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Abstract. To maximize its success, an AGI typically needs to explore
its initially unknown world. Is there an optimal way of doing so? Here
we derive an affirmative answer for a broad class of environments.

1 Introduction

An intelligent agent is sent to explore an unknown environment. Over the course
of its mission, the agent makes observations, carries out actions, and incremen-
tally builds up a model of the environment from this interaction. Since the way
in which the agent selects actions may greatly affect the efficiency of the explo-
ration, the following question naturally arises:

How should the agent choose the actions such that the knowledge about
the environment accumulates as quickly as possible?

In this paper, this question is addressed under a classical framework in which
the agent improves its model of the environment through probabilistic inference,
and learning progress is measured in terms of Shannon information gain. We
show that the agent can, at least in principle, optimally choose actions based
on previous experiences, such that the cumulative expected information gain is
maximized.

The rest of the paper is organized as follows: Section 2 reviews the basic
concepts and establishes the terminology; Section 3 elaborates the principle of
optimal Bayesian exploration; Section 4 presents a simple experiment; Related
work is briefly reviewed in Section 5; Section 6 concludes the paper.

2 Preliminaries

Suppose that the agent interacts with the environment in discrete time cycles
t = 1,2,.... In each cycle, the agent performs an action, a, then receives a
sensory input, o. A history, h, is either the empty string, (), or a string of the
form aqo0;1 - - - azo; for some t, and ha and hao refer to the strings resulting from
appending a and ao to h, respectively.

2.1 Learning from Sequential Interactions

To facilitate the subsequent discussion under a probabilistic framework, we make
the following assumptions:



Assumption I. The models of the environment under consideration are fully
described by a random element @ which depends solely on the environment.
Moreover, the agent’s initial knowledge about © is summarized by a prior
density p (0).

Assumption II. The agent is equipped with a conditional predictor p (olha;0),
i.e. the agent is capable of refining its prediction in the light of information
about 6.

Using p (6) and p (o]ha; 0) as building blocks, it is straightforward to formu-
late learning in terms of probabilistic inference. From Assumption I, given the
history h, the agent’s knowledge about O is fully summarized by p (6|h). Accord-

ing to Bayes rule, p (6|hao) = W, with p (o|ha) = [ p(o|ha,8) p (0]h) db.

The term p (f|ha) represents the agent’s current knowledge about © given his-
tory h and an additional action a. Since © depends solely on the environment,
and, importantly, knowing the action without subsequent observations cannot
change the agent’s state of knowledge about ©, then p (8|ha) = p (6|h), and thus
the knowledge about © can be updated using

p (olha; 0)
p(olha)

It is worth pointing out that p (o|ha; ) is chosen before entering the environ-
ment. It is not required that it match the true dynamics of the environment, but
the effectiveness of the learning certainly depends on the choices of p (o|ha;8).
For example, if © € R, and p (o|ha; 0) depends on @ only through its sign, then
no knowledge other than the sign of @ can be learned.

p(0lhao) = p(0]h) - (1)

2.2 Information GGain as Learning Progress

Let h and b/ be two histories such that h is a prefix of A’. The respective posterior
distributions of © are p(f]h) and p(A|h'). Using h as a reference point, the
amount of information gained when the history grows to A’ can be measured
using the KL divergence between p(6|h) and p (0|h'). This information gain
from h to b’ is defined as

p(011')
p(0lh)

As a special case, if h = (), then g (h') = g (h']|0) is the cumulative information
gain with respect to the prior p (). We also write g (aol|h) for g (hao||h), which
denotes the information gained from an additional action-observation pair.

From an information theoretic point of view, the KL divergence between two
distributions p and ¢ represents the additional number of bits required to encode
elements sampled from p, using optimal coding strategy designed for q. This can
be interpreted as the degree of ‘unexpectedness’ or ‘surprise’ caused by observing
samples from p when expecting samples from gq.

The key property information gain for the treatment below is the following
decomposition: Let h be a prefix of h’ and A’ be a prefix of ', then

de.

g(W'||h) = KL (p (0|1) |Ip (0]h)) = /p(9|h’) log

Epriwrg (W' [1h) = g (W]|h) + Epryrg (|| 1) (2)



That is, the information gain is additive in expectation.

Having defined the information gain from trajectories ending with obser-
vations, one may proceed to define the expected information gain of perform-
ing action a, before observing the outcome o. Formally, the expected informa-
tion gain of performing a with respect to the current history h is given by
g (al]|h) = Egjnag (aollh). A simple derivation gives

p (0,0|ha) B _
g (allh) = Z/ (0,0]ha)log o {0ha) p (0|ha>d0fl(0,@|ha),

which means that g (a||h) is the mutual information between © and the random
variable O representing the unknown observation, conditioned on the history h
and action a.

3 Optimal Bayesian Exploration

In this section, the general principle of optimal Bayesian exploration in dynamic
environments is presented. We first give results obtained by assuming a fixed
limited life span for our agent, then discuss a condition required to extend this
to infinite time horizons.

3.1 Results for Finite Time Horizon

Suppose that the agent has experienced history h, and is about to choose T
more actions in the future. Let 7 be a policy mapping the set of histories to the
set of actions, such that the agent performs a with probability 7 (a|h) given h.
Define the curiosity Q-value g~ (h,a) as the expected information gained from
the additional 7 actions, assuming that the agent performs a in the next step
and follows policy 7 in the remaining 7 — 1 steps. Formally, for 7 =1,

Gz (h,a) = Eojpag (aollh) = g (al|h),
and for 7 > 1,

q; (ha a) = ]Eo|haEa1|hao]E01|haoa1 te EOT,l\h~~~aT,1g (haoalol o Ar—107—-1 ”h)

= ]Eo|haEa101---aT,1oT,1|haog (hCLOCLlOl o Ar—107—-1 ”h) .

The curiosity Q-value can be defined recursively. Applying Eq. 2 for 7 = 2,
q72r (h7 a) = IE‘o|hu,IEalol|haog (haoawl”h)
= IEo|ha [g (CLOHh) + Ea101|haog (a101||ha0)}
=g (a”h) + E0|haEa’|haOQ71r (hao, a/) .
And for 7 > 2,
q;— (h7 a’) = Eo\ha]Ealolma,,loT,l\haog (ha0a101 e aT—IOT—IHh‘)
= Eojha [g (aollh) + Eay0yar_r0._19 (haoaioq - ar_107_1 ||ha0)]
= g (aHh) + Eo|haEa/\haoqz;_l (ha’oa al) . (3)



Noting that Eq.3 bears great resemblance to the definition of state-action values
(Q(s,a)) in reinforcement learning, one can similarly define the curiosity value
of a particular history as v (h) = Eq|nq7 (h, a), analogous to state values (V' (s)),

which can also be iteratively defined as v} (k) = E, g (al|h), and
vz (h) = Eqpn [g (allh) + Eopnavr ™" (hao)] .

The curiosity value vZ (h) is the expected information gain of performing the
additional 7 steps, assuming that the agent follows policy 7. The two notations
can be combined to write

ax (h,a) = g (al|h) + Eojpqvy ™" (hao). (4)

This equation has an interesting interpretation: since the agent is operating
in a dynamic environment, it has to take into account not only the immediate
expected information gain of performing the current action, i.e., g (al|k), but also
the expected curiosity value of the situation in which the agent ends up due to
the action, i.e., vZ~! (hao). As a consequence, the agent needs to choose actions
that balance the two factors in order to improve its total expected information
gain.

Now we show that there is a optimal policy 7., which leads to the maximum
cumulative expected information gain given any history h. To obtain the optimal
policy, one may work backwards in 7, taking greedy actions with respect to the
curiosity Q-values at each time step. Namely, for 7 = 1, let

q* (h,a) = g (al|h), 7} (h) = argmax g (a||h), and v* (h) = max g (a|/h),
a a
such that v! (k) = ¢' (h, 7! (h)), and for 7 > 1, let

q" (h,a) =g (allh) + Eojna [rr;a,»x ¢! (d'|hao)| = g (allh) + Eojpav™ " (hao),
with 77 (h) = argmax,q” (h,a) and v™ (h) = max,q" (h,a). We show that
77 (h) is indeed the optimal policy for any given 7 and h in the sense that
the curiosity value, when following 7], is maximized. To see this, take any other
strategy m, first notice that

v' (h) = maxg (af|h) > Eqpng (allh) = vz (h).
Moreover, assuming v” (h) > vZ (h),
v (h) = max [g (allh) + Eojpav” (hao)] > max [g (allh) + Eonqvl (hao)]
> Eqjn [ (allh) + Eojnavy (hao)] = v (h).

Therefore v™ (k) > vZ (h) holds for arbitrary 7, h, and 7. The same can be shown
for curiosity Q-values, namely, ¢” (h,a) > ¢~ (h,a), for all 7, h, a, and 7.

Now consider that the agent has a fixed life span T'. It can be seen that at time
t, the agent has to perform 77 ~* (h;_;) to maximize the expected information
gain in the remaining 7" — ¢ steps. Here h;_1 = aj01---a;_10;_1 is the history
at time t. However, from Eq.2,

Enpihe_r9 (hr) = g (hi—1) + Eppin,_, 9 (hr|hi-1) -



Note that at time ¢, g (h;—1) is a constant, thus maximizing the cumulative
expected information gain in the remaining time steps is equivalent to maximizing
the expected information gain of the whole trajectory with respect to the prior.
The result is summarized in the following proposition:

Proposition 1. Let ¢' (h,a) = g (allh), v' (h) = max, ¢ (h,a), and

q" (h,a) =g (allh) + Eo|havT_1 (hao), v" (h) = max q" (h,a),

then the policy w7 (h) = argmax, q" (h,a) is optimal in the sense that v™ (h) >
vl (h), q" (h,a) > g% (h,a) for any w, 7, h and a.

In particular, for an agent with fized life span T, following 7~ (hy_1) at time
t=1,...,T is optimal in the sense that the expected cumulative information gain
with respect to the prior is mazximized.

The definition of the optimal exploration policy is constructive, which means
that it can be readily implemented, provided that the number of actions and
possible observations is finite so that the expectation and maximization can be
computed exactly. However, the cost of computing such a policy is O ((nong)"),
where n, and n, are the number of possible observations and actions, respec-
tively. Since the cost is exponential on 7, planning with large number of look
ahead steps is infeasible, and approximation heuristics must be used in practice.

3.2 Non-triviality of the Result

Intuitively, the recursive definition of the curiosity (Q) value is simple, and bears
clear resemblance to its counterpart in reinforcement learning. It might be tempt-
ing to think that the result is nothing more than solving the finite horizon re-
inforcement learning problem using g (a|lh) or g (ao||h) as the reward signals.
However, this is not the case.

First, note that the decomposition Eq.2 is a direct consequence of the for-
mulation of the KL divergence. The decomposition does not necessarily hold if
g (h) is replaced with other types of measures of information gain.

Second, it is worth pointing out that g (ao|/h) and g (a||k) behave differently
from normal reward signals in the sense that they are additive only in expectation,
while in the reinforcement learning setup, the reward signals are usually assumed
to be additive, i.e., adding reward signals together is always meaningful. Consider
a simple problem with only two actions. If g (ao||h) is a plain reward function,
then g (ao||h) + g (a’0’'||hao) should be meaningful, no matter if a and o is known
or not. But this is not the case, since the sum does not have a valid information
theoretic interpretation. On the other hand, the sum is meaningful in ezpectation.
Namely, when o has not been observed, from Eq.2,

g (G‘O”h) + Eo’\haoa’g (alol‘lhao) = Eo’\haoa’g (aoalolnh) )

the sum can be interpreted as the expectation of the information gained from h
to haoa'o’. This result shows that g (aol|h) and g (a||h) can be treated as additive
reward signals only when one is planning ahead.

To emphasize the difference further, note that all immediate information
gains g (ao||h) are non-negative since they are essentially KL divergence. A nat-
ural assumption would be that the information gain g (h), which is the sum of
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Fig. 1. Illustration of the difference between the sum of one-step information gain and
the cumulative information gain with respect to the prior. In this case, 1000 indepen-
dent samples are generated from a distribution over finite sample space {1, 2,3}, with
p(x=1) = 0.1, p(x=2) = 0.5, and p(x = 3) = 0.4. The task of learning is to re-
cover the mass function from the samples, assuming a Dirichlet prior Dir (%, %, %)
The KL divergence between two Dirichlet distributions are computed according to [5].
It is clear from the graph that the cumulative information gain fluctuates when the
number of samples increases, while the sum of the one-step information gain increases
monotonically. It also shows that the difference between the two quantities can be large.

all g (aollh) in expectation, grows monotonically when the length of the history
increases. However, this is not the case, see Figure 1 for example. Although
g (ao||h) is always non-negative, some of the gain may pull 6 closer to its prior
density p (0), resulting in a decrease of KL divergence between p (f|h) and p (9).
This is never the case if one considers the normal reward signals in reinforcement
learning, where the accumulated reward would never decrease if all rewards are
non-negative.

3.3 Extending to Infinite Horizon

Having to restrict the maximum life span of the agent is rather inconvenient.
It is tempting to define the curiosity Q-value in the infinite time horizon case
as the limit of curiosity Q-values with increasing life spans, T — oo. However,
this cannot be achieved without additional technical constraints. For example,
consider simple coin tossing. Assuming a Beta (1, 1) over the probability of seeing
heads, then the expected cumulative information gain for the next T flips is given
by
vl (h) =1(0;X1,...,X7) ~logT.

With increasing T, vT (hy) — oo. A frequently used approach to simplifying
the math is to introduce a discount factor v (0 < v < 1), as used in rein-
forcement learning. Assume that the agent has a maximum 7 actions left, but
before finishing the 7 actions it may be forced to leave the environment with
probability 1 — v at each time step. In this case, the curiosity Q-value becomes



g7 (h,a) = g (allh), and

7" (hya) = (1 =) g(allh) + 7 [g (allh) + EojpaEarpaoty™ " (hao, a’)]

(1-
g (allh) + YEojnaBanaodd™ " (hao,a’) .

One may also interpret 2" (h,a) as a linear combination of curiosity Q-values
without the discount,

T (hya) = Z”y g a)+77¢x (h,a).

Note that curiosity Q-values with larger look-ahead steps are weighed exponen-
tially less.
The optimal policy in the discounted case is given by

V1 (h,a) = g (al|h), v7" (k) = max ¢! (h,a),
and

@7 (h,a) = g (allh) + VEojnav” ™" (hao) , v*7 (h) = maxq™" (h,a).

The optimal actions are given by 7"" (h) = argmax, q7°7 (h,a). The proof that
7’7 is optimal is similar to the one for the finite horizon case (section 3.1) and
thus is omitted here.

Adding the discount enables one to define the curiosity Q-value in infinite
time horizon in a number of cases. However, it is still possible to construct sce-
narios where such discount fails. Consider a infinite list of bandits. For bandit n,
there are n possible outcomes with Dirichlet prior Dir (%7 ey %) The expected
information gain of pulling bandit n for the first time is then given by

1
logn — 1 (2) 4 log (1 + n) ~ logn,

with 9(-) being the digamma function. Assume at time ¢, only the first e
bandits are available, thus the curiosity Q-value in finite time horizon is always
finite. However, since the largest expected information gain grows at speed etz,
for any given v > 0, ¢”7 goes to infinity with increasing 7. This example gives the
intuition that to make the curiosity Q-value meaningful, the ‘total information
content’ of the environment (or its growing speed) must be bounded.

The following technical Lemma gives a sufficient condition for when such
extension is meaningful.

Lemma 1. We have

0 S q%T_‘—l (ha a) - q'y,'r (ha a) S 77E0|ha H(ll?'XEoﬂhaoal T H}laxg (aT”h e 07’—1) .



Proof. Expand ¢"7 and ¢”7 ™!, and note that [max X — maxY| < max |X — Y],
then

q;,r-i-l (hv a) - qu’T (hv a)
= Eojpa Max o, jhaoa, -~ max[g (allh) + 75 (a1]|hao) +--- +77g (ar|[h--- 07-1)]

- IE:o|haL Hé?x IE01|haoa1 e gna}f [g (aHh) + 7.@7 (a1||ha0) +o 4+ ’YT_lg (a,,1||h to 0772)]

—

< IEo|ha H}I?X{Eoﬂhaoal U H(llaX [g (CL”]’L) + ’Yg (a1||ha0) +o 4+ 'YTg (aTHh e 07’—1)]

- Em\haoal o 1;11&1)1( [g (allh) + g (a1]|hao) + - - - + 7771!? (ar—1l|h--- 07‘—2)]}

< ’YTEo\ha Hlll?XEoﬂhaoal U n}lan (aTHh e 07‘—1) .

It can be seen that if Eyq, ..., _,a. |ha8 (@r||h - - -07_1) grows sub-exponentially,
then ¢’ is a Cauchy sequence, and it makes sense to define the curiosity Q-value
for infinite time horizon.

4 Experiment

The idea presented in the previous section is illustrated through a simple experi-
ment. The environment is an MDP consisting of two groups of densely connected
states (cliques) linked by a long corridor. The agent has two actions allowing it
to move along the corridor deterministically, whereas the transition probabilities
inside each clique are randomly generated. The agent assumes Dirichlet priors
over all transition probabilities, and the goal is to learn the transition model of
the MDP. In the experiment, each clique consists of 5 states, (states 1 to 5 and
states 56 to 60), and the corridor is of length 50 (states 6 to 55). The prior over
each transition probability is Dir (61—0, ey % .

We compare four different algorithms: i) random exploration, where the agent
selects each of the two actions with equal probability at each time step; ii) Q-
learning with the immediate information gain g (ao||h) as the reward; iii) greedy
exploration, where the agent chooses at each time step the action maximizing
g (a|lh); and iv) a dynamic-programming (DP) approximation of the optimal
Bayesian exploration, where at each time step the agent follows a policy which
is computed using policy iteration, assuming that the dynamics of the MDP is
given by the current posterior, and the reward is the expected information gain
g (a]|h). The detail of this algorithm is described in [11].

Fig.2 shows the typical behavior of the four algorithms. The upper four plots
show how the agent moves in the MDP starting from one clique. Both greedy
exploration and DP move back and forth between the two cliques. Random
exploration has difficulty moving between the two cliques due to the random
walk behavior in the corridor. Q-learning exploration, however, gets stuck in the
initial clique. The reason for is that since the jump on the corridor is determinis-
tic, the information gain decreases to virtually zero after only several attempts,
therefore the Q-value of jumping into the corridor becomes much lower than the
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Fig. 2. The exploration process of a typical run of 4000 steps. The upper four plots
shows the position of the agent between state 1 (the lowest) and 60 (the highest). The
states at the top and the bottom correspond to the two cliques, and the states in the
middle correspond to the corridor. The lowest plot is the cumulative information gain
with respect to the prior.

Q-value of jumping inside the clique. The bottom plot shows how the cumula-
tive information gain grows over time, and how the DP approximation clearly
outperforms the other algorithms, particularly in the early phase of exploration.

5 Related Work

The idea of actively selecting queries to accelerate learning process has a long
history [1,2,7], and has received a lot of attention in recent decades, primarily
in the context of active learning [8] and artificial curiosity [6]. In particular,
measuring learning progress using KL divergence dates back to the 50’s [2,4]. In



1995 this was combined with reinforcement learning, with the goal of optimizing
future expected information gain [10]. Others renamed this Bayesian surprise [3].

Our work differs from most previous work in two main points: First, like in
[10], we consider the problem of exploring a dynamic environment, where actions
change the environmental state, while most work on active learning and Bayesian
experiment design focuses on queries that do not affect the environment [8].
Second, our result is theoretically sound and directly derived from first principles,
in contrast to the more heuristic application [10] of traditional reinforcement
learning to maximize the expected information gain. In particular, we pointed
out a previously neglected subtlety of using KL divergence as learning progress.

Conceptually, however, this work is closely connected to artificial curiosity
and intrinsically motivated reinforcement learning [6,7,9] for agents that actively
explore the environment without an external reward signal. In fact, the very
definition of the curiosity (Q) value permits a firm connection between pure
exploration and reinforcement learning.

6 Conclusion

We have presented the principle of optimal Bayesian exploration in dynamic
environments, centered around the concept of the curiosity (Q) value. Our work
provides a theoretically sound foundation for designing more effective exploration
strategies. Future work will concentrate on studying the theoretical properties
of various approximation strategies inspired by this principle.
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