
 1

Time Dependent Vehicle Routing Problem
with a Multi Ant Colony System

Alberto V. Donati*, Roberto Montemanni, Norman Casagrande,

Andrea E. Rizzoli, Luca M. Gambardella.

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA)
Galleria 2, 6928 Manno, Switzerland

Abstract

The Time Dependent Vehicle Routing Problem (TDVRP) consists in optimally routing

a fleet of vehicles of fixed capacity when travel times are time dependent, in the sense that

the time employed to traverse each given arc, depends on the time of the day the travel starts

from its originating node. The optimization method consists in finding solutions that

minimize two hierarchical objectives: the number of tours and the total travel time.

Optimization of total travel time is a continuous optimization problem that in our

approach is solved by discretizing the time space in a suitable number of subspaces. New

time dependent local search procedures are also introduced, as well as conditions that

guarantee that feasible moves are sought for in constant time.

This variant of the classic Vehicle Routing Problem is motivated by the fact that in

urban contexts variable traffic conditions play an essential role and can not be ignored in

order to perform a realistic optimization. In this paper it is shown that when dealing with

time constraints, like hard delivery time windows for customers, the known solutions for the

classic case become unfeasible and the degree of unfeasibility increases with the variability

of traffic conditions, while if no hard time constraints are present, the classic solutions

become suboptimal.

Finally an application of the model to a real case is presented. The model is integrated

with a robust shortest path algorithm to compute time dependent paths between each

customer pairs of the time dependent model.

Key words: Vehicle Routing, Time Dependent, Discretization, Ant Colony System.

* Corresponding author: albertodonati@inwind.it

 2

Introduction

The Vehicle Routing Problem (VRP) has been largely studied because of the importance

of mobility in logistic and supply-chains management that relies on road network distribution.

Many different variants of this problem have been formulated to provide a suitable

application to a variety of real-world cases, with the development of advanced logistic

systems and optimization tools. The features that characterize the different variants aim on

one hand to take into account the constraints and details of the problem, while on the other to

include different aspects of its nature, like its dynamicity, time dependency and/or stochastic

aspects. The richness and difficulty of this type of problem, has made the vehicle routing an

area of intense investigation.

In this paper we focus on the presence of variable traffic conditions on real road

networks, like in urban environments, where these conditions can greatly affect the outcomes

of the planned schedule. Accounting for variable travel times is particularly relevant when

planning in presence of time constraints, such as delivery time windows. Solutions obtained

without considering this variability will result in sub-optimality or unfeasibility with respect

to these constraints, as it will be shown in the experimental results section.

This study is also motivated by the recent developments of real time traffic data

acquisition systems. With access to these data, it is possible to include in the model dynamic

and updated information, and obtain realistic and improved solutions.

The paper is organized as follow: problem formulation and review of the time dependent

models; the Multi Ant Colony System is introduced for the classic VRP, and its extension to

the time dependent case; the formulation of new time dependent local search procedures and

related issues and discussion of issues related to the time dependency; the remainder of the

paper is dedicated to computational results and its applications to a real world situation, with

the use of real traffic data and integration with a Robust Shortest Path algorithm [1] to deal

with realistic graphs representing the urban road network.

1. Problem description

In the classic VRP with hard time windows, VRPTW, a fleet of vehicles of uniform

capacity is scheduled to visit the given set of N customers, ic , each characterized by a

demand iq , a time window],[iii ebtw = , and a service time is , with routes originating and

ending at a depot, whose opening and closing time],[co tt is specified, and a fleet of trucks

of uniform capacity C is available. Each delivery can be done no later than the ending time of

the customer’s time window, while if the arrival time at the customer’s location is before the

beginning of the customer’s time window, the delivery has to wait until the beginning of the

time window. The service time, the time necessary to complete the delivery, must have

 3

elapsed before it is possible to leave the location for the next delivery. Other assumptions of

the problem are: 1. the quantity requested by the customer is to be delivered in a single issue

and in full; 2. all tours must originate and end at the depot, within the depot opening time; 3.

the total quantity delivered in each tour can not exceed the truck capacity C.

The problem is represented with a directed graph G(V, A), where V is the set of nodes,

representing the customers and the depot, and characterized by a geographical location, and A

is the set of oriented arcs connecting pairs of nodes, and representing the roads as straight

connections between nodes. A more complex representation will be considered in section 7.

Traditionally, the optimization algorithm finds first the solution that minimizes the

number of tours, and then minimizes the total length, which is given by the sum of the lengths

of all tours. In this case the total length coincides with the total traveling time. A slightly

modified problem defines for each arc a constant traveling speed, so a more accurate model is

obtained, and the total traveling time (instead of the total length) is used as the minimization

objective. This is sometimes referred to as the Constant Speed Model.

2. Review of time dependent VRP models

The presence of diversified conditions of traffic at different times of the day were first

taken into account by Malandraki and Daskin in [2] (for the VRP as well as for the TSP). On

each arc a step-function distribution of the travel time was introduced. A mixed integer

programming approach and a nearest neighbor heuristic were used in the optimization.

Another approach to the time dependent VRP is presented by Ichoua, Gendreau and

Potvin in [3], where the customers are characterized by soft time windows, that is, if the

arrival time at a customer is later than the end of the time window, the cost function (the total

travel time here) will be penalized by some amount. The optimization is done with a tabu

search heuristic, and it is based on the use of an approximation function to evaluate in

constant time the goodness of local search moves. The model is also formulated for a dynamic

environment, where not all service requests are known before the start of the optimization. A

direct comparison with the model presented in [3] in not possible, because of two main

differences in the models: 1. capacity constraints for the trucks are not considered, and 2. the

customers time windows are used as a soft constraint. As a consequence of this, in [3] there is

no need of an optimization with respect to the number of tours (which is supposed to be

known a priori), and no unfeasible solutions are found. In the TDVRP model, the number of

tours is an objective of the optimization, and because of the constraint of the time windows,

unfeasible solutions can also be found.

Nevertheless in [3] the First In, First Out (FIFO) principle is introduced: if two vehicles

leave from the same location for the same destination traveling on the same path, the one that

leaves first will always arrive first, no matter how speed changes on the arcs during the travel.

This principle is important not only because it prevents some inconsistencies (e.g. a vehicle

 4

could wait at some location for the time when speeds are higher and then arrive at the desired

location before another vehicle who had left before), but also because, as it will be shown

later in this paper, it allows to keep linear the time required to check for the feasibility of local

search moves, as in the constant speed/classic VRP case (discussion in section 5).

The FIFO principle is guaranteed by using a step function for the speed distribution, from

which the travel times are then calculated, instead of a step function for the travel time

distribution.

A typical speed distribution is shown in the following Figure 1a. In this way, the traveling

time distribution (shown in Figure 1b) deriving by the speed distribution is continuous, and

since the distance between two nodes is fixed, it only depends on the time of the day when the

travel starts.

Figure 1: a. Example of speed distribution; b. Travel time distribution induced by the speed
distribution (arc length of 2).

3. Ant Colony Optimization

Ant Colony Optimization (ACO) was introduced by Dorigo, Maniezzo and Colorni in [4], and

it is based on the idea that a large number of simple artificial agents are able to build solutions

via low-level based communication, inspired by the collaborative behavior of ant colonies. A

variety of ACO algorithms has been proposed for discrete optimization, as discussed in [5],

and have been successfully applied to the traveling salesman problem, symmetric and

asymmetric ([4], [6], [7], [12]) the quadratic assignment problem ([14]), graph-coloring

problem ([11]), job-shop/flow-shop ([10]), sequential ordering ([13]), vehicle routing ([8],

[9], [15]).

ACO can be applied to optimization problems based on graphs. The basic idea is to use a

positive feedback mechanism to reinforce those arcs of the graph that belong to a good

solution. This mechanism is implemented associating pheromone levels with each arc, which

are then updated proportionally to the goodness of the solutions found. In such a way the

pheromone levels encode locally the global information on the solution. Each artificial ant

Travel time distribution

0
0.5

1
1.5
2

2.5
3

5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00
Time of day

Speed distribution

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9

5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00
Time of day

 5

will then use this information weighted with an appropriate local heuristic function (e.g. for

the TSP, the inverse of the distance) during the construction of a solution.

As showed by Dorigo and Gambardella in [12], this analogy has suggested a more

elaborate and efficient computational paradigm, called the Ant Colony System (ACS), which

differentiates from the previous for three aspects: 1) it enhances exploration around good

solutions (local pheromone update); 2) it focuses on the found good solutions, with global

pheromone update only on the arcs belonging to the best solution found so far; and 3) it

implements a new state transition rule based on the choice of the edge with a pseudo-random

proportional rule, which tends to reduce randomness. This method has been applied in [12] to

the symmetric and asymmetric traveling salesman problem, and the results showed that this

method is among the best metaheuristics, especially when combined with specialized local

search procedures.

Solving the VRP is known to be a combinatorial NP-hard optimization problem. When an

exact approach exists, it often requires large computational times [16], and is not viable in the

time scale of hours, usually the time scale required by distribution planners. With the

development of real-time data acquisition systems, and the consideration of various dynamic

aspects, it appears more and more advisable to find high quality solutions to updated

information in sensibly shorter times.

4. The time dependent MACS-VRPTW

It has been shown by Gambardella, Taillard and Agazzi in [15], that ACO can be used to

solve the VRP with hard time windows constraints (VRPTW). This approach consists in using

the algorithm called Multi Ants Colony System (MACS-VRPTW) with a hierarchy of two

artificial ant colonies, each one dealing with one of the objectives of the optimization: the first

colony is named ACS-VEI and deals with tour minimization while ACS-TIME minimizes

distance. The two colonies co-operate by exchanging information through pheromone

updating. The MACS-VRPTW algorithm coordinates the activities of two colonies which

simultaneously look for an improved and feasible solution, that is: 1) a solution that has a

smaller number of tours; 2) it has the same number of tours and a shorter length. When a new

best solution is found it is then used to perform a global pheromone update, so that both

colonies can make use of the updated information about the performance of the new solution.

The results presented in [15] show that this method is comparable with the best known

methods, in terms of computation time and quality of the solutions found.

In the following subsections 4.1. to 4.6 we recall the procedures used in the MACS-

VRPTW presented in [15] for self-reference. The reader familiar with this model can go

directly to subsection 4.6. on Time dependent MACS-VRPTW (page 10).

 6

4.1 Ant constructive procedure
Each ant of the colony attempts to complete a solution using the following constructive

procedure until all the customers are serviced.

The ant moves from a node i (a customer or a depot) to the next j (a customer or a depot -

a depot only if i is a customer) by choosing among the feasible js that have not been visited

yet (except for the depot) and that do not violate any of the constraints of the problem (set J),

with the following probability distribution:

 ijij hjp ⋅=τ)(Jj ∈ (1)

where ijτ are the pheromones on edge (i, j) and ijh is the local heuristic function:

))()(,1max(

1

jajjij
ij INtewtd

h
−−⋅+

= (2)

where ijd is the distance from i, jwt is waiting time at j, and aj te − is the difference

between the arrival time at j and the corresponding end of the time window. The term jIN

represents a bias factor, the number of times that a customer has not been included in a

solution, and increases the probability of a customer of being included in a later solution. Also

note that j can be a depot; in this case the tour is closed even if the truck has still some

quantity left.

Constraints:

The next location j is considered a possible choice, if it satisfies all of the following

constraints:

1. the arrival time at j, ta ≤ je customer’s time window;

2. the quantity left on the truck,jq ≤Qleft;

3. returning time at the depot from j, once the work is completed at j, cannot be greater

than the depot closing time.

An ant uses the probability given by eq. (1) in two ways, determined by a fixed cut-off

parameter qo∈[0,1], and a random number r for each step, r∈[0,1):

a. exploiting: pick the j which maximizes p(j), if r<qo

b. exploring: pick the j distributed as p(j), if r≥qo

A typical value for qo is qo=0.9, which has been shown to give the best results for this

algorithm.

 7

When the next location j is chosen, the ant step there, the ant arrival time at and the new ant

time dt ' (the new departing time) at j is updated:

 ijda dtt += (3)

 jjad swttt ++=' (4)

where dt is the departing time from i, jwt the waiting time at j (if at > je) and js is the service

time at j. The whole process is repeated, until a depot is chosen for the next step or it is not

possible to find a j satisfying the constraints. In this case the ant returns at the depot. If more

customers need to be serviced and the number of tours does not exceed the maximum number

of tours allowed (an argument that is passed to the algorithm), a new tour is initiated,

otherwise the construction procedure is complete.

4.2 Pheromones update
Pheromones can be updated either locally or globally..

Local update is performed during the ant constructive procedure in the following way:

 0)1(τρτρτ ⋅+⋅−= ijij (5)

where i and j are the indexes of the traversed arc,)/(10 NNJN ψτ ⋅= is the initial value of

the pheromones, N is the number of customers, NNJψ is the total distance of the initial

solution NNψ found with a nearest neighbor heuristics, ρ∈[0,1] is the evaporation coefficient,

usually set to ρ=0.1. This update is equivalent to a decrement of the pheromone on the arc (i,

j), since the pheromones are initially set to 0τ .

The global update is performed once the two colonies have finished their iterations, using

the best solution found so far Ψ gl:

 glJijij ψρτρτ /)1(+⋅−= glji ψ∈),((6)

where glJψ is the length of glψ .

4.3 ACS-TIME
The ACS-TIME colony has the objective of minimizing the total length of the solution. Using

the ant constructive procedure, a number of k ants (usually k=10) search for an improved

solution, with a maximum number of tours equal to bestnT (the number of tour of the best

solution so far)and with the parameter INi =0 (in eq. (2)) for all j. The algorithm’s outline is

shown in Figure 2.

 8

Figure 2. Outline of the ACS-TIME algorithm.

4.4 ACS-VEI
The ACS-VEI colony attempts to find a feasible solution with a lower number of tours

than the best (and feasible) glψ found so far. The best ACS-VEI solution found so far,

VEIACS−ψ , is the unfeasible solution having the minimum number of undelivered customers.

The algorithm also updates the term INi (in eq.(2)), by incrementing it by one each time the

customer is left out of a solution. The term is reset each time an improved VEIACS−ψ solution is

found. In the ACS-VEI algorithm, the VEIACS−ψ solution is also used to perform the global

pheromone update. The outline of the algorithm is presented in Figure 3.

4.5 MACS-VRPTW
The MACS-VRPTW algorithm initializes and coordinates the two colonies, by updating

the best (feasible) solution, glψ . When an ant finds a solution with a tour less, the colonies

are stopped, and two new colonies are activated with the updated value of bestnT . The outline

of the algorithm is presented in the following Figure 4, where we denote by)(ψnT the

number of tours of the solution ψ .

ACS-TIME(bestnT) // run with a max number of tours equal to bestnT number of tours

 // of the best solution so far.
while (keepLooping)

 for each ant k

 ant(bestnT , IN=0) // constructive procedure to find a solution ψ and the pheromone local update

 if (ψ is not feasible)

 try post-insertion // procedure to insert left customers in the tours of the unfeasible
 solution (see 5. Local search and other considerations).

 if (ψ is feasible)

 run local search on ψ

 if (ψJ < glJψ) // better solution found

glψ =ψ

 keepLooping = false

global pheromone update on
glψ

 9

 Figure 3. Outline of the ACS-VEI algorithm.

Figure 4. Outline of the MACS-VRPTW algorithm.

ACS-VEI(bestnT -1) // run with a max number of tours equal to bestnT , number of tours of the best solution so far.

 // (bestnT -1) is because ACS-VEI tries to find a solution with a tour less.

while (keepLooping)

 for each ant k

 ant(bestnT -1, IN) // constructive procedure to find a solution ψ (includes the pheromones’ local update)

 if (ψ is not feasible)

 try post-insertion // see section 5. on post-insertion description.
 run local search

 if (ψ is feasible) // best solution found

 glψ = ψ
 reset IN for all the customers

 reset all the ijτ = 0τ

 keepLooping = false

 if (nUndeliveredCustomers(ψ)<nUndeliveredCustomers(
VEIACS−ψ))

VEIACS−ψ = ψ // better ACS-VEI solution found

 keepLooping = false

global pheromone update with
glψ

global pheromone update with
VEIACS−ψ

begin:
 find first feasible solution
 init best solution and optimization objectives:

glψ =

NNψ

 bestnT = nT (
NNψ) and glJψ = NNJψ

 initialize pheromones:

 0τ =1/(⋅N NNJψ) and ijτ = 0τ , for all the existing arcs.

Iterate:
while (optimization time is not expired)

 activate ACS-VEI(bestnT -1)

activate ACS-TIME(bestnT)

while (ACS-VEI and ACS-TIME are active)

 wait for an improved solution, ψ

glψ = ψ

 if (nT(ψ) < bestnT)
 stop the colonies

 bestnT = nT(ψ)

 check optimization time

return
glψ

 10

4.6 Time dependent MACS-VRPTW
In the time dependent VRPTW, TDVRPTW, on each existing oriented arc Aa∈ ,

information about the travel time must be given to deduce the time necessary to traverse the

arc when starting the trip at a time t. This information can be provided in two different ways:

1) a travel time distribution Tij(t), which is continuous in t, 2) a step-like speed distribution,

from which a continuous travel time distribution can be obtained by integration. We use a

speed distribution vij(t), defined on the time interval],[co tt . A step-like speed distribution on

each arc induces a partition of the time in periods of time Sk defined by intervals [st0 , ... s
kt].

Within the intervals the speed is constant; this allows to formulate the algorithm in the time

subspaces Sk as the classic VRP case. This is schematically represented in Figure 5, where

three subspaces are shown, and to simplify this representation, the partition of time is

assumed to be the same for all the arcs considered.

TIME

Start

tim
e s

lic
e 1

tim
e s

lic
e 2

tim
e s

lic
e 3

TIME

Start

tim
e s

lic
e 1

tim
e s

lic
e 2

tim
e s

lic
e 3

Figure 5. The partition of the model time in subspaces, and process of
construction of two tours through the time.

The pheromones can then be represented in the following way: each oriented arc

connecting the nodes (i, j) is associated with the time dependent distributionijkτ , where the

index k refers to the subspace Sk. In other words, the element ijkτ encodes the convenience of

going from i to j when originating a trip from i at a time t in Sk.

The TDVRPTW feasible solution uses an update rule similar to one in eq. (3) to update

the tour length, but it is based on the travel time instead of the distance. In this formulation,

the optimization algorithm must find the solution that minimizes the number of tours and then

the total traveling time. The probability distribution used by the ants during tour construction

 11

to select the next customer j of the feasible set J, corresponding to eq. (1), depends now on the

departing time from i. The rule is thus modified with:

)(dijijkj thp ⋅= τ Jj ∈ (7)

where td∈Tk is the departing time from i (e.g. the time the work at i is completed) and k is

then the corresponding time index, while:

))())((,1max(

1
)(

jajjdij
dij INtewttT

th
−−⋅+

= (8)

is the local heuristic function,)(dij tT is the travel time when departing from i at the time

td, wtj is waiting time at j, and aj te − is the difference between the arrival time at j (that is ta=

td +)(dij tT) and the respective end of the time window.

The constructive procedure will proceed in the same way as before, but all occurrences of

the concept of distance will be replaced by the concept of traveling time. In the same way, we

will deal with total traveling time, instead of the total length of the solution.

We note that in the model presented here there is only one depot, while in the original

implementation of the MACS-VRPTW the depot was replicated as many times as the current

maximum number of tours (the number of tours of the best solution, all depots having the

same location). In the original algorithm, at each new tour a virtual depot is picked-up

randomly, and then the first step is computed with eq.(1), where each virtual depot has its

own pheromone distribution. This mechanism is very effective to further diversify and

improve the search, and it has been adapted in the Time Dependent version of VRPTW

(TDVRPTW) where there is only one depot in the model formulation. Before starting the

computation of a new tour, a set of n customers is created, where n is the number of tours left

to complete (that is n =)(max currentnTnT ψ−), of customers not visited yet, that have the

highest value of the probability as given by (1). Within this set then, the first customer to visit

is picked randomly. In this way a mechanism similar to the replication of the depots of

MACS-VRPTW is provided.

Note that each arc is an oriented arc, so in this model we consider jiij aa ≠ , and similarly

for their travel times distributions. It is very common indeed the situation where speed

sensibly differs according to the direction of travel; e.g. roads connecting city centers with

residential areas are congested in the mornings in the direction of downtown, and vice-versa

in the afternoon.

5. Local search and other considerations

Local search procedures have been proven to be very useful in improving the quality of

the solution by evaluating if small modifications can return a better solution. The two basic

 12

operations we can perform in a local search procedure applied to the VRP are: 1. insertion of

a new delivery in a tour, 2. removal of a delivery from a tour. In the case of the TDVRP,

since both operations generate a time shift for all the customers following an insertion or a

removal, the travel times from a customer to the next can change, and so delivering times. In

particular also the removal of a customer can create a delay.

We present here a method based on the use of a push variable, as discussed by

Kindervater and Savelsbergh in [17], adapted to the time dependent case. This variable, called

the slack time, is stored for each delivery (and kept updated) and indicates how long the

delivery can be delayed so that none of the time windows of the following customers

(including the depot closing time) will be missed.

The slack times are calculated backwards, starting with the ending depot, once a tour is

completed, by:

),min(1 iiii atess −= + (9)

where i is the customer’s index in the tour, iat is the arrival time at i. The slack time is

calculated starting with the last node (the depot):1+Ns = ec tt − the depot closing time ct less

the time when the tour ends te.

Because in the time dependent model any time shift produces a change in the travel time,

the slack time of the next customer si+1 needs to be appropriately adjusted. In other words,

one needs to calculate the maximum delay before leaving i, keeping into account that within

this delay the travel time might change.

This issue has been solved as follows. If g is the function representing the arrival time at

the next location i+1, the maximum delay i∆ on arrival time at i, must satisfy:

 1)()(+≤−∆+ iiii satgatg (10)

The possibility of back-propagating the delay at i+1 is then guaranteed if we can

univocally assign a value to i∆ , no matter what speed distribution is set on the arc and the

starting time from i. From equation (10), provided g is invertible, we have:

 iiii atatgsg −+=∆ +
−))((1
1 (11)

To prove that function g is invertible, we need to prove that it is continuous and

monotonic. The continuity is guaranteed by the fact that the arrival time is the sum of the

departing time and the travel time. The monotonic behavior requires that for

tt >')()'(tgtg >⇒ , which is guaranteed by the FIFO principle that makes the arrival times

monotonically increasing with the departing times, as shown in Figure 6.

 13

Figure 6. The arrival time function, as a monotonic
increasing function of the departing time.

The invertibility of g provides the possibility of back propagating the slack times, and

then to test the feasibility of a move in constant time, by using an equation corresponding to

equation (9) but with the back propagated slack time:

),min(iiii ates −∆= (12)

where i∆ is given by equation (11).

Once we have proven that there is a unique value when back-propagating a delay, there

are two ways to compute i∆ . One is to use an approximation of the function 1−g , the other

one is an exact method, which we have adopted in our model. It consists in finding the latest

departing time ildt relative to the customer i, so that arrival time at i+1 coincides with the

latest arrival time, ei+1. Once ildt is known, and the arrival time at i+1, ati+1, corresponds to

the departing time idt (stored), the value of i∆ on i will be simply given by: i∆ = ildt - idt .

The procedure to find the latest departing ildt is shown in Figure 7. It computes the latest

time at which the customer i must be left in order to arrive at the next customer i+1 no later

than its upper time window. The procedure then takes as an argument the arrival time ati+1 =

ei+1 , and back-propagates it to calculate ildt , where the index k is referring to the time

subspaces Sk corresponding to ati+1 .

 14

Neighbors’ set

To maintain scalability on large instances, efficiency and improve the speed of the

algorithm, it is very useful to introduce for each customer ci, a set of neighbors. This is mainly

motivated by the fact that in an optimized solution there will never be trips between distant

locations, and this consideration sensibly speeds up the construction of the solution and local

search procedures.

The set of neighbors is computed before starting the optimization, and it is composed the

of n closest customers cj, in the sense of spatial-temporal closeness, that is distance and time

windows overlapping. The move from node i to j is possible if, in the worst case, leaving at

the latest time at ie + is (end of the time window plus time when the work is complete), it is

possible to reach the neighbor cj at a time t< je . On the other hand, the earliest departing time

from i is ii sb + ; thus, if wait time at cj is too long, the customer is excluded by the neighbors

set. The maximum wait is set to be a fraction (usually 1/4) of the time horizon.

Only arcs among neighbors are created for the problem, while each customer has a

connecting arc to the depot, and the depot is connected to all the customers. Note that the

neighbor’s relationship is not symmetric. The numbers of neighbors is usually set to 30 to 50.

Description of the local search procedures

Once we have guaranteed the existence of the function g-1, and therefore the validity of

the procedure of Figure 7, we present here the local search procedures we have used. Note

that the analysis of the feasibility the first operation is always performed in order to verify the

Figure 7. Procedure (defined within an arc object) to calculate the departing time from the
starting node once the arrival time at the ending node is known.

calculateDepartingTime (ati+1) // returns the departing time at i

 initialize:

 k = getTimeIndex(ati+1)

 dti = ati+1

 remainingDistance = di,i+1 // the distance to be covered between i and i+1

 distanceCoveredInTS = (ati+1 -
s
kt) * speeds[k] // the distance traveled in the time subspace

 // this is the distance covered in the last time subspace Sk where
s
kt is the time of the lower

 // limit of the interval defining the subspace when the speed changes

 // go backward over the time subspaces and calculate the departing time
 while (remainingDistance > distanceCoveredInTS & k>0)
 k--
 remainingDistance -= distanceCoveredInTS

 dti =
s
kt

 distanceCoveredInTS = (
s
kt -

s
kt 1−) * speeds[k]

 // final adjustment

 dti -= remainingDistance / speeds[k] // last time subspace

 return dti

 15

neighbor’s relationships between the removed/inserted customers, and this can be done in

O(1), thanks to the use of appropriate sorted/indexed lists.

To evaluate the goodness of a move, in the time dependent context, where all traveling

times on the following arcs can in principle be affected by the move, we proceed as follows.

First, a local evaluation if any improvement is found for all the arcs affected by the change;

second, the overall effect of the change is evaluated on the newly created tour(s) checking if

the move has actually provided an improvement. A schematic outline is showed in the

following Figure 8.

For each operation, checks are done also on the available quantities and quantities

delivered whenever performing exchanges of one or more customers between tours.

The local search procedures used here are the following.

1. customer relocation: the procedure evaluates the advantage of moving the delivery to a

customer in a different tour, or at a different moment/position in the same tour (in-tour

relocation). This is done for all the tours and positions. The local evaluation consists in

evaluating if the added arcs to the customer have a smaller travel time than the removed ones,

and the insertion point that provides the maximum advantage is selected.

2. customer exchange: from a tour to another, with one customer of the other tour. The

best customer (and respective tour) is selected such to minimize the variation in total travel

time of the newly obtained solution.

3. in tour 2-k opt: each customer ci (i=0,…, d-2, where d is the number of deliveries in the

tour) and all the following customers cj (with j=i+ 1,…, d-1, where j=i would be equivalent to

a customer in tour relocation) in the same tour are checked to see if the tour obtained by the

inversion of the branch from i to j:

ci-1 → cj → cj-1 →...→ ci → cj+1

provides an improved solution, where the nodes ci-1 and cj+1 are the depot if i=0 or j=d-1.

Note that on the customers of the branch cj → cj-1 →...→ ci no check on the slack time can be

done, so only a time windows constraints check is done. On cj+1 the slack time can be

Figure 8. Outline of the time dependent local search.

TD Local search:

 check feasibility O(1):
 neighborhoods relationship
 slack times
 other problem/time constraints (quantity available,
 arrival times if the slack time is not usable)

 check local improvements (O(1), for operations 1. and 2.

below, involving single customers, cached partial
travel time for 3. 4. 5.).

 check global improvement: for the newly created
 tour(s), all times following a change need to be
 recalculated (O(n)).

 16

checked, once the arrival time has been recalculated. This move allows eliminating crossings

in the tours.

4. branch relocation: consists in inserting a branch of a tour in another tour. For each tour

t1, tries are made exhaustively for all the customers i and j (with j=i+ 1,…, d1-1, where j=i

would correspond to a customer relocation) trying all insertion points h (with h=0,…, d2-1) of

the second tour t2 (over all the other tours), to see whether:

new t1 : ci-1 → cj+1

new t2 : ch-1 → ci →…→ cj → ch

is feasible (including quantity checks) and provides an improved solution. If such an

improved solution is found, the process continues with the next tour following t1 in the tour

list. Note that again the slack time can only be check on cj+1 and ch , while for the customers ci

→…→ cj only a time windows constraint can be done. If such relocation is found and it is

better, the relocation is performed, and tour after t1 (in the tours’ list) is considered.

5. branch exchange: consists in exchanging 2 branches of variable length among two

tours. For all the customers pairs i and j, with j=i ,…, d1-1 of the first tour t1, and all the

customers h and k, with k=h+1,…, d2-1 (indeed for j=i and k=h it would be equivalent to a

customers exchange) of the second tour t2, are examined to see if the branch exchange:

new t1 : ci-1 → ch→…→ ck→ cj+1

new t2 : ch-1 → ci →…→ cj → ck+1

is feasible (including quantities checks) and provides a shorter travel time for the 2 new tours.

If such an exchange is found the next tour following t1 (in the tours’ list) is considered. The

second tour examined has an index greater than the first, given the symmetry in the operation

of the exchange. Note that for operations 4. and 5. the local check can not be done.

6. post insertion: it is used when a solution found is not feasible, and a number of

customers still need to be scheduled. In this case we try for each customer a post insertion,

that is inserting the customers one by one in the tour that minimizes the increase of travel

time, and that does not violate the constraints of the problem. The order in which the

undelivered customers are inserted is chosen probabilistically based on qi, the quantity

requested, so those with a higher demand will be more likely to be considered first.

7. shuffle the tours order: this simple operation consists in randomly changing the order in

which the tours are stored in the solution list, and it is done to ensure that any of the previous

operation is not dependent on the order in which tours are stored.

A local search cycle consists in repeating steps 1. to 7. in order (with the exception of 6.

that is performed on unfeasible solutions). This order is basically due to the increasing

difficulty and complexity level of the operation, and consequently to perform a more complex

operation assumes that the solution has been already optimized with respect to simpler

procedures, e.g., it is advisable to check for tour 2-k opt (crossing) before checking for a

branch exchange. The complete procedure is repeated a minimum of one time for a generic

 17

solution, and a minimum of 5 times for the best solution. Additional local search cycles are

performed every time that any type of improvement has been found in the previous cycle,

until no more improvements are found. Because of these repetitions, the effect of the order in

which each operation is carried out, becomes negligible. The effects of local search

procedures have been extensively discussed in [13], to show that the combination of an ACS

and Local Search procedures gives better results with respect to other heuristics combined

with the same procedures. The average improvement due to Local Search has been quantified

in a range 10-20%. In particular, for the sequential ordering problem (SOP), that is an

asymmetric TSP with precedence constraints, in [8] is reported that Ant Colony System

(ACS) is better than genetic algorithm in combination with the same local search. This is due

the fact that ACS produces starting solutions that are easily improved by the local search

while starting solutions produced by the genetic algorithm quickly bring the local search to a

local minimum.

6. Experimental results

Some experiments have been conducted to show some of the behaviors, issues and

advantages of the use of this model.

Constant Speed benchmark tests
The Solomon’s problems are used to measure the performance of the MACS-TDVRPTW

algorithm, when applied to the solution of the classic case. A constant speed distribution was

used for all the arcs, with value set to 1, so that optimizing travel times is equivalent to

optimize distances.

The Solomon’s problems consist in 6 groups of problems, named R1, C1, RC1, R2, C2,

and RC2. In each group there are 8 to 12 problems; in a group, customers have the same

location and demand, but different time windows (usually broader from a problem to the

following).

For each problem, the optimization is run three times (this is the usual number of runs in

these benchmarks), and the average number of tours and distance is calculated. Once all the

problems of the group are solved, the average number of tours and distance is calculated over

the group at different times, up to 30 minutes (1800 seconds). These tests were run on a

Pentium IV 2.66 GHz, and results are shown in the following Table 1.

R1 C1 RC1 R2 C2 RC2

time (s) <nT> <Dist> <nT> <Dist> <nT> <Dist> <nT> <Dist> <nT> <Dist> <nT> <Dist>
100 12.78 1216.38 10.00 830.48 12.63 1406.58 3.15 1002.79 3.00 596.19 3.63 1187.41
300 12.61 1209.65 10.00 828.82 12.29 1383.83 3.15 984.39 3.00 592.97 3.58 1168.63
600 12.61 1203.05 10.00 828.41 12.25 1374.49 3.12 977.15 3.00 591.06 3.54 1155.86
1200 12.61 1199.36 10.00 828.38 12.13 1373.18 3.09 972.31 3.00 590.49 3.46 1156.77
1800 12.61 1196.27 10.00 828.38 12.04 1372.71 3.09 966.95 3.00 590.49 3.38 1155.74

Table 1. Benchmark results in time on Solomon problems. The average number of tours and
distance were obtained at different times, to evaluate the speed and performance of the
algorithm, and averaged over 3 different runs for each family of the problems (R, C, RC).

 18

A comparison with the analogous original results reported in [15] shows that at the end of

the optimization (iteration at time 1800), the average deviations δ, over all the families and

the 3 runs, in tours and length of the MACS-TDVRPTW solutions from the original MACS-

VRPTW solutions is <δnT>= 0.08 <δJ>= -3.04. This means that even if the tours overall are

shorter, the number of tours is slightly higher, possibly due to experimental errors and that the

new model is dealing with an higher dimensional space that slows down its computational

speed.

The best solutions we have found are also compared with the absolute best solutions

identified by various heuristic algorithms (as reported in [21]). These solutions have been

obtained in an arbitrary computation time, and they are the absolute best known solutions

found so far. This comparison shows that the results obtained by MACS-VRPTWTD are

comparable to these solutions; moreover, the flexibility of our algorithm is shown by the

consideration that it is compared against several different methods, and no single algorithm

can find them all at once, even in an arbitrary time. As before, the average deviation δ over all

the families of the best solutions found by this model from the absolute best solutions is

<δ�nT>=0.21 <δJ>= -5.81. The results are shown in Table 2.

R1 C1 RC1 R2 C2 RC2
<nT> <Dist> <nT> <Dist> <nT> <Dist> <nT> <Dist> <nT> <Dist> <nT> <Dist>

MACS-DTVRPTW best 12.33 1199.91 10.00 828.38 11.88 1359.84 3.09 946.21 3.00 589.50 3.38 1124.63
absolute best 11.92 1209.89 10.00 828.38 11.50 1384.16 2.73 951.66 3.00 589.86 3.25 1119.36

Table 2. Comparison between best MACS-VRPTW solutions found in 3 runs of 1800 seconds
each, and absolute best solution identified by any heuristics ever, as reported in [21].

Again the discrepancy in the number of tours, that is slightly higher in our case, can be also

due to the more complex structure underlying MACS-VRPTWTD, which is dealing with an

higher dimensional space that makes it run more slowly.

Classic solutions in a time dependent context
When solutions for the constant speed model are used in a time dependent context, their

feasibility and optimality might considerably change, and this change is proportional to the

variability in speed distribution (that is, to traffic conditions).

In this simple experiment we used five different 4-valued speed distributions of the type

 [v1, v2, v3, v4]h with h=1,.., 5, and defined over four equal intervals of time dividing the depot

time window, and such that the average speed is <v>=1.0 for all h. The values used are

defined in Table 3, where the type h=1,…, 5 is used to characterize the different types of

roads.

v1 v2 v3 v4
type 1 0.90 1.10 0.80 1.20
type 2 0.80 1.20 0.90 1.10
type 3 0.70 1.30 0.50 1.50
type 4 0.60 1.40 0.70 1.30
type 5 0.50 1.50 0.60 1.40

Table 3. Speed distribution used for the evaluation
of the classic solutions in a time dependent
context.

 19

In the tests, a further variation γ is introduced to progressively increase the variability in

the speeds distributions to [v1-γ, v2+ γ, v3- γ, v4+ γ]h, for h=1,..,5, while maintaining the average

speed <v>=1.0, and a sensible comparison with the solutions of the Solomon problems is still

possible. A total of six tests were conducted, each for the Solomon problems, R1, C1, RC1,

R2, C2, and RC2. For each group, only the first problem is considered, being the one with the

tighter time windows. For each problem, ten different random assignments of the five speeds

distributions on the arcs were done. For each of the assignment, the optimization is repeated

ten times for thirty seconds, and then the degree of unfeasibility (the percent of missed time

windows) of the classic best solution known for the problem is calculated (mTW), and then

the value of γγγγ is increased. The average percent of missed time windows <mTW>% and its

standard deviation has been calculated over the ten different speed assignments, and then it

has been averaged over the six groups. Similarly the total average travel time <TT_CT> for

the constant time model, and the <TT_TD> for the time dependent model (with their standard

deviations) has also been calculated.

The results are shown in the following Table 4.

γγγγ <mTW> % <std> mTW% <TT_CT> <std> TT_CT <TT_TD> <std> TT_TD
0 9.37 2.85 1438.26 26.56 1587.02 68.97

0.1 15.80 3.71 1539.81 35.29 1778.93 94.95
0.2 27.90 4.76 1623.68 36.68 2010.29 96.20
0.3 44.77 5.42 1780.74 50.87 2415.42 107.29
0.4 59.10 5.55 2006.24 72.94 3006.92 171.26

Table 4. Test of unfeasibility. Progressively increasing the degree of
variability γ,γ,γ,γ, in the variation of traffic conditions, the percent of missed time
windows of the optimal solutions known to the 6 representative Solomon
problems is calculated.

The average percent of missed time windows is much higher in clustered problems (like C1

and C2, with values up to 95%) than for random problems (like in RC2 and R2, with a

maximum around 40%). Also the gap in travel time increases between the classic solutions

and the new solutions found, due also to the fact that the new solutions never miss any time

window, while the classic solutions are increasingly unfeasible. We notice that in some cases

the random assignments of the speeds result in a problem that is unsolvable also for the time

dependent model. In this case we progressively anticipate the departing time from the depot

(at earlier time than the opening time, up to 0.5 times of the depot opening window), till a

feasible solution is found. In most cases it is possible to make the problem solvable.

The main conclusions of this analysis are then:

1. the degree of unfeasibility increases with the increase of the degree of time-

dependency.

2. the classic solutions, even if they might seem to be better, are usually unfeasible.

3. if the classic solutions are feasible (large or no customers time windows), they are

suboptimal. This will be shown and discussed in par. 7.

 20

Time dependent solutions
The aim of these experiments is to see if the optimization properly keeps into account the

system variable traffic conditions .

First, we have created an ad-hoc problem, using the following settings. There are two

time intervals for the speeds distributions, and all the arcs have the same speed distribution (a

two value speed distribution). The customers’ locations are chosen so that there are two

subsets of customers: those that are fairly close one to another one and those that are (in

average) as double as distant. In this experiment we used three of such groups of customers.

For this experiment the delivery time windows were removed, and service times properly

chosen, since being hard constraints factors would have the effect to hide the presence of time

dependency for the analysis we are interested in.

The experiment consists in using two distinct 2-valued speed distributions on all the arcs:

one with a profile of type LOW → HIGH (meaning the first period with a low value for the

speed, the second with high value of the speed), and the other one of the type HIGH → LOW.

Figure 9 shows that three tours are formed but the orientation of the tours is inverted. This

is evidently a consequence of the different speed distribution. In an optimized solution, the

tours are formed in a way to use the high speed to complete the longer legs, and the low speed

to complete shorter legs.

Figure 9. Best solutions found, respectively relative to a LOW →→→→ HIGH speed
distribution (left), and relative to a HIGH →→→→ LOW speed distribution (right). Note
that the orientation of the tours is inverted.

The same type of experiment has been repeated for a larger sample, for the all the

Solomon problems, with no time windows to remove the effect of the constraints.

For this analysis, two main families of 4-valued speed distributions were used, the one in

Table 3, and the other resembling a more realistic situation, presented in Table 5. This

distribution contains arcs that are bottlenecks (type 1, always busy), the inflows (type 2, busy

 21

in the morning hours), those that are busy at mid day (type 3), those that are outflows (type 4,

busy in the evening), and those that are seldom traveled (type 5).

 v1 v2 v3 v4

 type 1 1.00 1.00 1.00 1.00
 type 2 1.00 1.00 3.00 3.00
 type 3 3.00 1.00 1.00 3.00
 type 4 3.00 3.00 1.00 1.00
 type 5 3.00 3.00 3.00 3.00

Table 5. Another speed distribution used to
calculate the distribution of the speed in relation to
the arc length.

For each of the two families of speed, we have considered the six Solomon problems

without time windows. For each, we made ten different random assignments of the speed

distribution to the arcs, and for each, the ten optimization runs where done for five minutes on

a 2.66 GHz Pentium IV. At the end of each optimization, for the best solution found, the

distribution of the binned arc length as a function of the number of times and the speed the arc

was traveled was calculated. The results over the six Solomon problems for each of the two

families of speeds are shown respectively in Figure 10 and Figure 11.

bin <speed> times traveled std speed
1 0.97 100.00 0.06
2 1.04 100.00 0.06
3 1.09 99.83 0.08
4 1.13 98.67 0.10
5 1.14 94.50 0.15
6 1.17 93.17 0.17
7 1.14 75.83 0.24
8 1.17 64.17 0.24
9 1.23 34.33 0.25

10 1.23 30.50 0.26
11 1.23 17.17 0.24
12 1.22 7.00 0.21
13 1.19 4.33 0.11
14 1.02 2.50 0.05
15 0.42 1.00 0.04
16 0.69 1.50 0.03
17 0.25 0.17 0.00
18 0.00 0.00 0.00
19 0.00 0.00 0.00
20 0.00 0.00 0.00

Average speed per arch length binning

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 3 5 7 9 11 13 15 17 19

binned length

<s
p

ee
d

>

Figure 10. Statistics on the average speed distribution in function of the binned arc length,
for the speed distribution of Table 3.

 22

bin <speed> times traveled std speed
1 2.62 100.00 0.19
2 2.87 100.00 0.11
3 2.96 100.00 0.07
4 2.96 100.00 0.08
5 2.98 96.00 0.05
6 2.99 97.33 0.03
7 2.99 92.17 0.04
8 3.00 87.50 0.01
9 2.99 76.17 0.03

10 3.00 62.17 0.04
11 3.00 46.67 0.04
12 3.00 29.67 0.01
13 2.99 25.33 0.05
14 3.00 13.33 0.03
15 2.99 7.00 0.05
16 3.00 4.83 0.03
17 3.00 2.67 0.02
18 0.00 0.00 0.00
19 0.00 0.00 0.00
20 0.00 0.00 0.00

Average speed per arch length binning

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 3 5 7 9 11 13 15 17 19

binned length

<s
p

ee
d

>

Figure 11. Statistics on the average speed distribution in function of the binned arc length,
for the speed distribution of Table 5.

The two graphs show that the algorithm is favoring routes with longer legs in periods

when speeds are higher, and shorter legs in periods when the speeds are lower. There is a tail

effect in Figure 10 due most likely to the fact that some routes have to be terminated due to

the capacity constraint.

7. Application to a real road network

In this section we present the application of the MACS-TDVRPTW to a real road

network. Real data obtained from the Padua logistic district, in the Veneto region of Italy, are

used in this case study.

The customers are a set of nodes that is a subset of all the nodes of the graph representing

the road network of Padua. Paths connecting each pair of customers need to be calculated.

Since the time dependent nature of this model, these paths are in principle also time

dependent.

There are two alternatives: 1. calculate the shortest paths on the fly, that is, at departure

time from a location to the next; 2. store one or a set of paths that represent a suitable

approximation of the problem, so that the proper pre-calculated path from the list will be

selected given the departing time.

The first option would imply the added computational effort to calculate at each location

the paths and travel times for going to all the next possible remaining locations j when

constructing the probability distribution of eq. (6). For this reason, we have initially adopted

the second method, pre-computing the shortest paths among all the customers’ pairs with a

robust shortest path algorithm [20]. A more accurate extension of this method involves a time

dependent interval graph and a set of time intervals (computed for each arc) on which the path

can be considered fixed. In this way, between each pairs of nodes there would be a set of

 23

paths, depending on the time of the day the trip is initiated. This extension has been

implemented and applied to perform a scenario analysis, since it can deal with restricted

access areas (like city centers) throughout the day.

The complete graph G = (V, A), with all the nodes and arcs of the real road network, has

been used for the computation, and a subset of Vc customers VVC ⊂ has been placed on that

graph. For each pair of customers, the robust shortest path is calculated. The optimization is

then initialized by considering, among all nodes, only those relative to the depot and the

customers, and by creating a set of oriented arcs Ac (with AAC ⊄) among each customers’

pair. Each arc ac∈Ac is associated with a robust shortest path, and a time dependent travel

time distribution is derived for each of such composite arcs, by considering the speed

distribution on the arcs belonging to the path. These arcs are referred also as virtual arcs, in

the sense that they encode a sequence of arcs a∈A with composite information about the

traveling times. A visualization of the procedure to compute the new travel time distributions

is shown in Figure 12.

Figure 12. The scheme of computation of traveling times on the virtual arcs
once the robust shortest path (RSP) between the customer pair has been
computed.

Note that when considering the time dependent paths case, this scheme is still valid with

the same set Ac, except that each virtual arc will have a list of paths and a time partition, so

that once the departing time is known, the proper path can be chosen and the proper travel

time distribution calculated to reflect the path followed.

 24

Computational results
A number of tests have been conducted using the data collected on the Padua road

network by the automated traffic control system “Cartesio” [20]. The system records in real

time the volumes of traffic and speeds of the vehicles, air and noise pollution data, and can

provide traffic information through different channels (such as Variable Messaging System

(VMS) panels, Radio Data System (RDS) messages or SMS messages). Logistic centers can

access “Cartesio” on the Internet.

The data consists in a set of 1,522 geo-referenced nodes and 2,579 arcs. Road types

(sections) and traffic data are measured for all arcs in rush hours (9.00 am), and for fifty of

these, every hour. From these data the speed distribution of the fifty arcs can be deduced, and

the speed distributions for all the other arcs are then deduced by using the average speed

distribution over the fifty arcs adjusted (shifted by a constant) to match the value of the rush

hour speed.

A set of a total of sixty customers and their demands is given, and for this application we

considered the depot to be located at the Interporto Padova, with opening time [8.00, 18.00]

and a fleet of 10 trucks. The model can deal with non-constant truck capacity, but no

optimization is done in this sense at this point. No customers’ time windows were specified

for this set, while the service time was set to ½ hour for all the deliveries. We partitioned the

depot opening time in four equal intervals.

Two types of experiment were run: the non-time dependent case using constant speeds

(CS) obtained for each arc by averaging the traveling time distribution, and the time

dependent case (TD).

Constant Speeds CS in TD Time Dependent
�

 <T> σ <T> σ <T> σ

test1 1.5186 0.0008 1.5255 0.0187 1.4396 0.0178 5.97%

test2 1.5558 0.0002 1.6641 0.0630 1.5042 0.0426 10.63%

test3 1.5974 0.0023 1.5784 0.0445 1.5000 0.0070 5.23%

test4 1.6270 0.0005 1.6768 0.0131 1.4973 0.0063 11.98%

test5 1.3472 0.0032 1.3750 0.0046 1.2892 0.0075 6.65%

test6 1.54005 0.00319 1.5360 0.0442 1.4652 0.0284 4.83%

test7 1.481206 0.00584 1.4061 0.0503 1.2728 0.0991 10.48%

test8 1.16595 0.01211 1.1846 0.0311 1.1185 0.0106 5.91%

test9 1.435494 0.00888 1.4305 0.0580 1.3427 0.0093 6.54%

Table 6. Comparison of the best solutions obtained for the constant speeds model
and the time dependent model.

 25

We considered for each test a sample of thirty customers extracted randomly from the

given sample of sixty. For each test, the optimization was run five times for the CS model,

and five times for the TD model, evaluating the best solution found for the CS model in the

TD context. The average total travel time <T> and standard deviation with respect to the runs,

respectively for the CS solutions, the CS solutions in the TD context, and the TD solutions,

are shown in Table 6 for each test. Times are expressed in hours, and fractions of hours. The

number of tours is always equal to two in all the cases, so it has been omitted from Table 6.

The computation time of each run was five minutes on a Pentium IV, 1.5 GHz machine.

The last column gives the difference between the <T> of best TD-solutions with the <T>

of best CS-solutions for the data considered. In other words, ∆ evaluates the level of sub

optimality of a CS-solution in the time dependent context. The average of ∆, over all the tests,

is 7.58%, (for only 30 customers), with peaks to almost 12%.

In Figure 13, an optimal solution for thirty customers is shown, using visualization

software developed at IDSIA. Information about the solution (light/yellow box) and the tours

(dark/green boxes) are also shown. Small/darker labels are the intermediate nodes’ and their

IDs, larger/lighter labels are the customers and their IDs, with arrival times, while the circle

represents the depot.

Figure 13. Visualization of a TD solution. Red labels are the intermediate nodes’ IDs, green are
the customers’ IDS with arrival times. The circle represents the depot.

 26

8. Conclusions

We have presented a time dependent model for the vehicle routing problem based on the

MACS-VRPTW. The algorithms are supported by enhanced local search procedures, adapted

to the time dependent case with a discretization model, to perform efficiently in terms of

computation times and quality of the solutions found. Advantages and issues of considering a

time dependent model are discussed, as well as the quality and feasibility of the solutions in

various cases. In conclusion, time dependent models can provide a better description in those

cases when variable traffic conditions have a considerable influence.

Acknowledgements

This work was co-funded by the European Commission IST project MOSCA: “Decision

Support System For Integrated Door-To-Door Delivery: Planning and Control in Logistic

Chain”, grant IST-2000-29557. The information provided is the sole responsibility of the

authors and does not reflect the Community's opinion. The Community is not responsible for

any use that might be made of data appearing in this publication.

References

[1] R. Montemanni, L. M. Gambardella, A. V. Donati, “A branch and bound algorithm for the

robust shortest path problem with interval data”, Operations Research Letters, 32(3), 225-232,

May 2004.

[2] C. Malandraki, M.S. Daskin, “Time Dependent Vehicle Routing Problems: Formulations,

Properties and Heuristic Algorithms”, Transportation Science 26, 185-200, (1992).

 [3] S. Ichoua, M. Gendreau, J-Y Potvin, “Vehicle Dispatching With Time-Dependent Travel

Times”, European Journal of Operational Research. 144, no. 2, 379-396, (2003).

[4] M. Dorigo, V. Maniezzo, A. Colorni, “The Ant System: Optimization by a Colony of

Cooperating Agent”, IEEE Transactions on Systems, Man and Cybernetics, part B, vol. 26, no.

1, 29-41, (1996).

[5] M. Dorigo, G. Di Caro, L. M. Gambardella, “Ant Algorithms for Discrete Optimization”, in

Artificial Life, vol. 5, no. 2, 137-172, (1999).

[6] T. Stutzle, M. Dorigo, “ACO Algorithms for the Traveling Salesman Problem”, in Evolutionary

Algorithms in Engineering and Computer Science: recent advances in Genetic Algorithms,

Evolutions Strategies, Evolutionary Programming, Genetic Programming, and industrial

Applications, P. Neittaanmaki, J.Periaux, K. Miettinen and M. Makela, (eds.), John Wiley &

Sons, 1999.

[7] T. Stutzle and H. Hoos, “The MAX --MIN ant system and local search for the traveling

salesman problem”. In IEEE International Conference on Evolutionary Computation and

Evolutionary Programming Conference, T. Baeck, Z. Michalewicz, and X. Yao, (eds), 309-314,

Proceedings of IEEE-ICEC-EPS'97, 1997.

 27

[8] B. Bullnheimer, R. F. Hartl, and C. Strauss, ”Applying the ant system to the vehicle routing

problem”, in Meta-Heuristics: Advances and Trends in Local Search Paradigms for

Optimization, I. H. Osman, S. Voss, S. Martello and C. Roucairol (eds), 109-120, Kluwer

Academics, 1998.

[9] Bullnheimer B., R.F. Hartl and C. Strauss, ”An Improved Ant system Algorithm for the Vehicle

Routing Problem”, presented at the Sixth Viennese workshop on Optimal Control, Dynamic

Games, Nonlinear Dynamics and Adaptive Systems, Vienna (Austria), May, 1997. To appear in:

Annals of Operations Research, Dawid, Feichtinger and Hartl (eds.): Nonlinear Economic

Dynamics and Control, 1999.

[10] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, “Ant system for job-shop scheduling”,

Belgian Journal of Operations Research, Statistics and Computer Science (JORBEL), 34, 39-53

(1994).

[11] D. Costa and A. Hertz, “Ants Can Colour Graphs”, Journal of the Operational Research

Society 48, 295-305, (1997).

 [12] M. Dorigo, L. M. Gambardella, “Ant Colony System: A Cooperative Learning Approach to the

Traveling Salesman Problem”, IEEE Transactions on Evolutionary Computation 1, 53-66,

(1997).

[13] L. M. Gambardella and M. Dorigo, “HAS-SOP: An Ant Colony System Hybridized with a New

Local Search for the Sequential Ordering Problem”, INFORMS, Journal on Computing, Vol. 12,

No. 3, Summer 2000.

[14] L. M. Gambardella, E. D. Taillard, and M. Dorigo, “Ant colonies for the Quadratic Assignment

Problem”, Journal of the Operational Research Society 50, 167-176, (1999).

[15] L. M. Gambardella, E. Taillard, G. Agazzi, “MACS-VRPTW: Vehicle Routing Problem with

Time Windows”, in New Ideas in Optimization, D. Corne, M. Dorigo and F. Glover (eds),63-76,

McGraw-Hill, London, 1999.

[16] C. Blum and A. Roli., “Metaheuristics in combinatorial optimization: Overview and conceptual

comparison”, ACM Computing Surveys, 35(3):268–308, 2003.

[17] G. A. P. Kindervater, M. W. P. Savelsbergh, “Vehicle Routing: Handling Edge Exchanges”, in

Local Search in Combinatorial Optimization, E. H. L. Aarts, J. K. Lenstra (eds.), 337-360,

Wiley, Chichester, 1997.

 [18] O. E. Karasan, M. C. Pinar, H. Yaman, “The robust shortest path problem with interval data”,

Computers and Operations Research, to appear.

[19] P. Kouvelis, G. Yu, “Robust Discrete Optimization and its applications”, Kluwer Academic

Publishers, (1997).

[20] Comune di Padova, IL SISTEMA CARTESIO ANALISI DEI FLUSSI DI TRAFFICO, DATI

1999 – 2000, Padua Municipality.

[21] Best solutions to Solomon problems identified by heuristics (SINTEF VRP page):

http://www.sintef.no/static/am/opti/projects/top/vrp/bknown.html. Last visited on 18-Jan-06.

