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Abstract

The Time Dependent Vehicle Routing Problem (TDVR&)sists in optimally routing
a fleet of vehicles of fixed capacity when traveids are time dependent, in the sense that
the time employed to traverse each given arc, digpen the time of the day the travel starts
from its originating node. The optimization methadnsists in finding solutions that
minimize two hierarchical objectives: the numbetaifrs and the total travel time.

Optimization of total travel time is a continuouptimization problem that in our
approach is solved by discretizing the time spaca suitable number of subspaces. New
time dependent local search procedures are alsodirted, as well as conditions that
guarantee that feasible moves are sought for igtaahtime.

This variant of the classic Vehicle Routing Problesmotivated by the fact that in
urban contexts variable traffic conditions play essential role and can not be ignored in
order to perform a realistic optimization. In timaper it is shown that when dealing with
time constraints, like hard delivery time windows €ustomers, the known solutions for the
classic case become unfeasible and the degredeaddiipility increases with the variability
of traffic conditions, while if no hard time conaints are present, the classic solutions
become suboptimal.

Finally an application of the model to a real caspresented. The model is integrated
with a robust shortest path algorithm to computeetidependent paths between each

customer pairs of the time dependent model.
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Introduction

The Vehicle Routing Problem (VRP) has been largely studiealulsecof the importance
of mobility in logistic and supply-chains management that relie®ad network distribution.
Many different variants of this problem have been formulatedprovide a suitable
application to a variety of real-world cases, with the devetopnof advanced logistic
systems and optimization tools. The features that charactiwéz different variants aim on
one hand to take into account the constraints and details pfahkem, while on the other to
include different aspects of its nature, like its dynatyitcime dependency and/or stochastic
aspects. The richness and difficulty of this type of problem, hae miee vehicle routing an
area of intense investigation.

In this paper we focus on the presence of variable traffieditions on real road
networks, like in urban environments, where these conditions catlygaéfect the outcomes
of the planned schedule. Accounting for variable travel tiregzarticularly relevant when
planning in presence of time constraints, such as deliimgy windows. Solutions obtained
without considering this variability will result in sub-optirtsalor unfeasibility with respect
to these constraints, as it will be shown in the experimental regsalion.

This study is also motivated by the recent developments oftimeal traffic data
acquisition systems. With access to these data, it is p@sseibhclude in the model dynamic
and updated information, and obtain realistic and improved solutions.

The paper is organized as follow: problem formulation and rewietlve time dependent
models; the Multi Ant Colony System is introduced for thessilaVRP, and its extension to
the time dependent case; the formulation of new time dependehséazah procedures and
related issues and discussion of issues related tontieedipendency; the remainder of the
paper is dedicated to computational results and its applicatiamseal world situation, with
the use of real traffic data and integration with a RoBisfrtest Path algorithm [1] to deal

with realistic graphs representing the urban road network.

1. Problem description

In the classic VRP with hard time windows, VRPTW, a fleewvehicles of uniform

capacity is scheduled to visit the given setNotustomers,c,, each characterized by a
demandq,, a time windowtw, =[b,e ], and a service tims,, with routes originating and

ending at a depot, whose opening and closing fimg.] is specified, and a fleet of trucks

of uniform capacityC is available. Each delivery can be done no later than tiagetime of
the customer’s time window, while if the arrival time at tustomer’s location is before the
beginning of the customer’s time window, the delivery has to waiit thiet beginning of the

time window. The service time, the time necessary to complet delivery, must have
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elapsed before it is possible to leave the location for tkedsdivery. Other assumptions of
the problem are: 1. the quantity requested by the customer is tdismratkin a single issue
and in full; 2. all tours must originate and end at the depot, witieirdepot opening time; 3.
the total quantity delivered in each tour can not exceed the truck tyapaci

The problem is represented with a directed graph, @), whereV is the set of nodes,
representing the customers and the depot, and characterized byapb®ad location, ané
is the set of oriented arcs connecting pairs of nodes, and nejimgsthe roads as straight
connections between nodes. A more complex representation will be considezetidny.

Traditionally, the optimization algorithm finds first the solutitthat minimizes the
number of tours, and then minimizes the total length, which is given Ispthef the lengths
of all tours. In this case the total length coincides withtttal traveling time. A slightly
modified problem defines for each arc a constant travelinglspeea more accurate model is
obtained, and the total traveling time (instead of the totajthd is used as the minimization

objective. This is sometimes referred to as the Constant Speedl Mode

2. Review of time dependent VRP models

The presence of diversified conditions of traffic at défdartimes of the day were first
taken into account bylalandraki and Daskin in [2] (for the VRP as well as forTi&P). On
each arc a step-function distribution of the travel time wa®doted. A mixed integer
programming approach and a nearest neighbor heuristic were used in theatigimi

Another approach to the time dependent VRP is presentedhbydc Gendreau and
Potvin in [3], where the customers are characterized bytisadét windows, that is, if the
arrival time at a customer is later than the end of thewimdow, the cost function (the total
travel time here) will be penalized by some amount. The gmtion is done with a tabu
search heuristic, and it is based on the use of an approximatioiofute evaluate in
constant time the goodness of local search moves. The model is also fafrfaratelynamic
environment, where not all service requests are known befostatieof the optimization. A
direct comparison with the model presented in [3] in not possibleubecof two main
differences in the models: 1. capacity constraints for the tiarekaot considered, and 2. the
customers time windows are used as a soft constraint. As ajcense of this, in [3] there is
no need of an optimization with respect to the number of tours (whishpigosed to be
knowna priori), and no unfeasible solutions are found. In the TDVRP model, the nurhbe
tours is an objective of the optimization, and because of the dohstfahe time windows,
unfeasible solutions can also be found.

Nevertheless in [3] the First In, First Out (FIFO) priteips introduced: if two vehicles
leave from the same location for the same destination iimgveh the same path, the one that
leaves first will always arrive first, no matter how spekdnges on the arcs during the travel.

This principle is important not only because it prevents some irgtensies (e.g. a vehicle
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could wait at some location for the time when speeds are hagidethen arrive at the desired
location before another vehicle who had left before), but also becasist will be shown
later in this paper, it allows to keep linear the time required to check forasibifity of local
search moves, as in the constant speed/classic VRP casedidisdn section).
The FIFO principle is guaranteed by using a step functiorhéospeed distribution, from
which the travel times are then calculated, instead of @ fstection for the travel time
distribution.
A typical speed distribution is shown in the following Figure 1ahis way, the traveling
time distribution (shown in Figure 1b) deriving by the speed distoibus continuous, and
since the distance between two nodes is fixed, it only depends on the time of the day when the

travel starts.

Speed distribution Travel time distribution

3

17 25

1k 2
1.5

i 1
0.¢

07 0.5

5.00 7.00 9.00 11.0013.00 15.00 17.0019.00 21.00

5.0C 7.0C 9.0C 11.0C 13.0C 15.0C 17.0C 19.0C

Time of day Time of day

Figure 1: a. Example of speed distribution; b. Trael time distribution induced by the speed
distribution (arc length of 2).

3. Ant Colony Optimization

Ant Colony Optimization (ACO) was introduced by Dorigo, Maniezzo and Colorni in [d], an
it is based on the idea that a large number of simple artifigéaita are able to build solutions
via low-level based communication, inspired by the collabordtdreavior of ant colonies. A
variety of ACO algorithms has been proposed for discrete ojiiioiz as discussed in [5],
and have been successfully applied to the traveling salesnadderpr symmetric and
asymmetric ([4], [6], [7], [12]) the quadratic assignment probl([14]), graph-coloring
problem ([11]), job-shop/flow-shop ([10]), sequential ordering ([13]), \ehiouting ([8],
[9], [15]).

ACO can be applied to optimization problems based on graphs. Thedassis to use a
positive feedback mechanism to reinforce those arcs of dgghghat belong to a good
solution. This mechanism is implemented associating pheromoris Veitle each arc, which
are then updated proportionally to the goodness of the solutions founegthirasvay the

pheromone levels encode locally the global information on the saldach artificial ant



will then use this information weighted with an appropriate Ibealristic function (e.g. for
the TSP, the inverse of the distance) during the construction of aolut

As showed by Dorigo and Gambardella in [12], this analogy hagestefl a more
elaborate and efficient computational paradigm, called theCaidny System (ACS), which
differentiates from the previous for three aspects: 1) ibecds exploration around good
solutions (local pheromone update); 2) it focuses on the found goodssjutith global
pheromone update only on the arcs belonging to the best solution fouiad;, eind 3) it
implements a new state transition rule based on the chotbe efige with a pseudo-random
proportional rulewhich tends to reduce randomness. This method has been appliedtm [12]
the symmetric and asymmetric traveling salesman problem, armredbks showed that this
method is among the best metaheuristics, especially when combitiedpecialized local
search procedures.

Solving the VRP is known to be a combinatorial NP-hard optimizatioblgm. When an
exact approach exists, it often requires large computationes §i16], and is not viable in the
time scale of hours, usually the time scale required by loigion planners. With the
development of real-time data acquisition systems, andahsideration of various dynamic
aspects, it appears more and more advisable to find high qualittiors to updated

information in sensibly shorter times.

4. The time dependent MACS-VRPTW

It has been shown by Gambardella, Taillard and Agazzi in [15] AG& can be used to
solve the VRP with hard time windows constraints (VRPTW). This appraadists in using
the algorithm called Multi Ants Colony System (MACS-VRPTWith a hierarchy of two
artificial ant colonies, each one dealing with one of the objectives of thmipgtion: the first
colony is named ACS-VEI and deals with tour minimization whileSAOME minimizes
distance. The two colonies co-operate by exchanging information thrphigfomone
updating. The MACS-VRPTW algorithm coordinates the activiiedwo colonies which
simultaneously look for an improved and feasible solution, thdt)ist solution that has a
smaller number of tours; 2) it has the same number of tours andterdangth. When a new
best solution is found it is then used to perform a global pheromone updateat both
colonies can make use of the updated information about the performanca@itkelution.

The results presented in [15] show that this method is coblpanath the best known
methods, in terms of computation time and quality of the solutions found.

In the following subsectiond.1. to 4.6 we recall the procedures used in the MACS-
VRPTW presented in [15] for self-reference. The readeiilitanmwith this model can go
directly to subsectiod.6. on Time dependeMACS-VRPTW (page 10).



4.1 Ant constructive procedure
Each ant of the colony attempts to complete a solution using fogvifad) constructive

procedure until all the customers are serviced.

The ant moves from a nodléa customer or a depot) to the npfa customer or a depot -
a depot only ifi is a customer) by choosing among the feagiblidat have not been visited
yet (except for the depot) and that do not violate anyettmstraints of the problem (skt
with the following probability distribution:

p(j) =7; th, jod (1)
where7; are the pheromones on edgg)(and hj is the local heuristic function:

_ 1
- maxG,(dij +Wt]-) mej _ta)_ INj)

h, )

where dij is the distance from, wi, is waiting time atj, and e —t, is the difference

between the arrival time @tand the corresponding end of the time window. The tixm

represents a bias factor, the number of times that a customerohdeen included in a
solution, and increases the probability of a customer of being included im sdlatiion. Also
note thatj can be a depot; in this case the tour is closed even ifubk has still some

quantity left.

Constraints:

The next locationj is considered a possible choice, if it satisfies all i following
constraints:
1. the arrival time gt t;<e; customer’s time window;

2. the quantity left on the truak; <Qeft;

3. returning time at the depot frojnonce the work is completed jatcannot be greater

than the depot closing time.

An ant uses the probability given by eq. (1) in two ways, détecinby a fixed cut-off

parametery[0,1], and a random numbeffor each stem;,J[0,1):
a. exploiting: pick thg which maximizes(j), if r<qqg
b. exploring: pick the¢ distributed ag(j), if r>qq
A typical value for qg is g5=0.9, which has been shown to give the best results for this

algorithm.



When the next locatiopis chosen, the ant step there, the ant arrival tipa@d the new ant

time t'; (the new departing time) pts updated:

t, =ty +d; 3
t'y=t, +wt, +s (4)
wheret, is the departing time fromwt; the waiting time a (if t,>e;) ands; is the service

time atj. The whole process is repeated, until a depot is chosen foexhetep or it is not
possible to find 4 satisfying the constraints. In this case the ant returtieatepot. If more
customers need to be serviced and the number of tours does nottaecerwckimum number
of tours allowed (an argument that is passed to the algorithrmew tour is initiated,

otherwise the construction procedure is complete.

4.2 Pheromones update
Pheromones can be updated either locally or globally..

Local update is performed during the ant constructive procedure in linsifg way:

r, =(-p)l; +pl, (5)

wherei andj are the indexes of the traversed arg=1/(N EDwNN) is the initial value of

the pheromonedy is the number of customersleN is the total distance of the initial

solutiong/™ found with a nearest neighbor heuristjgs[0,1] is the evaporation coefficient,
usually set tgp=0.1. This update is equivalent to a decrement of the pheromone awc {he a

j), since the pheromones are initially setto

The global update is performed once the two colonies have finisbidterations, using

the best solution found so f&td':

Iy = -0 D-ij +,0/~Jwg| (i’ j)Dl//gl (6)

whereJ , is the length ofy? .

4.3 ACS-TIME
The ACS-TIME colony has the objective of minimizing the togalgth of the solution. Using

the ant constructive procedure, a numbek @ints (usuallyk=10) search for an improved
solution, with a maximum number of tours equalrt®,., (the number of tour of the best

solution so far)and with the parametik =0 (in eq. (2)) for alj. The algorithm’s outline is

shown in Figure 2.



ACS- Tl ME( nTbest) /1 run with a max number of tours equal to ﬂTbest number of tours
/1 of the best solution so far.

whi | e (keepLoopi ng)
for each ant k

ant ( nTbest, IN=0) // constructive procedure to find a solution 4[/ and the pheromone local update

if (§ is not feasible)

try post-insertion // procedure to insert left customers in the tours of the unfeasible
solution (see 5. Local search and other considerations).

if (¢ is feasible)
run | ocal search on {/

if ( ‘Jl// < wa ) I/ better solution found

W=y

keepLoopi ng = fal se

gl obal pheronone update on l,[/gl

Figure 2. Outline of the ACS-TIME algorithm.

4.4 ACS-VEI
The ACS-VEI colony attempts to find a feasible solution vaittower number of tours

than the best (and feasibley® found so far. The best ACS-VEI solution found so far,

w"“>V® | is the unfeasible solution having the minimum number of undetiveustomers.

The algorithm also updates the tei (in eq.(2)), by incrementing it by one each time the

customer is left out of a solution. The term is reset each time an impgoVed™ solution is

found. In the ACS-VEI algorithm, the/"“>®' solution is also used to perform the global

pheromone update. The outline of the algorithm is presented in Figure 3.

4.5 MACS-VRPTW
The MACS-VRPTW algorithm initializes and coordinates the twimmies, by updating

the best (feasible) solution/? . When an ant finds a solution with a tour less, the colonies

are stopped, and two new colonies are activated with the upd#tedofanT, . The outline

est”

of the algorithm is presented in the following Figure 4, whees denote bynT(y) the

number of tours of the solutian .



ACS- VEI ( nTb -1) /I run with a max number of tours equal to nTbest, number of tours of the best solution so far.

est
n(nT,
whi | e (keepLoopi ng)

est~1) is because ACS-VE! tries to find a solution with a tour less.

for each ant k

ant ( nTbest-l, IN) /I constructive procedure to find a solution 4[/ (includes the pheromones’ local update)

if (§ is not feasible)

try post-insertion //seesection5. on post-insertion description.
run | ocal search

if ({ is feasible) /1 best solution found
W=y
reset IN for all the custoners
reset all the T; =1,
keepLoopi ng = fal se

i f (nUndel i veredCustomers( {/)<nUndel i ver edCust omer s( l,[/ACS_VEI

))

I/IACS_VEI =y Il better ACS-VEI solution found
keepLoopi ng = fal se

gl obal pheronone update with l,[/gl

gl obal pheronone update with I//ACS-VEl

Figure 3. Outline of the ACS-VEI algorithm.

begin:
find first feasible solution
init best solution and optimn zation objectives:

l//gl l/INN
nT,..=nTw") and J,a=

est™ @

initialize pheronones:
To=1/(NI JwN“) and T;=T,, for all the existing arcs.

Iterate:
while (optimzation time is not expired)

activate ACS-VEl ( NT 1)

activate ACS TIME( NT o)
while (ACS-VEI and ACS-TIME are active)

wait for an inproved sol ution, l//
Y=y
if (nT(‘//) < nTbest)

stop the col oni es

NTpes=NT(Y )

check optimzation tinme
return (9

Figure 4. Outline of the MACS-VRPTW algorithm.



4.6 Time dependent MACS-VRPTW
In the time dependent VRPTW, TDVRPTW, on each existing orieated [] A,

information about the travel time must be given to deduce e iecessary to traverse the
arc when starting the trip at a tiheThis information can be provided in two different ways:
1) a travel time distributiof;(t), which is continuous i, 2) a step-like speed distribution,

from which a continuous travel time distribution can be obtainethtegration. We use a

speed distribution;(t), defined on the time interv@t ,t.] . A step-like speed distribution on

each arc induces a partition of the time in periods of tijmde@ined by intervalstf, ... t;].

Within the intervals the speed is constant; this allawtmulate the algorithm in the time
subspaces Sas the classic VRP case. This is schematically repted in Figure 5, where

three subspaces are shown, and to simplify this representat@rpatlition of time is

assumed to be the same for all the arcs considered.

Start . o N

\ ’ é\o‘a
o ay TIME

Figure 5. The partition of the model time in subspees, and process of
construction of two tours through the time.

The pheromones can then be represented in the following way: e@chedrarc

connecting the nodes, () is associated with the time dependent distributjpn where the

indexk refers to the subspacg.3n other words, the elememtf, encodes the convenience of
going fromi toj when originating a trip fromat a timet in S.

The TDVRPTW feasible solution uses an update rule similar tdrorq. (3) to update
the tour length, but it is based on the travel time instedbeoflistance. In this formulation,

the optimization algorithm must find the solution that minimizestimaber of tours and then

the total traveling time. The probability distribution used Hy ants during tour construction
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to select the next customeof the feasible sek, corresponding to eg. (1), depends now on the

departing time from. The rule is thus modified with:

Pj = T [ﬂlj (tq) jod @)

wheretyTk is the departing time from(e.g. the time the work ais completed) anH is

then the corresponding time index, while:

h; (ty) = g ®
max( (T, (t;) +wt;) e, -t,)—IN;)

is the local heuristic functionl; (t,) is the travel time when departing frarat the time
ts, Wi is waiting time af, ande; —t, is the difference between the arrival tim¢ @hat ist.=

ta+T; (t;)) and the respective end of the time window.

The constructive procedure will proceed in the same widgfise, but all occurrences of
the concept of distance will be replaced by the concept oflimguame. In the same way, we
will deal with total traveling time, instead of the total lengthhaf $olution.

We note that in the model presented here there is only one depat,invktile original
implementation of the MACS-VRPTW the depot was replicatechasy times as the current
maximum number of tours (the number of tours of the best solwibdepots having the
same location). In the original algorithm, at each new towirtaal depot is picked-up
randomly, and then the first step is computed with eq.(1), whefeédaal depot has its
own pheromone distribution. This mechanism is very effective tddurtliversify and
improve the search, and it has been adapted in the Time Dependsah & VRPTW
(TDVRPTW) where there is only one depot in the model formulatRefore starting the
computation of a new tour, a setro€ustomers is created, wherés the number of tours left

to complete (that i1 = nT,, —NT(@.urent) ), Of Customers not visited yet, that have the

highest value of the probability as given by (1). Within this set thenirgtedistomer to visit
is picked randomly. In this way a mechanism similar to tipdicaion of the depots of
MACS-VRPTW is provided.

Note that each arc is an oriented arc, so in this model we coasidea; , and similarly

ji ?
for their travel times distributions. It is very common indebd situation where speed
sensibly differs according to the direction of travel; ecgds connecting city centers with
residential areas are congested in the mornings in theidirexdftdowntown, and vice-versa

in the afternoon.

5. Local search and other considerations

Local search procedures have been proven to be very useful mvimpthe quality of

the solution by evaluating if small modifications can retutvetier solution. The two basic
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operations we can perform in a local search procedure applied ¥RP arel. insertion of

a new delivery in a tou. removal of a delivery from a tour. In the case of the TDVRP
since both operations generate a time shift for all the custofokowing an insertion or a
removal, the travel times from a customer to the next cangeh and so delivering times. In
particular also the removal of a customer can create a delay.

We present here a method based on the use pifish variable, as discussed by
Kindervater and Savelsbergh in [17], adapted to the time deperadentThis variable, called
the slack time is stored for each delivery (and kept updated) and indicatesldrgvthe
delivery can be delayed so that none of the time windows of thewinpf customers
(including the depot closing time) will be missed.

The slack times are calculated backwards, starting Wiéhehding depot, once a tour is

completed, by:
§ =min(s,,,§ —at) )
wherei is the customer’s index in the towaf; is the arrival time at The slack time is

calculated starting with the last node (the demgt):=t. —t. the depot closing timé, less

the time when the tour entls

Because in the time dependent model any time shift produces aedhahg travel time,
the slack time of the next custongyr needs to be appropriately adjusted. In other words,
one needs to calculate the maximum delay before leavkegeping into account that within
this delay the travel time might change.

This issue has been solved as followg i the function representing the arrival time at

the next location+1, the maximum delag,; on arrival time at, must satisfy:

g(at +A)-g(at)<s, (10)
The possibility of back-propagating the delayiafl is then guaranteed if we can
univocally assign a value tA,, no matter what speed distribution is set on the arc and the

starting time from. From equation (10), providegiis invertible, we have:

A; =97 (s, +o(at)) —at, (11)

To prove that functiorg is invertible, we need to prove that it is continuous and
monotonic. The continuity is guaranteed by the fact that the atiiaal is the sum of the
departing time and the travel time. The monotonic behavior esjuithat for

t'>t = g(t') >g(t), which is guaranteed by the FIFO principle that makesiteal times

monotonically increasing with the departing times, as shown in Figure 6.
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Figure 6. The arrival time function, as a monotonic
increasing function of the departing time.

The invertibility of g provides the possibility of back propagating the slack tiraes
then to test the feasibility of a move in constant time, liyguan equation corresponding to

equation (9) but with the back propagated slack time:
s =min(A, e —at,) (12)

where A, is given by equation (11).

Once we have proven that there is a unique value when back-piingagalelay, there
are two ways to computA, . One is to use an approximation of the functipr, the other
one is an exact method, which we have adopted in our model. It condisding the latest

departing timeldt, relative to the customey so that arrival time ait+ 1 coincides with the
latest arrival timeg.;. Onceldt; is known, and the arrival time &1, at.;, corresponds to
the departing timalt, (stored), the value oA, oni will be simply given by:A. = Idt, - dt. .

The procedure to find the latest departld is shown in Figure 7. It computes the latest

time at which the customémust be left in order to arrive at the next custom&rno later

than its upper time window. The procedure then takes as an argimaeanrtival timeat,; =
e.1 , and back-propagates it to calculdté;, , where the index is referring to the time

subspaceS$; corresponding tat.; .
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cal cul at eDepartingTime (ati+1) // returns the departing time at i
initialize:
k = get Ti nel ndex( ati+q)
dtl = ab
remai ni ngDi st ance = di,i+1 /| the distance to be covered betweeni andi +1

di st anceCoveredl nTS = (atjyq - tf) * speeds[ k] //the distance traveled in the time subspace

/] thisis the distance covered in the last time subspace Skwhere tfis the time of the lower

/1 limit of the interval defining the subspace when the speed changes

/'l go backward over the time subspaces and calculate the departing time
whil e ( remaini ngDi stance > di stanceCoveredl nTS & k>0)

K- -

remai ni ngDi st ance -= di st anceCover edl nTS
S

dt = t

di st anceCover edl nTS = (tf - tif_l) * speeds] K]

/I final adjustment
d'[i -= remai ni ngDi stance / speeds[K] /I last time subspace
return df

Figure 7. Procedure (defined within an arc object)to calculate the departing time from the
starting node once the arrival time at the ending ade is known.

Neighbors’ set

To maintain scalability on large instances, efficiency angrave the speed of the
algorithm, it is very useful to introduce for each customex set of neighbors. This is mainly
motivated by the fact that in an optimized solution there willende trips between distant
locations, and this consideration sensibly speeds up the constructiensafiition and local
search procedures.

The set of neighbors is computed before starting the optimigzatind it is composed the
of n closest customers, in the sense of spatial-temporal closeness, that is céstartttime

windows overlapping. The move from nod® j is possible if, in the worst case, leaving at

the latest time ag + S (end of the time window plus time when the work is complete3, it i
possible to reach the neighbipat a timet<e, . On the other hand, the earliest departing time

fromiis b +s; thus, if wait time at; is too long, the customer is excluded by the neighbors

set. The maximum wait is set to be a fraction (usually 1/4) of e liorizon.
Only arcs among neighbors are created for the problem, while ®estbmer has a
connecting arc to the depot, and the depot is connected to all thenetst Note that the

neighbor’s relationship is not symmetric. The numbers of neighbors is usetaiby30 to 50.

Description of the local search procedures
Once we have guaranteed the existence of the fungfioand therefore the validity of
the procedure of Figure 7, we present here the local searchdpreseve have used. Note

that the analysis of the feasibility the first operatioalvgays performed in order to verify the
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neighbor’s relationships between the removed/inserted custoametshis can be done in
0O(1), thanks to the use of appropriate sorted/indexed lists.

To evaluate the goodness of a move, in the time dependent corttexe all traveling
times on the following arcs can in principle be affectedhgyrhove, we proceed as follows.
First, a local evaluation if any improvement is found for adl éincs affected by the change;
second, the overall effect of the change is evaluated onethiy created tour(s) checking if
the move has actually provided an improvement. A schematic ouslishowed in the

following Figure 8.

TD Local search:

check feasibility Q(1):
nei ghbor hoods rel ati onship
slack tinmes
ot her problemtine constraints (quantity avail abl e,
arrival tines if the slack tinme is not usable)

check local inprovenments (Q(1l), for operations 1. and 2.
bel ow, involving single customers, cached parti al
travel time for 3. 4. 5.).

check gl obal inprovenent: for the newy created
tour(s), all tines followi ng a change need to be
recal cul ated (Q(n)).

Figure 8. Outline of the time dependent local sealc

For each operation, checks are done also on the available igsaatid quantities
delivered whenever performing exchanges of one or more customers betwsen to
The local search procedures used here are the following.

1. customer relocationthe procedure evaluates the advantage of moving the delivary t

customer in a different tour, or at a different moment/fmsitn the same tour (in-tour

relocation). This is done for all the tours and positions. Twal levaluation consists in

evaluating if the added arcs to the customer have a smallet time than the removed ones,
and the insertion point that provides the maximum advantage is selected.

2. customer exchangdérom a tour to another, with one customer of the other tour. The

best customer (and respective tour) is selected such to méntimé variation in total travel
time of the newly obtained solution.

3. in tour 2-k opteach customes; (i=0,...,d-2, whered is the number of deliveries in the

tour) and all the following customees(with j=i+ 1,...,d-1, wherg=i would be equivalent to
a customer in tour relocation) in the same tour are checkezbtid the tour obtained by the
inversion of the branch fromto j:

Ci1 - G - CGi—...> G - G
provides an improved solution, where the nodgsand c;.; are the depot =0 orj=d-1.
Note that on the customers of the bragch ¢.; —...— ¢ no check on the slack time can be

done, so only a time windows constraints check is donec@rthe slack time can be

15



checked, once the arrival time has been recalculated. This alfowes eliminating crossings
in the tours.

4. branch relocationconsists in inserting a branch of a tour in another tour. For each tour

t;, tries are made exhaustively for all the customeasdj (with j=i+ 1,..., d;-1, wherej=i
would correspond to a customer relocation) trying all insertion gbitwith h=0,...,d,»-1) of
the second tous (over all the other tours), to see whether:

newt; : Gy — G

newt,: €y » G —...» G - G
is feasible (including quantity checks) and provides an improvedicululf such an
improved solution is found, the process continues with the next dbawing t; in the tour
list. Note that again the slack time can only be cheok.pandc,, while for the customers
—...— G only a time windows constraint can be done. If such relocatidound and it is
better, the relocation is performed, and tour dft@n the tours’ list) is considered.

5. branch exchangeconsists in exchanging 2 branches of variable length among two

tours. For all the customers pairandj, with j=i,..., di-1 of the first tourt;, and all the
customerd andk, with k=h+1,..., d,-1 (indeed forj=i andk=h it would be equivalent to a
customers exchange) of the second tguare examined to see if the branch exchange:
newt;: Gy — Ch—...» Ck— Gy
newt,: Chy » G —»...—» G - Gt
is feasible (including quantities checks) and provides a shoater time for the 2 new tours.
If such an exchange is found the next tour followtin¢in the tours’ list) is considered. The
second tour examined has an index greater than the firah thie symmetry in the operation
of the exchange. Note that for operations 4. and 5. the local check can not be done.

6. post insertion:it is used when a solution found is not feasible, and a number of

customers still need to be scheduled. In this case we tryafbr @istomer a post insertion,
that is inserting the customers one by one in the tour that mgsnthe increase of travel
time, and that does not violate the constraints of the problem.ofdwr in which the
undelivered customers are inserted is chosen probabilistibalbed ong, the quantity
requested, so those with a higher demand will be more likely to be consideted f

7. shuffle the tours ordethis simple operation consists in randomly changing the order in

which the tours are stored in the solution list, and it is doe@dare that any of the previous
operation is not dependent on the order in which tours are stored.

A local search cycle consists in repeating steps 1. to 7. im @wita the exception of 6.
that is performed on unfeasible solutions). This order is &iasidue to the increasing
difficulty and complexity level of the operation, and consequentpetéorm a more complex
operation assumes that the solution has been already optimizedesjiect to simpler
procedures, e.g., it is advisable to check for tour 2-k opt (crosbafgye checking for a

branch exchange. The complete procedure is repeated a mininume ¢ifne for a generic
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solution, and a minimum of 5 times for the best solution. Addititoedl search cycles are
performed every time that any type of improvement has been foutie iprevious cycle,
until no more improvements are found. Because of these repetitiensfféct of the order in
which each operation is carried out, becomes negligible. Theteffaf local search
procedures have been extensively discussed in [13], to shoth¢hadmbination of an ACS
and Local Search procedures gives better results withategp@ther heuristics combined
with the same procedures. The average improvement due to learah$has been quantified
in a range 10-20%. In particular, for the sequential ordering prof&@P), that is an
asymmetric TSP with precedence constraints, in [8] @rted that Ant Colony System
(ACS) is better than genetic algorithm in combination withsdwae local search. This is due
the fact that ACS produces starting solutions that are easilyoved by the local search
while starting solutions produced by the genetic algorithm quialhg the local search to a

local minimum.

6. Experimental results

Some experiments have been conducted to show some of the behavims, asd
advantages of the use of this model.

Constant Speed benchmark tests
The Solomon’s problems are used to measure the performanceMAC®-TDVRPTW

algorithm, when applied to the solution of the classic cas@nAtant speed distribution was
used for all the arcs, with value set to 1, so that optimiziavel times is equivalent to
optimize distances.

The Solomon’s problems consist in 6 groups of problems, named R1, C1, RC12,R2,
and RC2. In each group there are 8 to 12 problems; in a group, customerthdaame
location and demand, but different time windows (usually broader &gmoblem to the
following).

For each problem, the optimization is run three times (shikdé usual number of runs in
these benchmarks), and the average number of tours and distaatmiligted. Once all the
problems of the group are solved, the average number of tours amtelistaalculated over
the group at different times, up to 30 minutes (1800 seconds}eThsts were run on a

Pentium IV 2.66 GHz, and results are shown in the following Table 1.

R1 C1 RC1 R2 Cc2 RC2
time (s) <nT> <Dist> | <nT> <Dist> <nT> <Dist> |<nT> <Dist> |<nT> <Dist> |<nT> <Dist>
100 12.78 1216.38 | 10.00 830.48 | 12.63 1406.58 | 3.15 1002.79 | 3.00 596.193.63 1187.41
300 12.61 1209.65 | 10.00 828.82 | 12.29 1383.83 | 3.15 984.39 | 3.00 592.97|3.58 1168.63
600 12.61 1203.05 | 10.00 828.41 | 12.25 1374.49 | 3.12 977.15 | 3.00 591.06 | 3.54 1155.86
1200 12.61 1199.36 | 10.00 828.38 | 12.13 1373.18 | 3.09 972.31 | 3.00 590.49|3.46 1156.77
1800 12.61 1196.27 | 10.00 828.38 | 12.04 1372.71 | 3.09 966.95 | 3.00 590.49|3.38 1155.74

Table 1. Benchmark results in time on Solomon proleims. The average number of tours and
distance were obtained at different times, to evahte the speed and performance of the
algorithm, and averaged over 3 different runs for ach family of the problems (R, C, RC).
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A comparison with the analogous original results reported in [15] st@tsit the end of
the optimization (iteration at time 1800), the average deviatiposer all the families and
the 3 runs, in tours and length of the MACS-TDVRPTW solutions fifwenoriginal MACS-
VRPTW solutions is &nT>= 0.08 $J>= -3.04. This means that even if the tours overall are
shorter, the number of tours is slightly higher, possibly duegerarental errors and that the
new model is dealing with an higher dimensional space thasdlmmwn its computational
speed.

The best solutions we have found are also compared with th&utabbest solutions
identified by various heuristic algorithms (as reported in)[2Ihese solutions have been
obtained in an arbitrary computation time, and they are the abdwmbst known solutions
found so far. This comparison shows that the results obtained by M&ARPIWTD are
comparable to these solutions; moreover, the flexibility of ouordhgn is shown by the
consideration that it is compared against several differethods, and no single algorithm
can find them all at once, even in an arbitrary time. As befloeeaverage deviatianover all
the families of the best solutions found by this model from thelalesbest solutions is
<6nT>=0.21 |J>= -5.81. The results are shown in Table 2.

R1 C1 RC1 R2 Cc2 RC2
<nT> <Dist> | <nT> <Dist> <nT> <Dist> |<nT> <Dist> |<nT> <Dist> |<nT> <Dist>
MACS-DTVRPTW best 12.33 1199.91 [ 10.00 828.38 [ 11.88 1359.84 | 3.09 946.21 | 3.00 589.50| 3.38 1124.63
absolute best 11.92 1209.89 | 10.00 828.38 | 11.50 1384.16 | 2.73 951.66 | 3.00 589.86 | 3.25 1119.36

Table 2. Comparison between best MACS-VRPTW solutiss found in 3 runs of 1800 seconds
each, and absolute best solution identified by anyeuristics ever, as reported in [21].

Again the discrepancy in the number of tours, that is slightly higheur case, can be also
due to the more complex structure underlying MACS-VRPTWTD, wlidtealing with an

higher dimensional space that makes it run more slowly.

Classic solutions in atime dependent context
When solutions for the constant speed model are used ireadépendent context, their

feasibility and optimality might considerably change, and thangh is proportional to the
variability in speed distribution (that is, to traffic conditions).

In this simple experiment we used five different 4-valued speed distrilsutif the type
[v1, v, 5, 4] With h=1,.., 5, and defined over four equal intervals of time dividing tipetde
time window, and such that the average speedvis=xX0 for allh. The values used are

defined in Table 3, where the typel,..., 5 is used to characterize the different types of

roads.
| vl V2 v3 v4
type 1 0.90 1.10 0.80 1.20
type 2 0.80 1.20 0.90 1.10
type 3 0.70 1.30 0.50 1.50
type 4 0.60 1.40 0.70 1.30
type 5 0.50 1.50 0.60 1.40

Table 3. Speed distribution used for the evaluation
of the classic solutions in a time dependent
context.
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In the tests, a further variatignis introduced to progressively increase the variability in
the speeds distributions tay, »:+ Vv, u- Y, v+ y]n for h=1,..,5, while maintaining the average
speed ¥>=1.0, and a sensible comparison with the solutions of the Solomonmgoislestill
possible. A total of six tests were conducted, each for the Solombleprs, R1, C1, RC1,
R2, C2, and RC2. For each group, only the first problem is considerad,theione with the
tighter time windows. For each problem, ten different randomrasgigts of the five speeds
distributions on the arcs were done. For each of the assignmenptiimézation is repeated
ten times for thirty seconds, and then the degree of unfégsitile percent of missed time
windows) of the classic best solution known for the problenalisuated (mTW), and then
the value ofyis increased. The average percent of missed time window&\&#%l and its
standard deviation has been calculated over the ten differeatl issignments, and then it
has been averaged over the six groups. Similarly the totalgeveavel time <TT_CT> for
the constant time model, and the <TT_TD> for the time depémaeael (with their standard
deviations) has also been calculated.

The results are shown in the following Table 4.

y <mTW>%  <std>mTW% <TT CT>  <std>TT CT  <TT TD> <std>TT_TD

0 9.37 2.85 1438.26 26.56 1587.02 68.97
0.1 15.80 371 1539.81 35.29 1778.93 94.95
0.2 27.90 4.76 1623.68 36.68 2010.29 96.20
0.3 4477 5.42 1780.74 50.87 2415.42 107.29
0.4 59.10 5.55 2006.24 72.94 3006.92 171.26

Table 4. Test of unfeasibility. Progressively incrasing the degree of
variability v, in the variation of traffic conditions, the percert of missed time
windows of the optimal solutions known to the 6 repesentative Solomon
problems is calculated.

The average percent of missed time windows is much higher iremdsproblems (like C1
and C2, with values up to 95%) than for random problems (like in RCZRandvith a
maximum around 40%). Also the gap in travel time increases eetie classic solutions
and the new solutions found, due also to the fact that the riathoss never miss any time
window, while the classic solutions are increasingly unfeasildgenotice that in some cases
the random assignments of the speeds result in a problem thesioisable also for the time
dependent model. In this case we progressively anticipatdefherrting time from the depot
(at earlier time than the opening time, up to 0.5 times of tpetdgpening window), till a
feasible solution is found. In most cases it is possible to make the prabieils.
The main conclusions of this analysis are then:
1. the degree of unfeasibility increases with the increafs¢he degree of time-
dependency.
the classic solutions, even if they might seem to be better, are usofahsible.
if the classic solutions are feasible (large or no custeriare windows), they are

suboptimal. This will be shown and discussed in par.
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Time dependent solutions
The aim of these experiments is to see if the optimizatiorepsokeeps into account the

system variable traffic conditions .

First, we have created ad-hoc problem, using the following settings. There are two
time intervals for the speeds distributions, and all the laage the same speed distribution (a
two value speed distribution). The customers’ locations are chasdinat there are two
subsets of customers: those that are fairly close onadiher one and those that are (in
average) as double as distant. In this experiment we usedoftgsaeh groups of customers.
For this experiment the delivery time windows were removed, andce times properly
chosen, since being hard constraints factors would have thetefféde the presence of time
dependency for the analysis we are interested in.

The experiment consists in using two distinct 2-valued spegibdifons on all the arcs:
one with a profile of type LOW- HIGH (meaning the first period with a low value for the
speed, the second with high value of the speed), and the other one of the type>HIGW.

Figure 9 shows that three tours are formed but the orientation of the towsried. This
is evidently a consequence of the different speed distributiomn loptimized solution, the
tours are formed in a way to use the high speed to compleientiey legs, and the low speed

to complete shorter legs.

Figure 9. Best solutions found, respectively relate to a LOW - HIGH speed
distribution (left), and relative to a HIGH - LOW speed distribution (right). Note
that the orientation of the tours is inverted.

The same type of experiment has been repeated for a largplesdan the all the
Solomon problems, with no time windows to remove the effect of the constraints.

For this analysis, two main families of 4-valued speed distabsitwere used, the one in
Table 3 and the other resembling a more realistic situation, presemtd@ble 5. This

distribution contains arcs that are bottlenecks (type 1, allvagy), the inflows (type 2, busy
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in the morning hours), those that are busy at mid day (type 3),tthatsare outflows (type 4,

busy in the evening), and those that are seldom traveled (type 5).

vl V2 v3 v4
type 1 1.00 1.00 1.00 1.00
type 2 1.00 1.00 3.00 3.00
type 3 3.00 1.00 1.00 3.00
type 4 3.00 3.00 1.00 1.00
type 5 3.00 3.00 3.00 3.00

Table 5. Another speed distribution used to
calculate the distribution of the speed in relatiorto
the arc length.

For each of the two families of speed, we have consideredxHg&obmon problems
without time windows. For each, we made ten different randomgrasents of the speed
distribution to the arcs, and for each, the ten optimizationwnese done for five minutes on
a 2.66 GHz Pentium IV. At the end of each optimization, forkbst solution found, the
distribution of the binned arc length as a function of the number of times and the speed the a
was traveled was calculated. The results over the six Solormbiteprs for each of the two

families of speeds are shown respectivelFigure 10andFigure 11

bin <speed> times traveled std speed o
1 0.97 100.00 0.06 Average speed per arch length binning
2 1.04 100.00 0.06
3 1.09 99.83 0.08
4 113 98.67 0.10 1.40 4
5 1.14 94.50 0.15 1.20 |
6 1.17 93.17 0.17
7 1.14 75.83 0.24 1.00
8 1.17 64.17 0.24 A
9 1.23 34.33 0.25 5 0.80
10 1.23 30.50 0.26 S 0.60
2 0.
11 1.23 17.17 0.24 & v
12 1.22 7.00 0.21 0.40 |
13 1.19 4.33 0.11
14 1.02 2.50 0.05 0.20 4
15 0.42 1.00 0.04 L
16 0.69 150 003 0.00 G 18T
17 0.25 0.17 0.00 1 3 5 7 9 11 13 15 17 19
18 0.00 0.00 0.00 :
19 0.00 0.00 0.00 binned length
20 0.00 0.00 0.00

Figure 10. Statistics on the average speed distriian in function of the binned arc length,
for the speed distribution of Table 3
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bin <speed> times traveled std speed
1 262 100.00 0.19 Average speed per arch length binning
2 2.87 100.00 0.11
3 2.96 100.00 0.07
4 2.96 100.00 0.08 3.50 1
5 2.98 96.00 0.05 3.00 4
6 2.99 97.33 0.03 ﬂ’“""""""‘
7 2.99 92.17 0.04 2.50
8 3.00 87.50 0.01 A
9 2.99 76.17 0.03 J 2.00 4
10 3.00 62.17 0.04 a 150 4
11 3.00 46.67 0.04 Vi
12 3.00 29.67 0.01 1.00
13 2.99 25.33 0.05 \
14 3.00 13.33 0.03 0.50
15 2.99 7.00 0.05
16 3.00 4.83 0.03 0.00
17 3.00 2.67 0.02 1 3 5 7 9 11 13 15 17 19
18 0.00 0.00 0.00 .
19 0.00 0.00 0.00 binned length
20 0.00 0.00 0.00

Figure 11. Statistics on the average speed distribian in function of the binned arc length,
for the speed distribution of Table 5.

The two graphs show that the algorithm is favoring routes withelolags in periods
when speeds are higher, and shorter legs in periods when the sjgeledgearThere is a tall
effect in Figure 10 due most likely to the fact that ssmées have to be terminated due to

the capacity constraint.

7. Application to areal road network

In this section we present the application of the MACS-TDWRPT a real road
network. Real data obtained from the Padua logistic distritheifveneto region of Italy, are
used in this case study.

The customers are a set of nodes that is a subset of abdkes of the graph representing
the road network of Padua. Paths connecting each pair of custoreedsto be calculated.
Since the time dependent nature of this model, these paths aréndipleralso time
dependent.

There are two alternatives: 1. calculate the shortest patlise fly, that is, at departure
time from a location to the next; 2. store one or a set dfsptitat represent a suitable
approximation of the problem, so that the proper pre-calculatédfrzan the list will be
selected given the departing time.

The first option would imply the added computational effort to cateuht each location
the paths and travel times for going to all the next posséiining locationg when
constructing the probability distribution of eq. (6). For this reasonhave initially adopted
the second method, pre-computing the shortest paths among all theensstpairs with a
robust shortest path algorithm [20]. A more accurate extensionsafngthod involves a time
dependent interval graph and a set of time intervals (computed for each arctnhshpath

can be considered fixed. In this way, between each pairs of nodesatbeld be a set of
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paths, depending on the time of the day the trip is initiated. &kiiension has been
implemented and applied to perform a scenario analysis, direanideal with restricted
access areas (like city centers) throughout the day.

The complete grap® = (V, A, with all the nodes and arcs of the real road network, has
been used for the computation, and a subs¥t @ustomers/. UV has been placed on that
graph. For each pair of customers, the robust shortest path iktmdcd he optimization is
then initialized by considering, among all nodes, only thoseivel& the depot and the
customers, and by creating a set of oriented Agcgwith A. J A) among each customers’
pair. Each ar@cUA. is associated with a robust shortest path, and a time deperaieit t
time distribution is derived for each of such composite arcscdnsidering the speed
distribution on the arcs belonging to the path. These arcs areecefdso avirtual arcs in
the sense that they encode a sequence ofaai&swith composite information about the
traveling times. A visualization of the procedure to complentew travel time distributions

is shown in Figure 12.

L node

L customer
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'|.+
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=

Figure 12. The scheme of computation of travelingirhes on the virtual arcs
once the robust shortest path (RSP) between the domer pair has been
computed.

T L | T T
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Note that when considering the time dependent paths case, thisesishstill valid with

the same seA, except that each virtual arc will have a list of pathsatidhe partition, so

that once the departing time is known, the proper path can be chusd¢heaproper travel

time distribution calculated to reflect the path followed.
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Computational results
A number of tests have been conducted using the data collectdue dPatiua road

network by the automated traffic control system “Cartefd6]. The system records in real
time the volumes of traffic and speeds of the vehicles,rairrise pollution data, and can
provide traffic information through different channels (suchvasable Messaging System
(VMS) panels, Radio Data System (RDS) messages or SMSages). Logistic centers can
access “Cartesio” on the Internet.

The data consists in a set of 1,522 geo-referenced nodes and 2&78aad types
(sections) and traffic data are measured for all arcs intrasis (9.00 am), and for fifty of
these, every hour. From these data the speed distribution of yharfift can be deduced, and
the speed distributions for all the other arcs are then dedwugcaising the average speed
distribution over the fifty arcs adjusted (shifted by a constanthatch the value of the rush
hour speed.

A set of a total of sixty customers and their demands engiand for this application we
considered the depot to be located at the Interporto Padova, with opierén@.00, 18.00]
and a fleet of 10 trucks. The model can deal with non-constack tapacity, but no
optimization is done in this sense at this point. No custdrtiere windows were specified
for this set, while the service time was set to %2 hourlfdaha deliveries. We partitioned the
depot opening time in four equal intervals.

Two types of experiment were run: the non-time dependent case amiatant speeds
(CS) obtained for each arc by averaging the traveling timgikdison, and the time

dependent case (TD).

Constant Speeds CS inTD Time Dependent A

<T> o <T> o <T> o
testl 1.5186 0.0008 1.5255 0.0187 1.4396 0.0178 5.97%
test2 1.5558 0.0002 1.6641 0.0630 1.5042 0.0426 10.63%
test3 1.5974 0.0023 1.5784 0.0445 1.5000 0.0070 5.23%
test4 1.6270 0.0005 1.6768 0.0131 1.4973 0.0063 11.98%
test5 1.3472 0.0032 1.3750 0.0046 1.2892 0.0075 6.65%
test6 1.54005 0.00319 1.5360 0.0442 1.4652 0.0284 4.83%
test7 1.481206 0.00584 1.4061 0.0503 1.2728 0.0991 10.48%
test8 1.16595 0.01211 1.1846 0.0311 1.1185 0.0106 5.91%
test9 1.435494 0.00888 1.4305 0.0580 1.3427 0.0093 6.54%

Table 6. Comparison of the best solutions obtainetbr the constant speeds model
and the time dependent model.
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We considered for each test a sample of thirty customeracted randomly from the
given sample of sixty. For each test, the optimization wadivartimes for the CS model,
and five times for the TD model, evaluating the best solutond for the CS model in the
TD context. The average total travel timE=<and standard deviation with respect to the runs,
respectively for the CS solutions, the CS solutions in thecdildext, and the TD solutions,
are shown in Table 6 for each test. Times are expressedrs, laod fractions of hours. The
number of tours is always equal to two in all the cases, s ibden omitted frorfable 6
The computation time of each run was five minutes on a Pentium IV, 1.5 GHz machine

The last column gives the difference between the &f best TD-solutions with theT®
of best CS-solutions for the data considered. In other wévasjaluates the level of sub
optimality of a CS-solution in the time dependent context. TheageeofA, over all the tests,
is 7.58% (for only 30 customers), with peaks to almost 12%.

In Figure 13, an optimal solution for thirty customers is shown, usisgalization
software developed at IDSIA. Information about the solution (giiow box) and the tours
(dark/green boxes) are also shown. Small/darker labels amt¢hmediate nodes’ and their
IDs, larger/lighter labels are the customers and their \With arrival times, while the circle

represents the depot.

Map Information (x| | Tourim z

Mumber Of Tours 2 ?i;ziz:oen::? :‘33
Total Travel Timealh) 1.49330 Start Time 2
F 14 3674 Total Distancedmm) 66035 End Time 157337

Total Working Timethy 15
Total Waiting Timath) O
Total Quantity Lefikg) 542

Trawel Time(h) 0.733714
Total Distan cedm) 224584
Waiting TimeaCh) u]
Woking Timeh) 7

Truck capacitythg) 1400
Remanining @ kgl 374

ta E@13.7923

Tour D 1

No. Deliveries 16

First customer 251
Start Time 800662
End Tima 17 GEE3
Trawel Time(h) 0759667
Total Distan celm) 32454
Waiting TimeaCh) u]

‘Woking Time(h) g
Trudk capacitythg) 1500
Remanining Q (kg) 162

e @10.588 ]

Eis T

457 £13.9303

354 @9.50811
360 @&14.521

Figure 13 Visualization of a TD solution. Red labels are th intermediate nodes’ IDs, green ar
the customers’ IDS with arrival times. The circle epresents the depot.
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8. Conclusions

We have presented a time dependent model for the vehicle routingmrobised on the
MACS-VRPTW. The algorithms are supported by enhanced localrspescedures, adapted
to the time dependent case with a discretization model, forpeefficiently in terms of
computation times and quality of the solutions found. Advantages arebis§ considering a
time dependent model are discussed, as well as the qualitgasidility of the solutions in
various cases. In conclusion, time dependent models can provideradbstigption in those

cases when variable traffic conditions have a considerable influenc
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