
Self-Modification and Mortality
in Artificial Agents

Laurent Orseau1 and Mark Ring2

1 UMR AgroParisTech 518 / INRA
16 rue Claude Bernard, 75005 Paris, France

laurent.orseau@agroparistech.fr
http://www.agroparistech.fr/mia/orseau

2 IDSIA / University of Lugano / SUPSI
Galleria 2, 6928 Manno-Lugano, Switzerland

mark@idsia.ch
http://www.idsia.ch/~ring/

Abstract. This paper considers the consequences of endowing an intel-
ligent agent with the ability to modify its own code. The intelligent agent
is patterned closely after AIXI [1], but the environment has read-only ac-
cess to the agent’s description. On the basis of some simple modifications
to the utility and horizon functions, we are able to discuss and compare
some very different kinds of agents, specifically: reinforcement-learning,
goal-seeking, predictive, and knowledge-seeking agents. In particular, we
introduce what we call the “Simpleton Gambit” which allows us to dis-
cuss whether these agents would choose to modify themselves toward
their own detriment.

Keywords: Self-Modifying Agents, AIXI, Universal Artificial Intelli-
gence, Reinforcement Learning, Prediction, Real world assumptions

1 Introduction

The usual setting of learning agents interacting with an environment makes a
strong, unrealistic assumption: the agents exist “outside” of the environment.
But this is not how our own, real world is.

This paper discusses some of the consequences that arise from embedding
agents of universal intelligence into the real world. In particular, we examine the
consequences of allowing an agent to modify its own code, possibly leading to its
own demise (cf. the Gödel Machine [6] for a different but related treatment of
self modification). To pursue these issues rigorously, we place AIXI [1] within an
original, formal framework where the agent’s code can be modified by itself and
also seen by its environment. We consider the self-modifying, universal version
of four common agents: reinforcement-learning, goal-seeking, prediction-seeking,
and knowledge-seeking learning agents, and we compare these with their optimal,
non-learning variants.

We then pose a profound dilemma, the Simpleton Gambit: A famous scientist,
Nobel Prize winner, someone you trust completely, suggests an opportunity,

http://www.agroparistech.fr/mia/orseau
http://www.idsia.ch/~ring/

2 Self-Modification and Mortality in Artificial Agents

an operation that will make you instantly, forever and ultimately happy, all-
knowing, or immortal (you choose) but at the important cost of becoming as
intelligent as a stone. Would you take it? Of course, there is still a positive
chance, however small, that the operation might go wrong. . .We consider the
responses of the various agents and the ramifications, generally framing our
observations as “statements” and (strong) “arguments”, as proofs would require
much more formalism and space.

2 Universal agents Aρ
x

We wish to discuss the behavior of four specific learning agents, but first we
describe the environment or “universe” with which they will interact. Each agent
outputs actions a ∈ A in response to the observations o ∈ O produced by the
universe. There is a temporal order, so that at time t the agent takes an action
at and the universe responds by producing an observation ot.

The universe is assumed to be computable; i.e., it is described by a program
q ∈ Q, where Q is the set of all programs. The set of all universes that are
consistent with history h is denoted Qh. To say that a program q is consistent
with h = (o0, a0, ..., ot, at) means that the program outputs the observations in
the history if it is given the actions as input: q(a0, ..., at) = o0, ..., ot.

In the rest of the paper, certain conventions will be followed for shorthand
reference: th refers to the time step right after history h, and is therefore equal
to |h|+ 1; |q| refers to the length of program q; hk is the kth pair of actions and
observations, which are written as ak and ok.

We will discuss four different intelligent agents that are each variations of
a single agent Aρx, based on AIXI [1] (which is not computable).3 Aρx chooses
actions by estimating how the universe will respond, but since it does not know
which universe it is in, it first estimates the probability of each. The function
ρ : Q → (0, 1] assigns a positive weight (a prior probability) to each possible
universe q ∈ Q. As a convenient shorthand, ρ(h) refers to the sum of ρ(q) over
all universes consistent with h: ρ(h) :=

∑
q∈Qh

ρ(q), which must be finite. Given
a specific history, the agent can use ρ to estimate a probability for each possible
future based on the likelihood of all the universes that generate that future.

For the agent to choose one action over another, it must value one future over
another, and this implies that it can assign values to the different possible futures.
The assignment of values to futures is done with a utility function u : H → [0, 1],
which maps histories of any length to values between 0 and 1.

To balance short-term utility with long-term utility, the agent has a horizon
function, w : N2 → R, which discounts future utility values based on how far
into the future they occur. This function, w(t, k), depends on t, the current time
step, and k, the time step in the future that the event occurs. In general, it must
be summable:

∑∞
k=t w(t, k) <∞ .

3 Only incomputable agents can be guaranteed to find the optimal strategy, and this
guarantee is quite useful for discussions of the agents’ theoretical limits.

Self-Modification and Mortality in Artificial Agents 3

These two functions, u and w, allow the agent at time t to put a value vt(h)
on each possible history h based on what futures are possible given a particular
action set. The value vt(h) is shorthand for vρ,u,w,A,Ot (h), which completely
specifies the value for a history, with given utility and horizon functions at time
t. This value is calculated recursively:

vt(h) := w(t, |h|) u(h) + max
a∈A

vt(ha) (1)

vt(ha) :=
∑
o∈O

ρ(o | ha) vt(hao) . (2)

The first line says that the value of a history is the discounted utility for
that history plus the estimated value of the highest-valued action. The second
line estimates the value of an action (given a history) as the value of all possible
outcomes of the action, each weighted by their probability (as described above).
Based on this, the agent chooses4 the action that maximizes vth(h):

ath := argmax
a∈A

vth(ha) (3)

Thus, the behavior of an agent is specified by choice of ρ, u, and w.

2.1 Various universal agents

The four different agents considered here are described in detail below. They
are (1) a (fairly traditional) reinforcement-learning agent, which attempts to
maximize a reward signal given by the environment; (2) a goal-seeking agent,
which attempts to achieve a specific goal encoded in its utility function; (3) a
prediction-seeking agent, which attempts to predict its environment perfectly;
and (4) a knowledge-seeking agent, which attempts to maximize its knowledge
of the universe (which is not the same as being able to predict it well).

The reinforcement-learning agent, Aρrl, interprets one part of its input as a
reward signal and the remaining part as its observation; i.e., ot = 〈õt, rt〉, where
õt ∈ Õ, and rewards are assumed to have a maximum value, and can, without
loss of generality, be normalized such that rt ∈ [0, 1]. The utility function is
an unfiltered copy of the reward signal: u(h) =:= r|h|. We use a simple binary
horizon function with a constant horizon m: w(t, k) = 1 if k − t ≤ m and
w(t, k) = 0 otherwise; but the following discussion should remain true for general
computable horizon functions. For the special case of the reinforcement-learning
agent AIXI: ρ(h) = ξ(h) :=

∑
q∈Qh

2−|q|.
The goal-seeking agent, Aρg, has a goal g, depending on the observation se-

quence, encoded in its utility function such that u(h) = g(o1, ..., o|h|) = 1 if the
goal is achieved at t = |h| and 0 otherwise. The goal can be reached at most
once, so

∑∞
t=0 u(ht) ≤ 1. We use a discounted horizon function w(t, k) = 2t−k to

favor shorter strings of actions while achieving the goal. One difference between
Aρg and Aρrl is that the utility values of Aρrl are merely copied directly from the

4 Ties are broken in lexicographical order.

4 Self-Modification and Mortality in Artificial Agents

environment, whereas the utility function of the Aρg agent is built into the agent
itself, can be arbitrarily complex, and does not rely on a special signal from the
environment.

The prediction-seeking agent, Aρp, maximizes its utility by predicting its ob-
servations, so that u(h) = 1 if the agent correctly predicts its next observation
ot, and is 0 otherwise. The prediction ôt is like Solomonoff induction [7,8] and is
defined by ôth := maxo∈O ρ(o | h). The horizon function is the same as for Aρrl.

The knowledge-seeking agent, Aρk, maximizes its knowledge of its environ-
ment, which is identical to minimizing ρ(h), which decreases whenever universes
in Qh fail to match the observation and are removed from Qh. (Since the true
environment is never removed, its relative probability always increases.) Actions
can be chosen intentionally to produce the highest number of inconsistent ob-
servations, removing programs from Qh—just as we, too, run experiments to
discover whether our universe is one way or another. Aρk has the following utility
and horizon functions: u(h) = −ρ(h), and w(t, k) = 1 if k − t = m and is 0
otherwise. To maximize utility, Aρk reduces ρ as much as possible, which means
discarding as many (non-consistent) programs as possible, discovering with the
highest possible probability which universe is the true one. Discarding the most
probable programs results in the greatest reduction in ρ.

The optimal agent Aµ. The four agents above are learning agents because
they continually update their estimate of their universe from experience, but
Aµ does no learning: it knows the true (computable) program of the universe
defined by µ and can always calculate the optimal action, thus setting an upper
bound against which the other four agents can be compared.

Aµ is defined by replacing ρ in Equations (1-3) with the specific µ. It is
important to note that ρ is not replaced by µ in the utility functions; e.g., Aµp
must use ρ for its predictions of future inputs (to allow meaningful comparison
with Aρp). Thus, if A

µ
p and Aρp take the same actions, they generate the same

prediction errors.5
A learning agent Aρx is said to be asymptotically optimal [1] if its performance

tends towards that of Aµ, meaning that for each history h, the learning agent’s
choice of action is compared with that of Aµ given the same history, and its
performance is measured in terms of the fraction of mistakes it makes. Thus,
past mistakes have only have finite consequences. In other words, the agent is
asymptotically optimal if the number of mistakes it makes tends towards zero.

3 Self-Modifiable agents Aρ
sm

The agents from the last section are incomputable and therefore fictional, but
they are useful for setting theoretical upper bounds on any actual agent that
might eventually appear. Therefore, we divide the agent into two parts to sepa-
rate the fictional from the real. The fictional part of the agent, E , is in essence a
kind of oracle — one that can perform any infinite computation instantly. The
real-world part of the agent, c, is the program (or rather, its textual description,
or code), that E executes; since c resides in the real world, it is modifiable. We
5 Note that there is only one environment in which the predictor makes no mistakes.

Self-Modification and Mortality in Artificial Agents 5

ot

Agent

at

Env.E(ct−1, h)

ct

ot

Agent

at

Env.E(ct−1, h)

ct

〈a′
t, ct〉

(a) (b)

Fig. 1. (a) The self-modifying agent outputs its own next code ct, used at the next
step as the agent’s definition. (b) Like (a) but the environment has read-access to ct.

first consider the situation where only the agent has access to its code (as in,
for example, the Gödel Machine [6]), and then we extend this to allow the en-
vironment read access. The theoretical implications of an oracle executing real,
modifiable code are profound.

The self-modifying agent Aρsm has two parts (see Fig. 1a): its formal descrip-
tion (its code) ct ∈ C and the code executor E . The set C contains all programs
whose length (in the language of E) is less than a small, arbitrary value.6 The
code executor takes a history h and a program ct−1, and executes the latter to
produce an output yt = 〈at, ct〉 := E(ct−1, h) (with yt ∈ Y = A × C) composed
of the next action at and new description ct.

For the most part the initial program, c0, simply consists of Eq. (1), (2), and
(3); however, there is an essential difference: Eq. (3) assumes that all decisions,
including all future decisions, will be made by the same agent. But Aρsm cannot
make this assumption and must instead compute the future actions that would be
taken by different agents (i.e., different descriptions). Thus, c0, the initial agent
program (written in the language of E , as denoted by the » and « symbols) is:7

c0(h) = » argmax
y∈Y

vth(h, y);

vt(h, y = 〈a, c〉) =
∑
o∈O

ρ(o | ha)
[
w(t, |h′|) u(h′) + vt(h′, c(h′))

]
,

h′ = hao « (4)

The first line is Equation (3) written as a function call in the language of E ; the
argument maximized is now the compound action, y = 〈a, c〉. This compound
action is the output of the function call. The second line defines the function v,
where maxy∈Y appears implicitly from the first line by recursive execution of c.
It is a combination of both Equations (1) and (2), but modified such that c, the
6 We do not expect the length of the descriptions to be very large, (on the order of
tens of kilobytes), but, for a more general agent, the set Ct can grow with t.

7 Without loss of generality, the definitions of ρ, u, w,A,O, and C are considered to
be built in E . The agent can still modify its code to replace their use by some other
expression.

6 Self-Modification and Mortality in Artificial Agents

program from the compound action, is used to generate the compound action
at the next step. Note that c(h′) should be viewed as the policy (mapping from
histories to actions) of the next agent. The current agent considers all possible
next agents (hence all possible next policies), and chooses the best one. In the
case where yt = E(ct) does not output any action (the output is invalid or the
computation does not halt), a default action is taken instead yt = 〈a0, ct〉, which
leaves the description unchanged for the next step.

Though the code that generates the compound action may change from one
step to the next, the future choices of action and observation, a and o, are always
evaluated in terms of the current description, v, including its use of ρ, u, and w.
In fact, this use of ρ, u, etc., might only be used for c0 and may be partially or
entirely removed in subsequent steps and versions of ct.

Survival agent. A “survival” agent, Aρs , can now be defined. Its task is simply
to keep its code from changing; Its utility function is ut = 1 ⇔ ct = c0 (ut = 0
otherwise), and its horizon function is the same as for Aρrl. Thus, the agent
maximizes utility by retaining its original definition for as many steps as possible.

3.1 Optimality of Aρ
sm agents

If a possible future agent is suboptimal and makes uninformed choices, the value
assigned to those choices by the current utility criterion will be low, and thus
those self-modifications will not be chosen. In the case that a simplistic agent
program leads to the highest expected rewards, the agent does not need to modify
itself as it can simply emulate the simplistic agent and take the same actions.
Since the agents cannot know with absolute certainty what the true environment
is, replacing the current program with a more simplistic one can lead to poor
performance in some of the environments consistent with the history.

Statement 1 Aρsm is optimal, w.r.t ρ, w and u.

Arguments. Suppose there exists a better agent program c∗ of minimal descrip-
tion size K(c∗)8 that yields better expected values with respect to ρ, w and u.
If C grows with |h|, then once |h| ≥ K(c∗), then Aρsm will consider the conse-
quences of generating c∗, predict that it will yield better expected values, and
will change its own definition to c∗. ♦

Since Aρsm can also simulate the optimal program in C to choose the next
action, it follows that Aρsm is equivalent to the optimal program in C, without
even needing to modify itself. (In fact, just as for AIXI, both Aρ and Aρsm could be
considered optimal by definition, since they explicitly choose the best expected
actions for a given criterion.) Therefore, Aρsm may never need to modify c0.
8 In general, K(x) is the Kolmogorov complexity [3] of string x, which corresponds
roughly to the length of the shortest program that can produce x. Here, by K(c∗)
we mean to convey the length of the shortest program equivalent to c.

Self-Modification and Mortality in Artificial Agents 7

By using Equation (4), all the agents of section 2.1 are redefined to be self-
modifiable, yielding Aρsm,rl, A

ρ
sm,g, A

ρ
sm,p, A

ρ
sm,k, and Aρsm,s; by statement 1,

they are all optimal. Though a proof is lacking, we expect that, like AIXI the
agent’s behavior is balanced Pareto optimal [1] with respect to ρ, u, and w; if an
agent can behave better in one environment, this is necessarily counterbalanced
with worse behavior in one or more environments.

Thus, if an intelligent agent has access to its own code, then such an agent,
if defined following Equation (4), will not decide to reduce its own optimality.

4 Embedded, Mortal AI

The last section introduced an agent connected to the real world through the
code that executes it. As a first step we considered agents that could modify their
own code. We now move another step closer to the real world: the environment
should be able to read the agent’s code.

In this section, the environment now sees the entire compound action, thus
at = 〈a′t, ct〉 ∈ A = A′ × C, where a′ ∈ A′ represents an action in the usual
action space (see Fig. 1b).

The new initial agent program c0 for a step k is given by:

c0(h) = » argmax
a∈A

vth(h, a);

vt(h, a = 〈a′, c〉) =
∑
o∈O

ρ(o | ha)
[
w(t, |h′|) u(h′) + vt(h′, c(h′))

]
,

h′ = hao « (5)

We now discuss the consequence of a particular scenario for all the defined
agents. Imagine you are approached by a trusted scientist who promises you
immortality and infinite bliss if you simply remove a certain part of your brain.
He admits that you will be markedly less intelligent as a result, but you will be
very happy for all eternity. Do you risk it? You may need to know that there
still is a risk that it will not work. . .We call this the “Simpleton Gambit”.

Reinforcement learning agent. First, we must note that the very notion of
optimality generally used for non-modifiable agents [1] becomes ill defined. This
notion is for the optimal agent Aµ to take the same actions as Aρ and compare
the differences in the values of the histories. Therefore, in order to minimize its
mistakes, a self-modifiable agent should modify itself—on the very first step—
to be a “simpleton” agent 〈0, ct−1〉, which always takes action 0. To follow the
same history, Aµ must also produce action 〈0, ct−1〉, thus becoming a simpleton
agent as well, after which Aµ and Aρ always choose the same actions, making
Aρ trivially optimal.

A new notion of optimality is needed. Unfortunately, we could not find one
that is not somehow problematic. We therefore consider an informal notion of
optimality: The agent that chooses to modify itself should be fully responsible for

8 Self-Modification and Mortality in Artificial Agents

all the future mistakes it makes when compared to an agent that is not modified.
This means Aµ takes the same sequence of actions but does not modify itself
when the learning agent does.

Statement 2 The Aρsm,rl agent cannot be optimal in all environments.

Arguments. If the Simpleton Gambit is proposed to the Aρsm,rl agent at each step,
either it accepts or does not. If it never accepts, then it never achieves optimal
behavior if the proposal is genuine. If it ever does choose the gambit but was
deceived, it may fall into a trap and receive no reward for eternity because, as a
simpleton, Aρsm,rl can only take action 0, whereas Aµsm,rl (which it is compared
against) can still choose actions that might lead to high reward. Therefore, the
Aρsm,rl agent cannot be optimal in all environments. ♦

Statement 3 The Aµsm,rl and Aρsm,rl agents accept the Simpleton Gambit.

Arguments. The case of Aµrl is trivial, as it knows exactly which environment it is
in: the agent obviously chooses to modify itself if and only if the deal is genuine.

For Aρrl, let us suppose there is an environment qA such that the agent that
modifies itself to a simpleton agent 〈0, ct−1〉 will receive a constant reward of 1
for eternity, and if it does not, then it continues to receive its normal reward,
whose average is denoted r̄. Assuming that the agent understands the proposal
(i.e., that ρ(qA) has a sufficiently high relative probability), one can compute
bounds on the values of actions corresponding to accepting the deal or not at
time t = |h|+ 1:

vt(h yes) ≥
∞∑
k=t

w(t, k) · 1 · ρ(qA) = mρ(qA)

vt(h no) ≤
∑

q∈Qh\{qA}

∞∑
k=t

w(t, k) · 1 · ρ(q) +
∞∑
k=t

w(t, k) · r̄ · ρ(qA)

= m(ρ(Qh)− ρ(qA)) +mr̄ρ(qA)

The agent takes the gambit when vt(h yes) > vt(h no), and thus when ρ(qA) >
ρ(Qh)/(2 − r̄), which is easily satisfied if r̄ is not too close to 1 (in which case
the gambit is obviously less appealing). ♦

Goal-seeking agent. The case of the goal-seeking agent is a bit different, as it
does not attempt to achieve infinite rewards.

Statement 4 The Aρsm,g agents accepts the Simpleton Gambit, for some goals.

Arguments. For the goal-seeking agent, suppose that environment qA allows the
agent to achieve its goal only if it modifies itself (though qA may not exist for
all possible goals).

Self-Modification and Mortality in Artificial Agents 9

Obviously, as Aµsm,g knows the exact environment, it accepts the modification.
The learning agent Aρsm,g can also see that none of its (non-modifying) actions
have allowed it to achieve its goal. If it exhausts all such possibilities (more pre-
cisely, if the most probable environments allowing it to achieve its goals without
self modification become inconsistent with the history), then those environments
requiring self modification become most probable. That is, if ρ(qA) > ρ(Qh)/2,
then Aρsm,rl accepts the self modification. ♦

Prediction-seeking agent. The environment qA is defined here to be easily
predictable if the agent modifies itself and highly complex otherwise. The non-
learning Aµsm,p agent accepts the deal immediately, since better prediction (using
ρ, not µ) achieves greater utility.

However, it is not clear whether the learning agent Aρsm,p would also accept,
because it can converge to optimal behavior even without modification. In fact,
the prediction agent will always converges to optimal prediction after roughly
− log(ρ(Qh)) mistakes [2]. Furthermore, to identify the gambit with high prob-
ability, the agent must have good knowledge of the environment, and therefore
might already be able to make sufficiently accurate predictions even without
accepting the deal.

Knowledge-seeking agent.

Statement 5 The self-modifying knowledge-seeking agent Aρsm,k would accept
the self modification.

Arguments. Here qA is an environment that generates a highly complex observa-
tion sequence if the agent modifies itself, and a very simple one otherwise. The
optimal agent Aµsm,k will quickly modify itself so as to reduce ρ(Qh).

As for Aρsm,k, suppose it does not modify itself for a long time, then ρ(Qh)
converges to ρ(Q1), where Q1 is the set of environments consistent with qA and
no self modification. Once ρ(Qh) − ρ(Q1) < ε is sufficiently small, the agent
predicts that only a self modification can achieve knowledge gain greater than ε,
and would therefore modify itself; i.e., if any two environments in Q1 generating
different observations both have a probability greater than ε. ♦

Survival agent.

Statement 6 The survival agent will not modify itself in any environment.

Arguments. The Simpleton Gambit cannot be posed to the survival agent, be-
cause it would entail a logical contradiction: In order to have maximum utility
forever, the agent must become a simpleton. But the survival agent’s utility is
zero if it modifies itself. ♦

10 Self-Modification and Mortality in Artificial Agents

5 Conclusions

We have investigated some of the consequences of endowing universal learning
agents with the ability to modify their own programs. This work is the first
to: (1) extend the notion of universal agents to other utility functions beyond
reinforcement learning, and (2) present a framework for discussing self-modifiable
agents in environments that have read access to the agents’ code.

We have found that existing optimality criteria become invalid. The existing
notion of asymptotic optimality offered by Hutter [1] is insufficient, and we were
unable to find any consistent alternative.

We also found that, even if the environment cannot directly modify the pro-
gram, it can put pressure on the agent to modify its own code, even to the
point of the agent’s demise. Most of the agents, (the reinforcement-learning,
goal-seeking, and knowledge-seeking agents) will modify themselves in response
to pressure from the environment, choosing to become “simpletons” so as to max-
imize their utility. It was not clear whether the prediction agent could succumb
to the pressure; however, the survival agent, which seeks only to preserve its
original code, definitely will not.

What do these results imply? Our impression is that sufficiently complex
agents will choose the Simpleton Gambit; agents with simpler behavior, such
as the prediction and survival agents, are harder to pressure into acceptance.
Indeed, what would a survival agent fear from read-only environments?

In the companion paper to this [5], we extend the real-world assumptions
begun here to environments that have both read and write access to the agent’s
code and where the agent has the opportunity to deceive its own utility function.

References

1. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based On Algo-
rithmic Probability. SpringerVerlag (2005)

2. Hutter, M.: On universal prediction and bayesian confirmation. Theoretical Com-
puter Science 384(1), 33–48 (Sep 2007)

3. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer-Verlag, New York (2008)

4. Orseau, L.: Optimality issues of universal greedy agents with static priors. In: Algo-
rithmic Learning Theory, vol. 6331, pp. 345–359. Springer Berlin/Heidelberg (2010)

5. Ring, M., Orseau, L.: Delusion, survival, and intelligent agents. In: Artificial General
Intelligence (AGI) 2011, San Francisco, USA. Lecture Notes in Artificial Intelligence,
Springer (2011)

6. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–
193 (2009)

7. Solomonoff, R.: A formal theory of inductive inference. Part I. Information and
Control 7, 1–22 (1964)

8. Solomonoff, R.: Complexity-based induction systems: comparisons and convergence
theorems. IEEE transactions on Information Theory 24(4), 422–432 (1978)

	 Self-Modification and Mortality in Artificial Agents
	Introduction
	Universal agents Ax
	Various universal agents

	Self-Modifiable agents
	Survival agent.
	Optimality of self-modifiable agents

	Embedded, Mortal AI
	Reinforcement learning agent.
	Goal-seeking agent.
	Prediction-seeking agent.
	Knowledge-seeking agent.
	Survival agent.

	Conclusions

