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Abstract

In this paper we study the job shop scheduling problem under the as-
sumption that the jobs have controllable processing times. The fact that
the jobs have controllable processing times means that it is possible to re-
duce the processing time of the jobs by paying a certain cost. We consider
two models of controllable processing times: continuous and discrete. For
both models we present polynomial time approximation schemes when the
number of machines and the number of operations per job are fixed.
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proximation schemes.

1 Introduction

Most scheduling models assume that jobs have fixed processing times. However,
in real-life applications the processing time of a job often depends on the amount
of resources such as facilities, manpower, funds, etc. allocated to it, and so
its processing time can be reduced when additional resources are assigned to
the job. A scheduling problem in which the processing times of the jobs can
be reduced at some expense is called a scheduling problem with controllable
processing times. Scheduling problems with controllable processing times have
gained importance in scheduling research since the pioneering works of Vickson
[23, 24]. For a survey of this area until 1990, the reader is referred to [17].
Recent results include [2, 3, 4, 10, 14, 15, 20, 22, 26].
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1.1 Job Shop Scheduling with Controllable Processing Times

The job shop scheduling problem is a fundamental problem in Operations Re-
search. In this problem there is a set J = {J1, ..., Jn} of jobs that must be
processed by a group of m machines. Every job Jj consists of an ordered se-
quence of at most µ operations O1j , O2j , . . . , Okjj , kj ≤ µ. For every operation
Oij there is a specific machine mij that must process it during pij units of time.
A machine can process only one operation at a time, and for any job at most one
of its operations can be processed at any moment. The problem is to schedule
the jobs so that the maximum completion time Cmax is minimized. Time Cmax

is called the length or makespan of the schedule.
In the non-preemptive version of the job shop scheduling problem, opera-

tions must be processed without interruption. The preemptive version allows
an operation to be interrupted and continued at a later time. In the job shop
scheduling problem with controllable processing times a feasible solution is spec-
ified by a schedule σ that indicates the starting times for the operations and a
vector δ that gives their processing times and costs. Let us denote by T (σ, δ)
the makespan of schedule σ with processing times according to δ, and let C(δ)
be the total cost of δ. We define, and study, the following three optimization
problems.

P1. Minimize T (σ, δ), subject to C(δ) ≤ κ, for some given value κ > 0.

P2. Minimize C(δ), while ensuring that T (σ, δ) ≤ τ , for some given value τ > 0.

P3. Minimize T (σ, δ) + αC(δ), for some given value α > 0.

We consider two variants of each one of the three above problems. The first
variant allows continuous changes to the processing times of the operations. In
this case, we assume that the cost of reducing the processing time of an operation
is an affine function of the processing time. This is a common assumption made
when studying problems with controllable processing times [20, 22]. The second
variant allows only discrete changes to the processing times of the operations,
and there is a finite set of possible processing times and costs for every operation
Oij .

1.2 Known Results

The job shop scheduling problem is considered to be one of the most difficult to
solve problems in combinatorial optimization, both, from the theoretical and the
practical points of view. The problem is NP-hard even if each job has at most
three operations, there are only two machines, and processing times are fixed [8].
The job shop scheduling problem is also NP-hard if there are only 3 jobs and 3
machines [21]. Moreover, the problem is NP-hard in the strong sense if each job
has at most three operations and there are only three machines [6]. The same
result holds if preemptive schedules are allowed [8]. The problems addressed in
this paper are all generalizations of the job shop scheduling problem with fixed
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processing times, and therefore, they are strongly NP-hard. Moreover, Nowicki
and Zdrzalka [16] show that the version of problem P3 for the less general flow
shop problem with continuously controllable processing times is NP-hard even
when there are only two machines.

The practical importance of NP–hard problems necessitates efficient ways
of dealing with them. A very fruitful approach has been to relax the notion
of optimality and settle for near–optimal solutions. A near–optimal solution
is one whose objective function value is within some small multiplicative fac-
tor of the optimal. Approximation algorithms are heuristics that in polynomial
time provide provably near-optimal solutions. A Polynomial Time Approxima-
tion Scheme (PTAS for short) is an approximation algorithm which produces
solutions of value within a factor (1 + ε) of the optimum, for any value ε > 0.

Williamson et al. [25] proved that the non-preemptive job shop scheduling
problem does not have a polynomial time approximation algorithm with worst
case bound smaller than 5

4 unless P = NP . The best known approximation algo-
rithm [7] has worst case bound O((log(mµ) log(min(mµ, pmax))/ log log(mµ))2),
where pmax is the largest processing time among all operations. For those in-
stances where m and µ are fixed (the restricted case we are focusing on in this
paper), Shmoys et al. [19] gave a (2 + ε)-approximation algorithm for any fixed
ε > 0. This result has recently been improved by Jansen et al. [12, 5] who
designed a PTAS that runs in linear time. On the other hand the preemptive
version of the job shop scheduling problem is NP-complete in the strong sense
even when m = 3 and µ = 3 [8]. When processing times are controllable, to the
best of our knowledge, the only known closely related result is due to Nowicki
[15]. In [15] the flow shop scheduling problem with controllable processing times
is addressed, and a 4/3-approximation algorithm for the flow shop version of
problem P3 is described.

1.3 New Results

We present the first known polynomial time approximation schemes for problems
P1, P2, and P3, when the number m of machines and the number µ of operations
per job are fixed.

For problem P1 we present an algorithm which finds a solution (σ, δ) of cost
at most κ and makespan no larger than (1+O(ε)) times the optimum makespan,
for any given value ε > 0. We observe that, since for problem P2 deciding
whether there is a solution of length T (σ, δ) ≤ τ is already NP-complete, then
unless P=NP, we might only expect to obtain a solution with cost at most the
optimal cost and makespan not greater than τ(1 + ε), for a given value ε > 0.
Our algorithm for problem P3 finds a solution of value at most (1+O(ε)) times
the optimum, for any ε > 0.

Our algorithms can handle both, continuously and discretely controllable
processing times, and they can be extended to the case of convex piecewise
linear cost functions. Our algorithms have a worst case performance ratio that
is better than the 4/3-approximation algorithm for problem P3 described in
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Nowicki [15]. Moreover, the linear time complexity of our PTAS for problem
P3 is the best possible with respect to the number of jobs.

Our algorithms are based on a paradigm that has been successfully applied
to solve other scheduling problems. First, partition the set of jobs into “large”,
“medium” and “small” jobs. The sets of large and medium jobs have a constant
number of jobs each. We compute all possible schedules for the large jobs. Then,
for each one of them, schedule the remaining jobs inside the empty gaps that
the large jobs leave by first using a linear program to assign jobs to gaps, and
then computing a feasible schedule for the jobs assigned to each gap.

A major difficulty with using this approach for our problems is that the
processing times and costs of the operations are not fixed, so we must determine
these values before we can use the above approach. One possibility is to use a
linear program to assign jobs to gaps and to determine the processing times and
costs of the operations. But, we must be careful since, for example, a natural
extension of the linear program described in [12] defines a polytope with an
exponential number of extreme points, and it does not seem to be possible to
solve such linear program in polynomial time. We show how to construct a small
polytope with only a polynomial number of extreme points that contains all the
optimum solutions of the above linear program. This polytope is defined by a
linear program that can be solved exactly in polynomial time and approximately,
to within any pre-specified precision, in fully polynomial time (i.e. polynomial
also in the reverse of the precision).

Our approach is general enough that it can be used to design polynomial
time approximation schemes for both the discrete and the continuous versions
of problems P1-P3 with and without preemptions. In this paper we present
polynomial time approximation schemes for the continuous version of problems
P1-P3, and a PTAS for the discrete version of P3. The polynomial time ap-
proximation schemes for the discrete version of P1 and P2 can be easily derived
from the results described here. We present a series of transformations that
simplify any instance of the above problems. Some transformations may poten-
tially increase the value of the objective function by a factor of 1 + O(ε), for a
given value ε > 0, so we can perform a constant number of them while still stay-
ing within 1 + O(ε) of the optimum. We say that this kind of transformations
produce 1 + O(ε) loss. A transformation that does not modify the value of the
optimum solution is said to produce no loss. In the following, for simplicity of
notation, we assume that 1/ε is an integral value.

1.4 Organization

The rest of the paper is organized in the following way. We first address problems
with continuous processing times. In Sections 2 and 3, we present polynomial
time approximation schemes for problem P1 with and without preemptions.
In Sections 4 and 5 we present polynomial time approximation schemes for
problems P2 and P3. In Section 6 we study problem P3 with discrete processing
times, and show how to design a linear time PTAS for it.
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2 Non-Preemptive Problem P1 with Continu-
ous Processing Times

Problem P1 is to compute a schedule with minimum makespan and cost at most
κ for some given value κ. In the case of continuously controllable processing
times, we assume that for each operation Oij there is an interval [`ij , uij ], 0 ≤
`ij ≤ uij , specifying its possible processing times. The cost for processing an
operation Oij in time `ij is denoted as c`

ij ≥ 0 and for processing it in time uij

the cost is cu
ij ≥ 0. For any value δij ∈ [0, 1] the cost for processing operation

Oij in time
p

δij

ij = δij`ij + (1− δij)uij

is
c
δij

ij = δijc
`
ij + (1− δij)cu

ij .

We assume that `ij , uij , c`
ij , cu

ij and δij are rational numbers. Moreover, without
loss of generality, we assume that for every operation Oij , cu

ij ≤ c`
ij , and if

cu
ij = c`

ij then uij = `ij .

Remark 1 For simplicity, we assume that the total cost of the solution is at
most 1. To see why, let us consider an instance of problem P1. Divide all cu

ij

and c`
ij values by κ to get an equivalent instance in which the bound on the total

cost of the solution is 1, i.e.

C(δ) =
n∑

j=1

µ∑

i=1

c
δij

ij ≤ 1.

Moreover, since the total cost is at most 1, without loss of generality we can
assume that the maximum cost for each operation is at most 1. More precisely,
if c`

ij > 1 for some operation Oij, we set c`
ij = 1 and make

`ij =
uij(c`

ij − 1)− `ij(cu
ij − 1)

c`
ij − cu

ij

to get an equivalent instance of the problem in which c`
ij ≤ 1 for all operations

Oij.

2.1 Lower and Upper Bounds for the Problem

In the following we compute lower (LB) and upper (UB) bounds for the opti-
mum makespan. Let U =

∑n
j=1

∑µ
i=1 uij . Consider an optimal solution (σ∗, δ∗)

for problem P1 and let us use OPT to denote the optimum makespan. Let
P ∗ =

∑n
j=1

∑µ
i=1 p

δ∗ij

ij =
∑n

j=1

∑µ
i=1(`ij − uij)δ∗ij + U be the sum of the pro-

cessing times of all jobs in this optimum solution. Define cij = c`
ij − cu

ij , so
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C(δ∗) =
∑n

j=1

∑µ
i=1(cijδ

∗
ij + cu

ij) ≤ 1. Note that δ∗ is a feasible solution for the
following linear program.

min P =
∑n

j=1

∑µ
i=1(`ij − uij)xij + U

s.t.
∑n

j=1

∑µ
i=1 xijcij ≤ 1−∑n

j=1

∑µ
i=1 cu

ij .

0 ≤ xij ≤ 1 ∀j = 1, ..., n and i = 1, ..., µ.

Let x̃ be an optimal solution for this linear program and let P (x̃) be its value.
Observe that P (x̃) ≤ P ∗ and C(x̃) ≤ 1. Moreover, note that

• if 1−∑n
j=1

∑µ
i=1 cu

ij < 0, then there exists no solution with cost at most
1.

• If 1 −∑n
j=1

∑µ
i=1 cu

ij = 0 then in any feasible solution with cost at most
1, the processing time of each operation Oij must be uij . In this case we
know that U/m ≤ OPT ≤ U , since the total sum of the processing times
of all the operations is U . By dividing all processing times by U , we get
the bounds LB = 1/m ≤ OPT ≤ UB = 1.

• If 1 − ∑n
j=1

∑µ
i=1 cu

ij > 0, we simplify the instance by dividing all costs
by 1−∑n

j=1

∑µ
i=1 cu

ij . Then, the above linear program can be simplified
as follows,

max
∑n

j=1

∑µ
i=1 tijxij

s.t.
∑n

j=1

∑µ
i=1 xijwij ≤ 1.

0 ≤ xij ≤ 1 j = 1, ..., n and i = 1, ..., µ.

where tij = uij − `ij and wij = cij/(1−∑n
j=1

∑µ
i=1 cu

ij).

This linear program is a relaxation of the classical knapsack problem, which
can be solved as follows [13]. Sort the operations in non-increasing order of ratio
value tij/wij . Consider, one by one, the operations Oij in this order, assigning to
each one of them value xij = 1 as long as their total weight

∑n
j=1

∑µ
i=1 xijwij is

at most 1. If necessary, assign to the next operation a fractional value to ensure
that the total weight of the operations is exactly 1. Set xij = 0 for all the
remaining operations. This algorithm runs in O(nµ) time [13]. If we schedule
all the jobs one after another with processing times as defined by the optimal
solution x̃ of the knapsack problem, we obtain a feasible schedule for the jobs
J with makespan P (x̃). Since P (x̃) ≥ P ∗ ≥ OPT ≥ P ∗/m ≥ P (x̃)/m, then by
dividing all `ij and uij values by P (x̃), we get the same bounds as above, i.e.,
LB = 1/m and UB = 1.

2.2 Overview of the Algorithm

We might assume without loss of generality that each job has exactly µ opera-
tions. To see this, consider a job Ji with µi < µ operations O1i, O2i, . . . Oµii. we
create µ−µi new operations Oij with zero processing time and cost, i.e., we set
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`ij = uij = 0 and cu
ij = c`

ij = 0. Each one of these operations must be processed
in the same machine which must process operation Oµii. Clearly, the addition
of these operations does not change the makespan of any feasible schedule for
J .

We briefly sketch the algorithm here and give the details in the following
sections. Let κ > 0 be the upper bound on the cost of the solution and ε > 0
be a positive value. Consider an optimum solution (σ∗, δ∗) for the problem; let
τ∗ be the makespan of this optimum solution. Our algorithm finds a solution
(σ, δ) of cost C(δ) ≤ κ and makespan at most (1 + O(ε))τ∗.

1. Partition the jobs into 3 groups: L (large), M (medium), and S (small).
Set L contains the largest k ≤ m2/ε jobs according to the optimum so-
lution (σ∗, δ∗). Set M contains the qµm2/ε − 1 next largest jobs, where
q = 6µ4m3/ε. The value for k is chosen so that the total processing time
of the medium jobs in solution (σ∗, δ∗) is at most ετ∗ (the exact value
for k is given in Section 2.6). The set S of small jobs is formed by the
remaining jobs. Note that |L| and |M| are constant. It is somewhat sur-
prising to know that we can determine the sets L,M, and S, even when
an optimum solution σ∗, δ∗) is not known. We show in Section 2.6 how
to do this. From now on we assume that we know sets L, M and S. An
operation that belongs to a large, medium, or small job is called a large,
medium, or small operation, respectively, regardless of its processing time.

2. Determine the processing times and costs for the medium operations.

3. Try all possible ways of scheduling the large jobs on the machines. Each
feasible schedule for L leaves a set of empty gaps where the small and
medium jobs can be placed. For each feasible schedule for the large jobs use
a linear program to determine the processing times and costs for the small
and large operations, and to determine the gaps where each small and
medium operation must be scheduled. then, transform this assignment
into a feasible schedule for the entire set of jobs.

4. . Output the schedule with minimum length found in Step 3.

2.3 Simplifying the Input

We can simplify the input by reducing the number of possible processing times
for the operations. We begin by showing that it is possible to upper bound the
processing times of small operations by ε

qkµm .

Lemma 2 With no loss, for each small operation Oij we can set uij ← ūij and

cu
ij ←

c`
ij−cu

ij

uij−`ij
(uij − ūij) + cu

ij, where ūij = min{uij ,
ε

qkµm}.

Proof. As it was shown in Section 2.1, the optimal makespan is at most 1
and, therefore, the sum of the processing times of all jobs cannot be larger than
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m. Let P ∗j =
∑µ

i=1 p
δ∗ij

ij be the sum of the processing times of the operations
of job Jj according to an optimum solution (σ∗, δ∗). Let p be the length of the
longest small job according to this optimum solution. By definition of L and
M,

|L ∪M| · p =
kµm2q

ε
p ≤

∑

Jj∈M∪L
P ∗j ≤ m,

and so p ≤ ε
qkµm . Hence, the length of an optimum schedule is not increased

if the largest processing time uij of any small operation Oij is set to ūij =

min{uij ,
ε

qkµm}. If we do this, we also need to set cu
ij ←

c`
ij−cu

ij

uij−`ij
(uij − ūij) + cu

ij

(this is the cost to process operation Oij in time ūij).

In order to compute a 1 + O(ε)-approximate solution for P1 we show that
it is sufficient to consider only a constant number of different processing times
and costs for the medium jobs.

Lemma 3 There exists a (1 + 2ε)-optimal schedule where each medium opera-
tion has processing time of the form ε

m|M|µ (1 + ε)i, for i ∈ N.

Proof. Let A be the set of medium operations for which p
δ∗ij

ij ≤ ε
m|M|µ . Since

cu
ij ≤ c`

ij , by increasing the processing time of any operation, its corresponding
cost cannot increase. Therefore, if we increase the processing times for the
operations in A to ε

m|M|µ , the makespan increases by at most |A| ε
m|M|µ ≤ ε/m,

and so the length of an optimum solution would increase by at most a factor of
1 + ε. For the remaining medium operations, round up their processing times
p

δ∗ij

ij to the nearest value of the form ε
m|M|µ (1 + ε)i, for some i ∈ N. Since this

rounding increases the processing time by at most a factor 1 + ε, the value of
an optimum solution increases by at most the same factor, 1 + ε.

By the discussion in Section 2.1, the processing times of the operations are
at most 1. By the previous lemma, the number of different processing times
for medium operations is O(log(m|M|µ)/ε) (clearly, the same bound applies
to the number of different costs). Since there is a constant number of medium
operations after the above rounding, there is also a constant number of choices
for the values of their processing times and costs.

Let the rounded processing times and costs for the medium operations be
denoted as p̄ij and c̄ij . Below we show that when the medium operations are
processed according to these (p̄ij , c̄ij)-values, it is possible to compute a 1+O(ε)-
approximate solution for problem P1 in polynomial time. Let us consider all
O(log(m|M|µ)/ε) possible choices for processing times for the medium oper-
ations. Clearly, for one of such choices the processing times and costs are as
described in Lemma 3. Hence, from now on, we assume that we know these
(p̄ij , c̄ij)-values for the medium operations. In order to simplify the follow-
ing discussion, for each medium operation Oij we set `ij = uij = p̄ij and
c`
ij = cu

ij = c̄ij , thus, fixing their processing times and costs.
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Figure 1: A feasible schedule for the set of jobs {J1, J2, J3}, each consist-
ing of 3 large operations, that respects the following relative schedule: R =
(s11, s13, s12, f11, f13, s23, f12, s21, s22, f21, f22, s32, s31, f23, f32, s33, f31, f33).

2.4 Relative Schedules

A relative schedule for the large operations is an ordering of the starting and
ending times of the operations. We say that a feasible schedule S for the large
operations respects a relative schedule R if the starting and ending times of
the operations as defined by S are ordered as indicated in R (breaking ties
in an appropriate way), see Figure 1. Fix a relative schedule R for the large
operations. The starting, sij , and finishing, fij , times of an operation Oij define
an interval [sij , fij ] where each operation Oij must be processed (see Figure 1).
Let

z1 < z2 < ... < zg−1

be the ordered sequence of all different sij and fij values, for j = 1, ..., n and
i = 1, ..., µ. Let us introduce two additional values zg ≥ zg−1 and z0 ≤ z1 to
bound intervals without large operations. The intervals

M(v) := [zv−1, zv] for v = 1, ..., g

are called snapshots (see Figure 1). Let M(1),M(2), . . . ,M(g), be the snapshots
defined by R. Note that snapshots M(1) and M(g) are empty. The number of
snapshots g is at most g ≤ 2kµ + 1.

Lemma 4 The number of different relative schedules for the large jobs is at
most (2ek)2kµ, where e is the Euler number.

Proof. The number of possible starting times for the operations of a large
job Jj is at most the number of subsets of size µ that can be chosen from a set
of (2kµ − 1) positions (there are 2µk − 1 choices for the starting times of each
operation of Jj). Since each large operation can end in the same snapshot in
which it starts, the number of ways of choosing the starting and ending times
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of the operations of a large job is at most the number of subsets of size 2µ that
can be chosen from a set of 2(2kµ − 1) positions (we consider two positions
associated with each snapshot, one to start and one to end an operation, but
both positions denote the same snapshot). For each large job Jj there are at
most

(
4µk−2

2µ

)
different choices of snapshots where operations of Jj can start

and end. Since
(
4µk−2

2µ

)
= (4µk−2)(4µk−3)...(4µk−2µ−1)

(2µ)! ≤ (4µk)2µ

(2µ/e)2µ = (2ek)2µ and

the number of large jobs is k, then there are at most (2ek)2kµ different relative
schedules.

2.5 Assigning Small and Medium Operations to Snapshots

By Lemma 4 the number of different relative schedules is bounded by a con-
stant. Our algorithm considers all relative schedules for the large jobs, one of
which must be equal to the relative schedule R∗ defined by some optimum so-
lution (σ∗, δ∗). We show that when relative schedule R∗ is used, we can find
in polynomial time a 1 + O(ε)-approximate solution for problem P1. Given
relative schedule R∗, to obtain a solution for problem P1 that respects R∗ we
must select the processing times for the large and small operations and we must
schedule the medium and small operations within the snapshots defined by R∗.
We use a linear program to compute the processing times and costs for the small
and large operations, and to decide the snapshots where the small and medium
operations must be placed. Then, we find a feasible schedule for the operations
in every snapshot.

Let us first describe the linear program. We use a variable x`
ij for each large

operation Oij ; this variable defines the processing time and cost of operation
Oij . For convenience we define another variable xu

ij with value 1 − x`
ij . The

processing time of operation Oij is then

x`
ij`ij + xu

ijuij ,

and its cost is
x`

ijc
`
ij + xu

ijc
u
ij .

Let αij be the snapshot where the large operation Oij starts processing in the
relative schedule R∗ and let βij be the snapshot where it finishes processing. Let
Free(R∗) be the set of (snapshot, machine) pairs such that no large operation
is scheduled by R∗ in snapshot M(`) on machine h. For every medium and
small job Jj , let Λj be the set of tuples of the form (s1, s2, . . . , sµ) such that
1 ≤ s1 ≤ s2 ≤ . . . ≤ sµ ≤ g, and (si,mij) ∈ Free(R∗), for all i = 1, . . . , µ. This
set Λj determines the free snapshots where it is possible to place the operations
of job Jj .

Let ∆ = {(δ1, δ2, . . . , δµ) | δk ∈ {0, 1} for all k = 1, . . . , µ}, be the set of all
µ-dimensional binary vectors. For each medium and small job Jj we define a
set of at most (2g)µ variables xj,(s,δ), where s ∈ Λj and δ ∈ ∆. These variables
will indicate the snapshots where small and medium jobs will be scheduled. To
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understand the meaning of these variables, let us define

xij(w, 1) =
∑

(s,δ)∈Λj×∆, si=w, δi=1

xj,(s,δ)

and
xij(w, 0) =

∑

(s,δ)∈Λj×∆, si=w, δi=0

xj,(s,δ),

for each operation i, job Jj , and snapshot M(w). Given a set of values for
the variables xj,(s,δ), they define the processing times for the jobs and they
also give an assignment of medium and small operations to snapshots: the
amount of time that an operation Oij is processed within snapshot M(w) is
xij(w, 1) · `ij + xij(w, 0) · uij , and the fraction of Oij that is assigned to this
snapshot is xij(w, 0) + xij(w, 1).

Example 1 Consider an instance with µ = 2 having a job Jj with the following
processing time functions:

O1j p
δ1j

1j = 0.5 · δ1j + (1− δ1j)
O2j p

δ2j

2j = 0.1 · δ2j + 0.5 · (1− δ2j)

Furthermore, assume that in some feasible solution p1j = 0.65 and p2j =
0.34, and operation O1j is placed on the third snapshot, while operation O2j

is in the seventh snapshot. By setting xj,((3,7),(0,0)) = 0.3, xj,((3,7),(0,1)) = 0,
xj,((3,7),(1,0)) = 0.3 and xj,((3,7),(1,1)) = 0.4, we see that p1j = (xj,((3,7),(0,0)) +
xj,((3,7),(0,1)))+(xj,((3,7),(1,0))+xj,((3,7),(1,1)))×0.5 = 0.65, and p2j = (xj,((3,7),(0,0))+
xj,((3,7),(1,0)))× 0.5 + (xj,((3,7),(0,1)) + xj,((3,7),(1,1)))× 0.1 = 0.34.

For each snapshot M(`) we use a variable t` to denote its length. For any
(`, h) ∈ Free(R∗), we define the load L`,h on machine h in snapshot M(`) as
the total processing time of the small and medium operations that are assigned
to h in M(`), i.e.,

L`,h =
∑

Jj∈S∪M

µ∑
i=1

mij=h

(xij(`, 1)`ij + xij(`, 0)uij) . (1)

The total cost of a schedule is given by

C =
∑

Jj∈S∪M

g∑

`=1

µ∑

i=1

(
xij(`, 1)c`

ij + xij(`, 0)cu
ij

)
+

∑

Jj∈L

µ∑

i=1

(x`
ijc

`
ij + xu

ijc
u
ij).

We use the following linear program LP (R∗) to determine processing times and
costs of large and small operations, and to allocate small and medium operations
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to snapshots.

min T =
∑g

`=1 t`
s.t. C ≤ 1, (c1)∑βij

`=αij
t` = x`

ij`ij + xu
ijuij , Jj ∈ L, i = 1, . . . , µ, (c2)

x`
ij + xu

ij = 1, Jj ∈ L, i = 1, . . . , µ, (c3)∑
(s,δ)∈Λj×∆ xj,(s,δ) = 1, Jj ∈ S ∪M, (c4)

L`,h ≤ t`, (`, h) ∈ Free(R∗), (c5)
x`

ij , x
u
ij ≥ 0, Jj ∈ L, i = 1, . . . , µ, (c6)

xj,(s,δ) ≥ 0, Jj ∈ S ∪M, (s, δ) ∈ Λj ×∆, (c7)
t` ≥ 0, ` = 1, . . . , g. (c8)

In this linear program the value of the objective function T is the length of the
schedule, which we want to minimize. Constraint (c1) ensures that the total cost
of the solution is at most one. Condition (c2) requires that the total length of the
snapshots where a large operation is scheduled is exactly equal to the length of
the operation. Constraint (c4) assures that every small and medium operation
is completely assigned to snapshots, while constraint (c5) checks that the total
load of every machine h during each snapshot ` does not exceed the length of the
snapshot. Let (σ∗, δ∗) denote an optimal schedule where the processing times
and costs of medium jobs are fixed as described in the previous section.

Lemma 5 The optimal solution of LP (R∗) has value no larger than the makespan
of (σ∗, δ∗).

Proof. We only need to show that (σ∗, δ∗) defines a feasible solution for

LP (R∗). For any operation Oij , let p
δ∗ij

ij (w) be the amount of time that Oij is
processed during snapshot M(w) in the optimum schedule (σ∗, δ∗). We deter-
mine now the values for the variables t∗` , x

`∗
ij , xu∗

ij , and x∗j,(s,δ) defined by (σ∗, δ∗).
Set x`∗

ij = δ∗ij and xu∗
ij = 1− δ∗ij for all large operations Oij . The values for the

variables t∗` can be easily obtained from the snapshots defined by the large
operations. Let

x∗ij(w, 1) = δ∗ij
p

δ∗ij

ij (w)

p
δ∗ij

ij

and

x∗ij(w, 0) = (1− δ∗ij)
p

δ∗ij

ij (w)

p
δ∗ij

ij

.

The processing time p
δ∗ij

ij (w) and cost c
δ∗ij

ij (w) of Oij can be written as x∗ij(w, 1)`ij+
x∗ij(w, 0)uij and x∗ij(w, 1)c`

ij +x∗ij(w, 0)cu
ij , respectively. Now we show that there

is a feasible solution x∗j,(s,δ) for LP (R∗) such that

(i) x∗ij(w, 1) =
∑

(s,δ)∈Λj×∆, si=w, δi=1 x∗j,(s,δ), and
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(ii) x∗ij(w, 0) =
∑

(s,δ)∈Λj×∆, si=w, δi=0 x∗j,(s,δ).

Therefore, for this solution, p
δ∗ij

ij (w) and c
δ∗ij

ij (w) are linear combinations of the
variables x∗j,(s,δ). We determine the values for the variables x∗j,(s,δ) as follows.

1. For each job Jj ∈ S ∪M do

2. (a) Compute Sj = {(i, w, d) | x∗ij(w, d) > 0, i = 1, . . . , µ, w = 1, . . . , g, d =
0, 1}.

3. (a) If Sj = ∅ then exit.

4. (a) Let f = min {x∗ij(w, d) | (i, w, d) ∈ Sj} and let I, W , and D be such
that x∗Ij(W,D) = f .

5. (a) Let s = (s1, s2, . . . , sµ) ∈ Λj and δ = (d1, d2, . . . , dµ) ∈ ∆ be such
that sI = W , dI = D and x∗ij(si, di) > 0, for all i = 1, . . . , µ.

6. (a) x∗j,(s,δ) ← f

7. (a) x∗ij(si, di) ← x∗ij(si, di)− f for all i = 1, 2, . . . , µ.

8. (a) Go back to step 2.

With this assignment of values to the variables x∗j,(s,δ), equations (i) and (ii)
above hold for all jobs Jj ∈ S ∪M, all operations, and all snapshots w. There-
fore, the above solution for LP (R∗) schedules the jobs in the same positions
and with the same processing times as the optimum schedule (σ∗, δ∗).

2.6 Finding a Feasible Schedule

The linear program LP (R∗) has at most 1 + µk + n− k + mg constraints. By
condition (c3) each one of the µk large operations Oij must have at least one of
its variables x`

ij or xu
ij set to a positive value. By condition (c4) every one of the

n − k small and medium jobs Jj must have at least one of its variables xj,(s,δ)

set to a positive value. Furthermore, there has to be at least one snapshot `
for which t` > 0. Since in any basic feasible solution of LP (R∗) the number
of variables that receive positive values is at most equal to the number of rows
of the constraint matrix, then in a basic feasible solution there are at most mg
variables with fractional values.

This means that in the schedule defined by a basic feasible solution of
LP (R∗) at most mg medium and small jobs receive fractional assignments,
and therefore, there are at most that many jobs from M∪S for which at least
one operation is split into two or more different snapshots. Let F be the set of
jobs that received fractional assignments. We show later how to schedule those
jobs. For the moment, let us remove them from our solution.

Even without fractional assignments, the solution for the linear program
might still not define a feasible schedule because there may be ordering conflicts
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among the small and medium operations assigned to the same snapshot. To
eliminate these conflicts, we first remove the set V ⊆M∪ S of jobs which have
at least one operation with processing time larger than ε/(µ3m2g). Since the
sum of the processing times of the jobs as defined by the solution of the linear
program is at most m, then |V| ≤ µ3m3g/ε, so in this step we remove only a
constant number of jobs.

Let O(`) be the set of operations from M∪S that remain in snapshot M(`).
Let pmax(`) be the maximum processing time among the operations in O(`).
Note that pmax(`) ≤ ε/(µ3m2g). Every snapshot M(`) defines an instance of
the classical job shop scheduling problem, since the solution of LP (R∗) deter-
mines the processing time of every operation. Hence, we can use Sevastianov’s
algorithm [18] to find in O(n2µ2m2) time a feasible schedule for the operations
in O(`); this schedule has length at most t̄` = t` +µ3mpmax(`). Hence, we must
increase the length of every snapshot M(`) to t̄` to accommodate the schedule
produced by Sevastianov’s algorithm. Summing up all these snapshot enlarge-
ments, we get a solution of length at most T ∗+µ3mpmax(`)g ≤ T ∗(1+ε), where
T ∗ is the value of an optimum solution for LP (R∗).

It remains to show how to schedule the set of jobs V ∪ F that we removed.
Recall that the value for parameter q is q = 6µ4m3/ε. since, as we showed in
Section 2.4 g ≤ 2kµ + 1, then the number of jobs in V ∪ F is

|V ∪ F| ≤ µ3m3g/ε + mg ≤ qk. (2)

Lemma 6 Consider an optimum solution (σ∗, δ∗) for problem P1. Let P ∗j =
∑µ

i=1 p
δ∗ij

ij denote the length of job Jj according to δ∗. There exists a positive
constant k such that if the set of large jobs contains the k jobs Jj with the largest
P ∗j value, then

∑
Jj∈V∪F P ∗j ≤ ε/m.

Proof. Sort the jobs Jj non-increasingly by P ∗j value, and assume for con-
venience that P ∗1 ≥ P ∗2 ≥ ... ≥ P ∗n . Partition the jobs into groups G1, G2, ..., Gd

as follows: Gi = {J(1+q)i−1+1, ..., J(1+q)i}. Let P (Gj) =
∑

Ji∈Gj
P ∗j and let

Gρ+1 be the first group for which P (Gρ+1) ≤ ε/m. Since
∑

Jj∈J P ∗j ≤ m and
∑ρ

i=1 P (Gi) > ρε/m then ρ < m2

ε . Choose L to contain all jobs in groups G1

to Gρ, and so k = (1 + q)ρ. Note that Gρ+1 has (1 + q)ρ+1− (1 + q)ρ = qk jobs.
Since |V ∪ F| ≤ qk, then |Gρ+1| = qk ≥ |V ∪ F| and, so,

∑

Jj∈V∪F
P ∗j ≤

∑

Jj∈Gρ

P ∗j ≤ ε/m.

We select the set of large jobs by considering all subsets of k jobs, for all
integer values k of the form (1 + q)ρ and 0 ≤ ρ ≤ m2/ε. For each choice of k
the set of medium jobs is obtained by considering all possible subsets of qk jobs.
Since there is only a polynomial number of choices for large and medium jobs,
the algorithm runs in polynomial time.
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The processing time of every small operation Oij in V ∪ F , is set to pij = uij ,
and its cost is cij = cu

ij . Furthermore, recall that we are assuming that each
medium operation Oij is processed in time pij = p̄ij and cost cij = c̄ij (see
Section 2.1). Note that we have, thus, determined the processing time and cost
for each operation Oij of the jobs in V ∪ F . Let Pj =

∑µ
i=1 pij . Then

∑

Jj∈V∪F
Pj =

∑

Jj∈M∩(V∪F)

Pj +
∑

Jj∈S∩(V∪F)

Pj .

By Lemma 2 and inequality (2),
∑

Jj∈S∩(V∪F)

Pj ≤ qkµε

qkµm
=

ε

m
.

By the arguments in Section 2.1, p̄ij ≤ max{ p
δ∗ij

ij (1 + ε), ε/(m|M|µ) } and,
therefore,

∑

Jj∈M∩(V∪F)

Pj ≤
∑

Jj∈M∩(V∪F)

P ∗j (1 + ε) +
ε

m

≤ ε

m
(2 + ε),

by Lemma 6. Therefore, we can schedule the jobs from V ∪ F one after the
other at the end of the schedule without increasing too much the length of the
schedule.

Theorem 7 For any fixed m and µ, there exists a polynomial-time approxima-
tion scheme for problem P1.

3 Preemptive Problem P1 with Continuous Pro-
cessing Times

In this section we consider problem P1 when preemptions are allowed. Recall
that in the preemptive problem any operation may be interrupted and resumed
later without penalty. The preemptive version of problem P1 is NP-complete
in the strong sense, since the special case of preemptive flow shop with three
machines and fixed processing times is strongly NP-complete [8]. We show that
our approximation scheme for the non-preemptive version of problem P1 can
be extended to the preemptive P1 problem. The approach is similar to the
non-preemptive case, but we have to handle carefully the set of large jobs L to
ensure that we find a feasible solution of value “close” to the optimal.

3.1 Selection of Processing Times and Costs for Large
Jobs

As in the non-preemptive case we divide the set of jobs J into large, medium
and small jobs, denoted as L, M and S, respectively. Sets L and M have a
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constant number of jobs. Again, let k denote the number of large jobs. We
begin by transforming the given instance into a more structured one in which
every large job can only have a constant number of distinct processing times.
We prove that by using this restricted set of choices it is still possible to get
a solution with cost not larger than 1 and makespan within a factor 1 + O(ε)
of the optimal value. The restricted selection of processing times is done as
follows.

1. Let V be the following set of values
{

ε

mkµ
,

ε

mkµ
(1 + ε),

ε

mkµ
(1 + ε)2, ...,

ε

mkµ
(1 + ε)b−2, 1

}
,

where b is the smallest integer such that ε
mkµ (1 + ε)b−1 ≥ 1.

2. For each operation Oij of a large job Jj consider as its possible processing
times the set Vij of values from V that fall in the interval [`ij , uij ].

This selection of restricted processing times is motivated by the following
lemma.

Lemma 8 By using the restricted set V of processing times, the following holds:

• There are O(1
ε log mkµ

ε ) different processing times for each operation of a
large job.

• By using the restricted set of processing times, there is a solution with cost
at most 1 and makespan within a factor 1 + 2ε of the optimum.

Proof. Let b the cardinality of set V , then ε
mkµ (1 + ε)b−2 < 1 and ε

mkµ (1 +
ε)b−1 ≥ 1. Therefore

b− 2 <
log2

mkµ
ε

log2(1 + ε)

≤ 1
ε

log2

mkµ

ε
,

for every ε ≤ 1. By using similar ideas as in the proof of Lemma 3 we can
prove that our transformation may potentially increase the makespan value by
a factor of 1+2ε, while the corresponding cost does not increase. Note that the
proof of Lemma 3 does not rely on the fact that the jobs cannot be preempted.

The above lemma allows us to work with instances with a constant number
of distinct processing times and costs for the large jobs. Since there are kµ large
operations and each can take O( 1

ε log mkµ
ε ) distinct processing times and costs,

the number of possible choices is bounded by (kµ)O( 1
ε log kmµ

ε ). Note that for each
distinct processing time from the restricted set, there is an associated cost that
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can be computed by using the linear relationship between costs and processing
times. Our algorithm considers all possible selections (from the restricted set)
of processing times and costs for large jobs. By Lemma 8 at least one of them
corresponds to a near optimal solution, i.e. a solution with cost at most 1
and makespan within 1 + 2ε times the optimal makespan. In the following we
assume, without loss of generality, that the processing times and costs of large
operations are chosen according to this near optimal solution. We denote these
processing times and costs of large operations Oij by pij and cij , respectively.

3.2 Computing a Partial Schedule

Consider any given preemptive schedule for the jobs J . Look at the time at
which any operation from a large job starts or ends. These times define a set of
time intervals. Again, we call these time intervals snapshots. Observe that the
number of snapshots g is still bounded by g ≤ 2kµ + 1. Since L has a constant
number of jobs (and, hence, there is a constant number of snapshots), we can
consider all relative orderings of the large jobs in the snapshots. For each relative
schedule R = (M(1), . . . ,M(g)) of L, we formulate a linear program LP ′(R) as
described below.

Let αij be the snapshot where the large operation Oij starts processing in
the relative schedule R and let βij be the snapshot where it finishes processing.
An operation Oij of a large job is scheduled in consecutive snapshots αij , αij +
1, . . . , βij , but only a fraction (possible equal to zero) of the operation might be
scheduled in any one of these snapshots. However, in every snapshot there is at
most one operation from any given large job. For each job Jj ∈ L we use a set of
decision variables xj,(i1,...,iµ) ∈ [0, 1] for those tuples (i1, . . . , iµ) corresponding
to snapshots where the operations of Jj might be scheduled, as described above.
More precisely, for each job Jj ∈ L we consider tuples (i1, . . . , iµ) ∈ Aj , where

Aj = {(i1, . . . , iµ)|αwj ≤ iw ≤ βwj and 1 ≤ w ≤ µ}.
The meaning of these variables is that xj,(i1,...,iµ) = 1 if and only if each op-
eration Owj of job Jj is scheduled in snapshot iw for each w = 1, ..., µ. Note
that any tuple (i1, . . . , iµ) ∈ Aj represents a valid ordering for the operations of
job Jj . These variables xj,(i1,...,iµ) indicate which fraction of each operation is
scheduled in every snapshot. Let the total load Ltotal

`,h on machine h in snapshot
M(`) be defined as the total processing time of operations that are executed by
machine h during snapshot `. This value Ltotal

`,h is defined as the sum of the load
L`,h due to medium and small operations (see Equation (1) in Section 2.5) plus
the contribution Llarge

`,h of large operations, i.e.,

Llarge
`,h =

∑

Jj∈L

∑

(i1,...,iµ)∈Aj

∑

k=1,...,µ,ik=`,mkj=h

xj,(i1,...,iµ)pkj .

The total cost is defined as in the non-preemptive case, with the difference that
the contribution of the large jobs is now equal to

∑
Jj∈L

∑µ
i=1 cij . The new

17



linear program LP ′(R) is the following.

min T =
∑g

`=1 t`
s.t. C ≤ 1, (c1’)∑

(i1,...,iµ)∈Aj
xj,(i1,...,iµ) = 1 Jj ∈ L (c2’)∑

(s,δ)∈Λj×∆ xj,(s,δ) = 1, Jj ∈ S ∪M, (c3’)
Ltotal

`,h ≤ t`, 1 ≤ ` ≤ g, 1 ≤ h ≤ m, (c4’)
xj,(i1,...,iµ) ≥ 0, Jj ∈ L, and (i1, . . . , iµ) ∈ Aj , (c5’)
xj,(s,δ) ≥ 0, Jj ∈ S ∪M, (s, δ) ∈ Λj ×∆, (c6’)
t` ≥ 0, ` = 1, . . . , g. (c7’)

where Λj and ∆ are as in the non-preemptive case. Linear program LP ′(R)
has at most 1 + n + mg constraints. By conditions (c2’) and (c3’) every job
Jj must have at least one of its variables (xj,(s,δ) for medium and small and
xj,(i1,...,iµ) for large jobs) set to a positive value. Furthermore, there is at least
one snapshot ` for which t` > 0. Since in any basic feasible solution of LP ′(R)
the number of variables that receive positive values is at most the number of
rows of the constraint matrix, then in a basic feasible solution there are at most
mg variables with fractional values. Note that in any solution of this linear
program the schedule for the large jobs is always feasible, since there is at most
one operation of a given job in any snapshot. However, this schedule might not
be feasible because of possible ordering conflicts among the small and medium
operations assigned to a snapshot.

3.3 Computing a Feasible Solution

We find a feasible schedule for every snapshot as follows. Let us consider a
snapshot M(`).

1. Remove from the snapshot the operations belonging to large jobs. These
operations will be reintroduced to the schedule later.

2. Use Sevastianov’s algorithm to find a feasible schedule for the (fractions
of) small jobs in the snapshot.

3. Put back the operations from the large jobs, scheduling them in the empty
gaps left by the medium and small jobs. Note that it might be necessary
to split an operation of a large job in order to make it fit in the empty
gaps. At the end we have a feasible schedule because there is at most one
operation of each large job in the snapshot.

Finally we observe that the computed solution has at most mg + nµ + mg
preemptions. The first mg preemptions come from the basic feasible solution
of the linear program and the remaining nµ + mg preemptions are created by
introducing the operations of the large jobs in the gaps left by the medium and
small jobs. Hence, our solution has O(n) preemptions. Choosing the size of L
as we did for the non-preemptive case we ensure that the length of the schedule
is at most 1 + O(ε) times the length of an optimum schedule.
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Theorem 9 For any fixed m, µ, and ε > 0, there exists a polynomial-time
approximation scheme for the preemptive version of problem P1, that produces
a solution with at most O(n) preemptions.

4 Problem P2 with Continuous Processing Times

Problem P2 requires the computation of a solution with minimum cost and
makespan at most τ . Note that for some values of τ problem P2 might not
have a solution, and furthermore, deciding whether there is a solution with
makespan at most τ is NP-complete. Therefore, the best that we can expect,
unless P=NP, is to find a solution with cost at most the optimal cost and
makespan not greater than τ(1 + ε). Given a value τ ≥ 0, let (σ∗, δ∗) be an
optimum solution for problem P2, if such a solution exists. For any value ε > 0,
we present an algorithm that either finds a schedule for J of length at most
(1+3ε)τ and cost at most C(δ∗), or it decides that a schedule of length at most
τ does not exist.

We embed the PTAS for problem P1 described in the previous section,
within a binary search procedure as follows. Let C` =

∑n
j=1

∑µ
i=1 c`

ij and
Cu =

∑n
j=1

∑µ
i=1 cu

ij . Clearly, the value of the optimum solution for problem P2
lies in the interval [Cu, C`]. Let ρ = min{c`

ij − cu
ij | i = 1, . . . , n, j = 1, . . . , µ}.

Divide the interval [Cu, C`] into sub-intervals of size ρε. The number of sub-
intervals is N = d(C` − Cu)/(ρε)e. We use UB := C` and LB := Cu as initial
upper and lower bounds for the binary search. In each iteration the algorithm
performs the following steps:

a) Use the PTAS for problem P1 with cost bound κ = LB + dN/2eρε to
find a schedule of length Tκ at most 1 + ε times the optimum length of a
schedule with this cost κ;

b) If Tκ ≤ (1+ ε)τ then update the upper bound UB to κ, otherwise update
the lower bound LB to κ.

1. Set N = d(UB − LB)/(ρε)e.

The algorithm terminates when LB = UB, and outputs LB − ρε if TLB ≤
(1 + ε)τ , otherwise the algorithm reports that there is no schedule of length at
most τ . We note that if at the end the algorithm does not find a schedule of
length at most (1+ ε)τ it is because even with the smallest processing times for
all the jobs no schedule of length at most τ exists. On the other hand, every
time that the lower bound is updated, the algorithm finds a schedule of length
at most (1 + ε)τ . At the end, the algorithm finds a value LB for which the
PTAS for problem P1 finds a schedule of length TLB ≤ (1 + ε)τ . The optimal
cost C(δ∗) could be smaller than LB, but it is larger than LB − ρε. Hence,
this latter value is the one that the algorithm outputs. Observe that for cost
κ = LB − ρε, the length of an optimum schedule is at most (1 + ε)τ and, thus,
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our PTAS finds a solution of length at most (1 + ε)2τ ≤ (1 + 3ε)τ , for ε < 1.
The number of iterations that we need to perform in the binary search is at
most log2((C` − Cu)/(ρε)), which is polynomial in the binary encoding of the
input size.

Theorem 10 There is a PTAS for problem P2 which finds a solution with
minimum cost and makespan at most (1 + 3ε)τ , for any value ε > 0, if a
solution with makespan at most τ exists.

The preemptive version of problem P2 can be solved by using the same
algorithm that we described above.

Theorem 11 There is a PTAS for the preemptive version of problem P2 which
computes a solution with minimum cost and makespan at most (1 + 3ε)τ , for
any value ε > 0, if a solution with makespan at most τ exists.

4.1 A Fast Approximation Algorithm for Problem P2

In this section we show how to compute a solution for problem P2 with minimum
cost and makespan at most mτ . This algorithm has worst performance ratio
than the one that we have just described, but its running time is only O(n), and
the constant factor hidden in the order notation is fairly small. In Section 2, we
described a linear program which computes job processing times and costs such
that the sum of processing times is minimized and the total cost is at most κ.
Similarly, we can formulate a linear program which determines job processing
times by defining the vector (δij) which minimizes the total cost while keeping
the sum of processing times to at most τm. By scheduling the jobs one after
another, in any given order, and with processing times according to (δij), we get
a solution with minimum cost and makespan at most mτ . The linear program
is the following.

min
∑n

j=1

∑µ
i=1 δij(c`

ij − cu
ij) +

∑n
j=1

∑µ
i=1 cu

ij

s.t.
∑n

j=1

∑µ
i=1 δij(uij − `ij) ≤

∑n
j=1

∑µ
i=1 uij − τm.

0 ≤ δij ≤ 1 j = 1, ..., n and
i = 1, ..., µ.

This linear program is a relaxation of the classical knapsack problem in min-
imization form. The minimization form of the problem can easily be trans-
formed into an equivalent maximization form and solved as described in Section
2.1. Therefore, for problem P2 we can find a solution with minimum cost and
makespan at most mτ in O(n) time.

5 Problem P3 with Continuous Processing Times

Problem P3 is to compute a schedule that minimizes T + αC, where T is the
makespan, C is the total cost of the schedule, and α > 0 is a given parameter.
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Using modified cost values c
δij

ij := αc
δij

ij , we can restrict the problem to the case
α = 1, without loss of generality. Our PTAS for problem P1 can be modified
to work also for P3. It is enough to give the following observations. For each
operation Oij , let

dij = min 0≤δij≤1{pδij

ij + c
δij

ij } = min{`ij + c`
ij , uij + cu

ij}.

For every job Jj let dj =
∑µ

i=1 dij . We partition the set of jobs into large L
and small S jobs. So, this time there is no set of medium jobs, and sets L and
S can be computed in linear time. The set L of large jobs includes the k jobs
with largest value dj , where k is a constant chosen as in Lemma 6 to ensure
that

∑
Ji∈L di ≤ ε/m, and it is computed similarly as described for problem

P1. Let T ∗+C∗ be the optimum objective function value. It is easy to see that
T ∗ + C∗ ≤ D, where D =

∑
j dj . Furthermore, T ∗ + C∗ ≥ D/m since

T ∗ + C∗ ≥ 1
m

∑

ij

[
δ∗ij`ij + (1− δ∗ij)uij

]
+

∑

ij

[
δ∗ijc

`
ij + (1− δ∗)cu

ij

]

≥ 1
m

∑

ij

[
δ∗ij(`ij + c`

ij) + (1− δ∗ij)(uij + cu
ij)

]

≥ 1
m

∑

ij

[
δ∗ijdij + (1− δ∗ij)dij

]
=

D

m
.

By dividing all execution times and costs by D, we may assume that D = 1 and

1
m
≤ T ∗ + C∗ ≤ 1.

The linear program LP (R) has to be modified as follows. The objective function
is changed to min

∑g
`=1 t` + C and we eliminate constraint (c1). Again, the

number of fractional values can be bounded by a constant and the algorithm
is as before. We observe that the most time consuming part of this approach
is solving the linear program. However, since we want to get an approximate
solution, it is not necessary to find an optimum solution for the modified linear
program, an approximate solution would be enough. To speed up our algorithm
to run in linear time we can use the ideas described in Section 6.

6 Problem P3 with Discrete Processing Times

For the case of discretely controllable processing times, the possible processing
times and costs of an operation Oij are specified by a discrete set ∆ij of values

∆ij =
{
δ1, δ2, . . . , δw(i,j)

}
,

where 0 ≤ δ` ≤ 1 for all ` = 1, 2, . . . , w(i, j). When the processing time of
operation Oij is pδk

ij = δk`ij + (1 − δk)uij , the cost is equal to cδk
ij = δkc`

ij +
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(1− δk)cu
ij . For each operation Oij , let dij = min δij∈∆ij{pδij

ij + c
δij

ij }. For every
job Jj let dj =

∑µ
i=1 dij , and let D =

∑
j dj . We partition the set of jobs into

large L and small S jobs, where the set L includes the k jobs with the largest dj

values, and k is a constant computed as in Lemma 6 so that the set T containing
the qk jobs with the next largest dj values has

∑
Jj∈T dj ≤ ε/m. The set of

large jobs can be computed in O(nµ|∆max|) time, where |∆max| = maxij |∆ij |.
By multiplying all c

δij

ij values by the parameter α, we can assume without loss
of generality that the objective function for problem P3 is: minT (σ, δ) + C(δ).

Let p
δ∗ij

ij and c
δ∗ij

ij be the processing time and cost of operation Oij in an optimal
solution. Let F ∗ be the value of an optimal solution for P3. It is easy to see
that F ∗ ≤ D and

F ∗ ≥ 1
m

∑

ij

p
δ∗ij

ij +
∑

ij

c
δ∗ij

ij ≥ D

m
.

By dividing all execution times and costs by D, we may assume that D = 1 and

1
m
≤ F ∗ ≤ 1. (3)

The following lemma shows that with 1 + 2ε loss we can reduce to O(log n) the
number of different costs and processing times for each operation.

Lemma 12 With 1 + 2ε loss, we assume that |∆ij | = O(log n) for every oper-
ation Oij.

Proof. To prove this claim, divide the interval [0, 1] into b subintervals as
follows,

I1 = [0,
ε

µnm
], I2 = (

ε

µnm
,

ε

µnm
(1 + ε)], ..., Ib = (

ε

µnm
(1 + ε)b−1, 1],

where b is the largest integer such that ε
µnm (1+ε)b−1 < 1. Clearly b = O(log n).

We say that d is a choice for operation Oij if d ∈ ∆ij . For each operation Oij ,
partition the set of choices ∆ij into b groups g1, g2, ..., gb, such that d ∈ ∆ij

belongs to group gh iff cd
ij falls in interval Ih, h ∈ {1, ..., b}. For each group

take the choice (if any) with the lowest processing time and delete the others.
The new set of choices has at most O(min {|∆ij |, log n}) elements and by using
arguments similar to those used in the proof of Lemma 3 we can prove that with
this transformation the cost of an optimum solution can be at most 1+2ε times
the optimum value for the original problem. The transformed instance can be
computed in O(nµ|∆max|) time.

By using arguments similar to those in Lemma 12 we can obtain, with 1+2ε
loss, a new instance with O(log k) different costs and processing times for each
large operation. Since there is a constant number of large operations, there is
only a constant number of possible assignments of costs and processing times
for them. By trying all possible assignments of cost and processing times, we
can find for each large operation Oij a processing time p̄ij and cost c̄ij such that
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p̄ij ≤ max{ p
δ∗ij

ij (1+ε), ε/(mkµ) } and c̄ij ≤ c
δ∗ij

ij . Let us use the same definition of
relative schedule given for the continuous case. Let R denote a relative schedule
that respects the ordering of the large operations in some optimal schedule.

For each small job Jj we define a set of at most O((g log n)µ) variables xj,(s,δ),
where s ∈ Λj and δ ∈ ∆j = {(δ1j , δ2j , . . . , δµj) | δij ∈ ∆ij for all i = 1, . . . , µ}.
As in the continuous case for problem P3, we define a linear program LP ′′(R)
to compute the processing times and snapshots for the small jobs. LP ′′(R) is
obtained from the linear program LP (R) of Section 2 by deleting constraints
(c1), (c3), and (c6), and making the following additional changes. Variable
xj,(s,δ) takes value 0 ≤ f ≤ 1 to indicate that a fraction f of operation Oij ,
i = 1, . . . , µ is scheduled in snapshot si with processing time pδi

ij . Let C be the
cost function, i.e.,

C =
∑

Jj∈S

∑

(s,δ)∈Λj×∆

µ∑

i=1

xj,(s,δ)c
δk
ij +

∑

Jj∈L

µ∑

i=1

c̄ij .

The objective function is now to minimize
∑g

`=1 t` + C. Constraint (c2) is
replaced with

βij∑

`=αij

t` = p̄ij , for all Jj ∈ L, i = 1, . . . , µ.

As in Lemma 5, we can prove that an optimum solution of problem P3 is a
feasible solution for LP ′′(R). The rest of the algorithm is as that described in
Section 2.6. By using interior point methods to solve the linear program, we
get a total running time for the above algorithm that is polynomial in the input
size [1]. It is easy to check that similar results can be obtained if, instead of
finding the optimum solution for the linear program, we solve it with a given
accuracy ε > 0. In the next section we show that we can solve approximately
the linear program in O(n|∆max|) time. Therefore, for every fixed m, µ and ε,
all computations (including Sevastianov’s algorithm [18]) can be carried out in
time O(n|∆max|+n min{log n, |∆max|}·f(ε, µ,m)), where f(ε, µ, m) is a function
that depends on ε, µ and m. This running time is linear in the size of the input.

Theorem 13 For any fixed m and µ, there exists a linear time approximation
scheme for P3 with discretely controllable processing times.

6.1 Approximate Solution of the Linear Program

In this section we show how to find efficiently a solution for LP ′′(R) of value
no more than 1+O(ε) times the value of the optimum solution for problem P3.
To find an approximate solution for the linear program we first rewrite it as a
convex block-angular resource-sharing problem, and then use the algorithm of
[9] to solve it with a given accuracy. A convex block-angular resource sharing
problem has the form:
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λ∗ = min



λ

∣∣∣∣∣∣

K∑

j=1

f j
i (xj) ≤ λ, for all i = 1, . . . , N, and xj ∈ Bj , j = 1, . . . , K



 ,

where f j
i : Bj → R+ are N nonnegative continuous convex functions, and

Bj are disjoint convex compact nonempty sets called blocks. The algorithm
in [9] finds a (1 + ρ)-approximate solution for this problem for any ρ > 0 in
O(N(ρ−2 ln ρ−1 + ln N)(N ln ln(N/ρ) + KF )) time, where F is the time needed
to find a ρ-approximate solution to the problem:

min

{
N∑

i=1

pif
j
i (xj)

∣∣xj ∈ Bj

}
,

for some vector (p1, . . . , pN ) ∈ RN . We can write LP ′′(R) as a convex block-
angular resource sharing problem as follows. First we compute an estimate V
for the value of an optimum solution of problem P3, and add the constraint

g∑

`=1

t` + C + 1− V ≤ λ,

to the linear program, where λ is a nonnegative value. Since 1/m ≤ V ≤ 1, we
can use binary search on the interval [1/m, 1] to guess V with a given accuracy
ε > 0. This search can be completed in O(log( 1

ε log m)) iterations by doing the
binary search over the values:

1
m

(1 + ε),
1
m

(1 + ε)2, ...,
1
m

(1 + ε)b, 1,

where b is the largest integer for which 1
m (1 + ε)b < 1. We replace constraint

(c5) of LP ′′(R) by

(5’) L`,h + 1− t` ≤ λ, for all (`, h) ∈ Free(R)

where Free(R) is as defined in Section 2.5 and

L`,h =
∑

Jj∈S

∑

(s,δ)∈Σj×∆

µ∑
q=1

sq=`,mqj=h

xj,(s,δ)p
δq

qj .

This new linear program, that we denote as LP ′′(R, V, λ), has the above block-
angular structure. To see this, let us define the blocks Bj and convex functions
f j

i . The blocks Bj are the sets {xj,(s,δ) | (s, δ) ∈ Σj ×∆, and constraints (c4)
and (c8) hold}, for every small job Jj . Note that these blocks are (g|∆max|)µ-
dimensional simplicies. The block B0 = {< t1, t2, .., tg >|constraints (c2) and
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(c9) hold} has constant dimension. Let f`,h = L`,h + 1− t`. Since t` ≤ V ≤ 1,
these functions are nonnegative. For every small job Jj , let

f j
0 (xj) =

∑

(s,δ)∈Λj×∆

µ∑

i=1

xj,(s,δ)c
δi
ij .

For every (`, h) ∈ Free(R), let

f j
`h(xj) =

∑

(s,δ)∈Λj×∆

µ∑
q=1

sq=`,mqj=h

xj,(s,δ)p
δq

qj .

For every x0 ∈ B0 let

f0
0 (x0) =

∑

Jj∈L

µ∑

i=1

cij +
g∑

`=1

t` + 1− V,

and for every (`, h) ∈ Free(R), let

f0
`h(x0) = 1− t`.

All these functions are convex and nonnegative. Now, we can define LP ′′(R, V, λ):
minimize the value λ such that

∑
Jj∈S f j

0 (xj) + f0
0 (x0) ≤ λ, for all xk ∈ Bk,

∑
Jj∈S f j

`h(xj) + f0
`h(x0) ≤ λ, for all (`, h) ∈ Free(R) and xk ∈ Bk.

Using the algorithm in [9], a 1+ρ, ρ > 0 approximation for this problem can be
obtained by solving on each block Bj a constant number of block optimization
problems of the form:

min{pT f j(x) | x ∈ Bj},
where p is a (g|∆max|+1)-dimensional positive price vector, and f j is a (g|∆max|+
1)-dimensional vector whose components are the functions f j

0 , f j
`h. Note that B0

has constant dimension, and thus, the corresponding block optimization prob-
lem can be solved in constant time. But, the blocks Bj for Jj ∈ S do not have
a constant dimension. To solve the block optimization problem on these blocks
we must find a snapshot where to place each operation of a small job Jj and
determine its processing time, so that the total cost plus processing time of all
operations times the price vector is minimized. To choose the snapshots, we
select for each operation the snapshot in which the corresponding component
of the price vector is minimum. Then, we select for each Oij the value δij that
minimizes its cost plus processing time. This can be done in O(|∆max|) time for
each block, so the algorithm of [9] finds a feasible solution for LP ′′(R, V, 1+ρ) in
O(nw) time. Linear program LP ′′(R, V, 1+ρ) increases the length of each snap-
shot by ρ, and, therefore, the total length of the solution is V +gρ ≤ (1+2ε)V ∗,
for ρ = ε

mg , where V ∗ is the optimal solution value.

25



6.1.1 Bounding the Number of Fractional Assignments

There is a problem with this method: we cannot guarantee that the solution
found by the algorithm is basic feasible. Hence, it might have a large number of
fractional assignments. In the following we show that the number of fractional
assignments is O(n). Since the number of fractional assignments is O(n), using
the rounding technique described in [11], we can obtain in linear time a new
feasible solution with only a constant number of fractional assignments. The
algorithm in [9] works by choosing a starting solution x0 ∈ Bj and then it
repeats the following three steps for at most O(mg log(mg)) times:

Step 1 (Compute prices). Use a deterministic or randomized procedure to
compute a price vector p.

Step 2 (Block optimization). Use a block solver to compute an optimal so-
lution of each block problem.

Step 3 (New iterate). Replace the current approximate solution by a convex
combination of the previous solutions kept on record.

By starting from a solution x0 in which every vector xj
0 ∈ Bj , j 6= 0, is

integer, we get at the end at most O(n · mg log(mg)) fractional assignments.
To achieve the promised running time we additionally need that λ(x0) ≤ cλ∗

[9], where c is a constant and λ(x0) is the value of λ corresponding to x0. This
is accomplished as follows. For convenience, let us rename the jobs so that
J1, ..., Jn̄ are the small jobs, where n̄ = n− k. Choose the processing time p

δij

ij

and cost c
δij

ij for every small operation Oij so that dij = p
δij

ij + c
δij

ij . Put the

small jobs one after another in the last snapshot. Set tg =
∑

Jj∈S
∑µ

i=1 p
δij

ij .
The large operations are scheduled as early as possible, according to the optimal
relative schedule R. Assign to each t` ∈ {t1, t2, ..., tg−1} a value equal to the
maximum load of snapshot ` according to the above schedule. By inequality
(3), we know that

∑

Jj∈S

µ∑

i=1

dij ≤ 1.

Furthermore, we have
g−1∑

`=1

t` +
∑

Jj∈L

µ∑

i=1

cij ≤ V,

since by construction
∑g−1

`=1 t` cannot be greater than the optimal length, and
the costs of large operations are chosen according to the optimal solution. Hence,∑g

`=1 t` + C ≤ 1 + V , and

g∑

`=1

t` + C + 1− V ≤ 2,
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L`,h + 1− t` ≤ 1;

so λ(x0) ≤ 2. Since λ∗ = 1, it follows that λ(x0) ≤ 2λ∗.

7 Extensions

By using similar techniques as above, we can design a PTAS also for the case
of piecewise linear cost functions. In this case it is possible to change the
processing time of operation Oij to any value in the intervals [`ij(q), uij(q)],
where q = 1, ..., wij . Note that it is not assumed that the intervals are adjacent,
i.e., it might be the case that uij(q) < `ij(q + 1), q = 1, ..., wij − 1. The cost
for processing Oij in time `ij(q) is c`

ij(q) and for processing it in time uij(q) the
cost is cu

ij(q). For any value δij ∈ [0, 1] the cost for processing operation Oij

in interval q and in time p
δij

ij = δij`ij(q) + (1 − δij)uij(q) is c
δij

ij = δijc
`
ij(q) +

(1 − δij)cu
ij(q). When m and µ are fixed, we can speed up the running time

for problem P3 to O(nwmax + n min{log n,wmax} · f(ε, µ, m)), where wmax =
maxij wij .

8 Conclusions

We have studied the job shop scheduling problem with controllable processing
times. This problem models the situation when the processing time of a job can
be reduced by assigning more resources to it. Of course, adding computational
resources to a job incurs a cost, which has to be balanced against the profit
earned by completing the job sooner. We have defined several versions of the
problem by considering different ways of dealing with the trade-off between cost
and completion time of the jobs.

We described several polynomial time approximation schemes for the case
when the number of machines and the maximum number of operations per job
are fixed. Our algorithms guarantee finding near optimum solutions, but at the
expense of high running times. An interesting open question in this area is to
design an algorithm with low running time which can find schedules of value
within a constant factor of the optimum.
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