consisting of l new network chromosomes ok, where oik = Oik ∈ Oi, k = 1..l. The
weights in each of the offspring chromosomes are then added to P by replacing
the least fit weights in their corresponding subpopulation (lines 8-10).

At this point the algorithm functions as a conventional neuroevolution system
that evolves complete network chromosomes. In order to coevolve the synaptic



weights, the subpopulations are permuted (lines 11-13) so that each weight forms
part of a potentially different network in the next generation.

Permuting the subpopulations increases diversity by allowing CoSyNE to
sample networks that would not be generated through recombination alone. This
means that which weights are retained in the population from one generation to
the next is not determined only by which networks scored well in the previous
generation, but rather by a broader sampling of the possible mn networks that
can be formed by selecting a weight from each subpopulation. More precisely,
each generation the offspring lie within a subspace that is defined by all possible
applications of the genetic operators to the set of parents (i.e. the subspace
spanned by the parents). Each successive generation produces offspring from a
subspace contained within the previous one (except for some sampling outside
due to mutation), as the population converges to virtually a single search point.
With permutation, points can be sampled outside of this subspace by forming
networks from weights not found in the current set of parents. The overall effect
is to make the algorithm less greedy because weights have a chance to reproduce
even if they were not part of the parent chromosomes in previous generations.

Cooperative coevolution in general can delay convergence through this pro-
cess, but because CoSyNE evolves at the lowest possible level of granularity
(the individual parameter) the number of possible networks mn is maximized.
Therefore, there are a maximum number of ways to sample outside of the parent
subspace and delay convergence, allowing CoSyNE more time to put the pieces
together to form a good network.

The basic CoSyNE framework does not specify how the weights are grouped
in the chromosomes (i.e. which entry in the chromosome corresponds to which
synapse) or which genetic operators are used. In the implementation used in this
paper, the weights of each neuron are grouped together (i.e. form a substring)
and are separated into input, output, and recurrent weight segments. For the
genetic operators we use multi-point crossover where 1-point crossover is applied
to each neuron segment of the chromosome is used to generate the offspring, and
mutation where each weight in P has a small probability of being changed to a
new value chosen at random from the initial weight range [−α, α].

3 Experiments in Pole-Balancing

CoSyNE was compared experimentally to a broad range of learning algorithms
on a sequence of increasingly difficult versions of the pole-balancing task. The
basic pole-balancing system consists of a pole hinged to a wheeled cart on a
finite stretch of track that must be balance by applying a force to the cart
at regular intervals. Although this task has been a popular artificial learning
testbed for over 30 years, it turns out that the basic pole-balancing problem can
be solved easily by random search. To make the problem more challenging, four
task configurations of increasing difficulty (due to [6]) were used: one pole with
complete state information (1a) and incomplete state information (1b), and two
poles with complete state information (2a) and incomplete state information



(2b). Task 1a is the classic one-pole configuration where the controller receives
all four state variables: the position and velocity of the cart (x, ẋ), and the angle
and angular velocity of the pole (θ1,θ̇1). In 1b, the controller only has access to
x and θ1; it does not receive the velocities (ẋ, θ̇1). In 2a, the system now has
a second pole (θ2, θ̇2) next to the first, making the state-space six-dimensional,
and non-linear. Task 2b, like 1b, is non-Markov with the controller only seeing
x, θ1, and θ2. Fitness was determined by the number of time steps a network
could keep both poles within a specified failure angle from vertical and the cart
between the ends of the track. The failure angle was 12◦ and 36◦ for the one
and two pole tasks, respectively. The initial angle of the long pole was set to
4◦ from vertical for all trials. A task was considered solved if a network could
balance the pole(s) for 100,000 time steps, which is equal to over 30 minutes
in simulated time. CoSyNE evolved networks with one hidden unit, 20 weights
per subpopulation for the one-pole tasks, and 30 weights for the two-pole tasks.
Mutation was set to 5% in all of the experiments. All simulations were run on a
1.50GHz Intel Xeon.

The pole-balancing environment was implemented using a realistic physical
model with friction, and fourth-order Runge-Kutta integration with a step size of
0.01s (see [6] for the equations of motion and parameters used). At each time-step
(0.02 seconds of simulated time) the network receives the state variable values
scaled to [-1.0, 1.0]. This input activation is propagated through the network to
produce a signal from the output unit that represents the amount of force used
to push the cart. The force is then applied and the system transitions to the next
state, which becomes the new input to the controller. This cycle is repeated until
a pole falls or the cart goes off the end of the track.

3.1 Other Methods

CoSyNE was compared to 14 other learning methods: seven single-agent and
seven evolutionary methods. Due to space limitations, the reader is referred to
the original papers and [5] for parameter settings and implementation details.
Single-Agent Methods

Random Weight Guessing (RWG) where the network weights are chosen
at random (i.d.d) from a uniform distribution. This approach gives us an idea
of how difficult each task is to solve by simply guessing a good set of weights.
Policy Gradient RL (PGRL; [7]) where sampled Q-values are used to differ-
entiate the performance of the policy with respect to its parameters. The policy
was implemented by a feed-forward network (FNN) with one hidden layer.
Value and Policy Search (VAPS; [8]) extends the work of Baird et al. [9] to
policies that can make use of memory. The algorithm uses stochastic gradient
descent to search the space of finite policy graph parameters.
Q-learning with MLP (Q-MLP): The basic Q-learning algorithm [10] using
a an FNN trained with backpropagation to map state–action pairs to Q-values.
Sarsa(λ) with Case-Based function approximator (SARSA-CABA; [11]):
This method uses on-policy Temporal Difference control with eligibility traces
that uses a case-based memory to approximate the Q-function.



Sarsa(λ) with CMAC function approximator (SARSA-CMAC; [11]):
This method is the same as SARSA-CABA except that it uses a Cerebellar
Model Articulation Controller instead of a case-based memory.
Adaptive Heuristic Critic (AHC; [12]): uses a learning agent composed of
two components: an actor (policy) and a critic (value-function), both imple-
mented using an FNN trained with a variant of backpropagation.

Evolutionary Methods

Symbiotic, Adaptive Neuro-Evolution (SANE; [3]) is a cooperative co-
evolutionary method that evolves neurons in a single population.
Conventional Neuroevolution (CNE) is our implementation of single-popul-
ation neuroevolution similar to the algorithm used in [6], where each chromo-
some in the population represents a complete neural network.
Evolutionary Programming (EP; [13]) is a general mutation-based evolu-
tionary method that can be used to search the space of neural networks.
Cellular Encoding (CE; [14]) uses Genetic Programming to evolve graph-
rewriting programs that control how neural networks are constructed.
Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES; [15])
evolves the covariance matrix of the mutation operator in evolutionary strate-
gies. The results in the pole-balancing domain were obtained by Igel [16].
NeuroEvolution of Augmenting Topologies (NEAT; [17]) is a neuroevo-
lution method that evolves topology as well as synaptic weights.
Enforced SubPopulation (ESP; [5]) cooperatively coevolves neurons in a
separate subpopulation for each network unit.

For Q-MLP, SANE, CNE, ESP, NEAT, and CoSyNE, experiments were run
using our own code. For PGRL, AHC, SARSA, publicly available code from [18],
[12], and [11], was used respectively, modified for the pole-balancing domain. For
VAPS, EP, CMA-ES, and CE, the results were taken from the papers cited above.

3.2 Results

Balancing one pole is a relatively easy problem that gives us a base perfor-
mance measurement before moving on to the much harder two-pole task. It has
also been solved with many other methods and therefore serves to put the results
in perspective with prior literature. Table 1 shows the results for the this task
for both complete and incomplete state information.

The results for task 1a show that simply choosing weights at random (RWG)
is sufficient to solve this task efficiently. CoSyNE was the only method that
solved the task in fewer evaluations. The other single-agent methods were all
significantly slower than the evolutionary methods, especially in terms of CPU
time. Depending on the kind of function approximator, the amount of computa-
tion required to evaluate and update the value-functions used by AHC, SARSA,
and Q-learning can prove costly.

In contrast, the evolutionary methods do not update any agent parameters
during interaction with the environment and only need to evaluate a function
approximator once per state transition since the policy is represented explicitly.



Method with velocities w/out velocities
Evals CPU Evals CPU

VAPS — — (500k) (5days)
AHC 189,500 95 failed
PGRL 28,779 1,163 failed
Q-MLP 2,056 53 11,311 340
SARSA-CABA 965 1,713 15,617 6,754
SARSA-CMAC 540 487 13,562 2,034
NEAT 743 7 1,523 6
CNE 352 5 724 5
SANE 302 5 1,212 6
ESP 289 4 589 5
CMA-ES 283 — — —
RWG 199 2 8,557 3
CoSyNE 98 1 127 2

Table 1. Results for balancing one pole.
Average of 50 simulations. All differences are
statistically significant (p < 0.01).

Task 1b is notably harder
since in addition to control-
ling the system, the concomi-
tant problem of velocity cal-
culation must also be solved.
Despite considerable effort, we
were unable to solve this task
with AHC and PGRL.

To make Q-MLP and the
SARSA methods effective, their
inputs were extended to include
also the immediately previous
cart position, pole angle, and
action (xt−1, θt−1, at−1). This
delay window of depth 1 is suf-
ficient to disambiguate process
states.

VAPS is the slowest method
in this comparison, with the
single reported run (in parentheses) only balancing the pole for around 1 minute
of simulated time after several days of computation [8]. Results for the SARSA
methods are the average of successful runs only. Of the single-agent methods
Q-MLP fared the best, reliably solving the task and doing so much more rapidly
than SARSA.

Method Evaluations CPU time
RWG 474,329 70
EP 307,200 —
CNE 22,100 73
SANE 12,600 37
Q-MLP 10,582 153
NEAT 3,600 31
ESP 3,800 22
CoSyNE 954 4
CMA-ES 895 —

Table 2. Two poles with ve-
locities. Average of 50 simulations.
EP results taken from [13], CMA-ES
from [16]. All differences are statis-
tically significant (p < 0.001) except
the number of evaluations for NEAT
and ESP.

The performance of the six evolution-
ary methods degrades only slightly com-
pared to the previous task. CoSyNE, CNE,
and ESP were two orders of magnitude
faster than VAPS and SARSA, one order
of magnitude faster than Q-MLP, and ap-
proximately twice as fast as SANE and
NEAT. CoSyNE was able to balance the
pole for over 30 minutes of simulated time
usually within 2 seconds of learning CPU
time, and do so reliably.

Balancing two poles represents a
significant jump in difficulty. For task 2a,
CoSyNE was compared with Q-MLP, CNE,
SANE, NEAT, ESP, and the published
results of EP and CMA-ES. Despite ex-
tensive experimentation with many dif-
ferent parameter settings, we were unable
to get the SARSA methods to solve this task within 12 hours of computation.

Table 2 shows the results for this task. Q-MLP compares very well to the
evolutionary methods with respect to evaluations, in fact, better than on task 1b,
but again lags behind SANE, NEAT, and ESP by nearly an order of magnitude



in CPU time. ESP and NEAT are statistically even in terms of evaluations,
requiring roughly three times fewer evaluations than SANE. CMA-ES required
the fewest number of evaluations, just edging out CoSyNE.

For task 2b, none of the single-agent methods made noticeable progress after
12 hours of computation. Therefore, only neuroevolution methods are compared.
To allow for a comparison with CE, controllers were evolved using both the
standard fitness function used in the previous tasks, and a the “damping” fitness
function (used in [14]) that prevents controllers from solving the task by simply
swinging the poles back and forth.

Method Evaluations
Standard fit. Damping fit.

RWG 415,209 1,232,296
CE — (840,000)
SANE 262,700 451,612
CNE 76,906 87,623
ESP 7,374 26,342
NEAT 6,929 24,543
CMA-ES 3,521 6,061
CoSyNE 1,249 3,416

Table 3. Two poles without veloc-
ities. Average of 50 simulations. All
results are statistically significant ex-
cept for the difference between ESP and
NEAT using the standard fitness.

Table 3 compares the six neu-
roevolution methods for both fitness
functions. To determine when the
task was solved for the damping fit-
ness function, the best controller from
each generation was tested using the
standard fitness to see if it could
balance the poles for 100,000 time
steps. The results for CE are in paren-
theses in the table because only a
single run was reported in [14].

Using the damping fitness, ESP,
CNE, NEAT, and CoSyNE required
an order of magnitude fewer evalua-
tions than SANE and CE. ESP and
NEAT were three times faster than
CNE using either fitness function, with CNE failing to solve the task about 40%
of the time. CoSyNE was the most efficient method for both fitness measures,
outperforming ESP and NEAT by a factor of six on the standard fitness, and
CMA-ES by a factor of two on the damping fitness.

4 Discussion and Conclusion

The comparison results show that the evolutionary methods are more efficient
than the single-agent methods in this set of tasks. The best single-agent method
in task 1a required an order of magnitude more CPU time than NE, and the
transition from 1a to 1b represented a significant challenge, causing some of
them to fail and others to take 30 times longer than NE. Only Q-MLP was able
to solve task 2a and none of the single-agent methods could solve task 2b. In
contrast, all of the evolutionary methods scaled up to the most difficult tasks,
with CoSyNE beating the next fastest method by a wide margin.

The most challenging task exhibits many of the dimensions of difficulty found
in real-world control problems: (1) continuous state and action spaces, (2) par-
tial observability, and (3) non-linearity. The first two are problematic for con-
ventional reinforcement learning methods because they either complicate the
representation of the value function or the access to it. Neuroevolution deals



with them by evolving recurrent networks; the networks can compactly repre-
sent arbitrary temporal, non-linear mappings. The success of CoSyNE on tasks of
this complexity suggests that it can be applied to the control of real systems that
manifest similar properties—specifically, non-linear, continuous systems such as
aircraft control, satellite detumbling, and robot bipedal walking.

Acknowledgments

This research was funded by the following grants: NSF EIA-0303609, NSF IIS-
0083776, THECB (Texas Higher Education Coordinating Board) ARP-003658-
476-2001, and CSEM Alpnach and the EU MindRaces project: FP6 511931.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

2. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9) (1999)
3. Moriarty, D.E.: Symbiotic Evolution of Neural Networks in Sequential Decision

Tasks. PhD thesis, University of Texas at Austin (1997) Tech. Rep. UT-AI97-257.
4. Potter, M.A., De Jong, K.A.: Evolving neural networks with collaborative species.

In: Proceedings of the 1995 Summer Computer Simulation Conference. (1995)
5. Gomez, F.J.: Robust Nonlinear Control through Neuroevolution. PhD thesis,

University of Texas at Austin (2003) Tech. Rep. AI-TR-03-303.
6. Wieland, A.: Evolving neural network controllers for unstable systems. In: Pro-

ceedings of the International Joint Conference on Neural Networks (Seattle, WA),
Piscataway, NJ: IEEE (1991) 667–673

7. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: Advances in Neural
Information Processing Systems 12. Volume 12., MIT Press (2000) 1057–1063

8. Meuleau, N., Peshkin, L., Kim, K.E., Kaelbling, L.P.: Learning finite state con-
trollers for partially observable environments. In: 15th International Conference of
Uncertainty in AI. (1999)

9. Baird, L.C., Moore, A.W.: Gradient descent reinforcement learning. In: Advances
in Neural Information Processing Systems 12. (1999)

10. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3) (1992) 279–292
11. Santamaria, J.C., Sutton, R.S., Ram, A.: Experiments with reinforcement learning

in problems with continuous state and action spaces.Adaptive Behavior 6(2) (1998)
12. Anderson, C.W.: Strategy learning with multilayer connectionist representations.

Technical Report TR87-509.3, GTE Labs, Waltham, MA (1987)
13. Saravanan, N., Fogel, D.B.: Evolving neural control systems. IEEE Expert (1995)
14. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and

direct encoding for genetic neural networks. NC-TR-96-048, NeuroCOLT (1996)
15. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution

strategies. Evolutionary Computation 9(2) (2001) 159–195
16. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In

Proceedings of the Congress on Evolutionary Computation. IEEE (2003)
17. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting

topologies. Evolutionary Computation 10 (2002) 99–127
18. Grudic, G.: http://www.cis.upenn.edu/ grudic/PGRLSim/ (2000)


