Bibliography next up previous contents
Next: About this document ... Up: No Title Previous: Acknowledgments

Adleman:79 L. Adleman. Time, space, and randomness. Technical Report MIT/LCS/79/TM-131, Laboratory for Computer Science, MIT, 1979.

Allender:92 A. Allender. Application of time-bounded Kolmogorov complexity in complexity theory. In O. Watanabe, editor, Kolmogorov complexity and computational complexity, pages 6-22. EATCS Monographs on Theoretical Computer Science, Springer, 1992.

Allender:89 E. Allender. Some consequences of the existence of pseudorandom generators. Journal of Computer and System Science, 39:101-124, 1989.

BarrowTipler:86 J. D. Barrow and F. J. Tipler. The Anthropic Cosmological Principle. Clarendon Press, Oxford, 1986.

Barzdin:88 Y. M. Barzdin. Algorithmic information theory. In D. Reidel, editor, Encyclopaedia of Mathematics, volume 1, pages 140-142. Kluwer Academic Publishers, 1988.

Beeson:85 M. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, Heidelberg, 1985.

Bell:66 J. S. Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38:447-452, 1966.

Bennett:88 C. H. Bennett. Logical depth and physical complexity. In The Universal Turing Machine: A Half Century Survey, volume 1, pages 227-258. Oxford University Press, Oxford and Kammerer \& Unverzagt, Hamburg, 1988.

Bennett:00 C. H. Bennett and D. P. DiVicenzo. Quantum information and computation. Nature, 404(6775):256-259, 2000.

Blum:89 L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP completeness, recursive functions, and universal machines. Bulletin AMS, 21, 1989.

Blumer:87 A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam's razor. Information Processing Letters, 24:377-380, 1987.

Bohm:93 D. Bohm and B. J. Hiley. The Undivided Universe. Routledge, New York, N.Y., 1993.

Boskovich:1755 R. J. Boskovich. De spacio et tempore, ut a nobis cognoscuntur. Vienna, 1755. English translation in \citeBoskovich:1966.

Boskovich:1966 R. J. Boskovich. De spacio et tempore, ut a nobis cognoscuntur. In J. M. Child, editor, A Theory of Natural Philosophy, pages 203-205. Open Court (1922) and MIT Press, Cambridge, MA, 1966.

Bostrom:00 N. Bostrom. Observational selection effects and probability. Dissertation, Dept. of Philosophy, Logic and Scientific Method, London School of Economics, 2000.

Bremermann:82 H. J. Bremermann. Minimum energy requirements of information transfer and computing. International Journal of Theoretical Physics, 21:203-217, 1982.

Brouwer:07 L. E. J. Brouwer. Over de Grondslagen der Wiskunde. Dissertation, Doctoral Thesis, University of Amsterdam, 1907.

Burgin:83 M. S. Burgin. Inductive Turing machines. Notices of the Academy of Sciences of the USSR (translated from Russian), 270(6):1289-1293, 1991.

Burgin:91 M. S. Burgin and Y. M. Borodyanskii. Infinite processes and super-recursive algorithms. Notices of the Academy of Sciences of the USSR (translated from Russian), 321(5):800-803, 1991.

Cajori:19 F. Cajori. History of mathematics (2nd edition). Macmillan, New York, 1919.

Calude:00 C. S. Calude. Chaitin $\Omega$ numbers, Solovay machines and G"odel incompleteness. Theoretical Computer Science, 2000. In press.

Calude:99 C. S. Calude and F. W. Meyerstein. Is the universe lawful? Chaos, Solitons \& Fractals, 10(6):1075-1084, 1999.

Cantor:1874 G. Cantor. "Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. Crelle's Journal f"ur Mathematik, 77:258-263, 1874.

Carter:74 B. Carter. Large number coincidences and the anthropic principle in cosmology. In M. S. Longair, editor, Proceedings of the IAU Symposium 63, pages 291-298. Reidel, Dordrecht, 1974.

Hotz:99 T. Chadzelek and G. Hotz. Analytic machines. Theoretical Computer Science, 219:151-167, 1999.

Chaitin:69 G.J. Chaitin. On the length of programs for computing finite binary sequences: statistical considerations. Journal of the ACM, 16:145-159, 1969. Submitted 1965.

Chaitin:75 G.J. Chaitin. A theory of program size formally identical to information theory. Journal of the ACM, 22:329-340, 1975.

Chaitin:87 G.J. Chaitin. Algorithmic Information Theory. Cambridge University Press, Cambridge, 1987.

Cover:89 T. M. Cover, P. G\'acs, and R. M. Gray. Kolmogorov's contributions to information theory and algorithmic complexity. Annals of Probability Theory, 17:840-865, 1989.

Dai:98 W. Dai. Everything mailing list archive at, 1998.

Deutsch:97 D. Deutsch. The Fabric of Reality. Allen Lane, New York, NY, 1997.

Donald:90 M. J. Donald. Quantum theory and the brain. Proceedings of the Royal Society (London) Series A, 427:43-93, 1990.

Everett:57 H. Everett III. `Relative State' formulation of quantum mechanics. Reviews of Modern Physics, 29:454-462, 1957.

Freyvald:74 R. V. Freyvald. Functions and functionals computable in the limit. Transactions of Latvijas Vlasts Univ. Zinatn. Raksti, 210:6-19, 1977.

Gacs:74 P. G\'acs. On the symmetry of algorithmic information. Soviet Math. Dokl., 15:1477-1480, 1974.

Gacs:83 P. G\'acs. On the relation between descriptional complexity and algorithmic probability. Theoretical Computer Science, 22:71-93, 1983.

Gellmann:95 M. Gell-Mann. Remarks on simplicity and complexity. Complexity, 1(1):16-19, 1995.

Goedel:31 K. G"odel. "Uber formal unentscheidbare S"atze der Principia Mathematica und verwandter Systeme I. Monatshefte f"ur Mathematik und Physik, 38:173-198, 1931.

Gold:65 E. M. Gold. Limiting recursion. Journal of Symbolic Logic, 30(1):28-46, 1965.

Gott:93 J. R. Gott, III. Implications of the Copernican principle for our future prospects. Nature, 363:315-319, 1993.

Greg:57 A. Gregorczyk. On the definitions of computable real continuous functions. Fundamenta Mathematicae, 44:61-71, 1957.

Hartmanis:83 J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible computations. In Proc. 24th IEEE Symposium on Foundations of Computer Science, pages 439-445, 1983.

Higgo:99 J. Higgo. Physics of enlightenment. The Middle Way, Journal of the Buddhist Society, 74(4):247-250, February 2000.

Hochreiter:97nc1 S. Hochreiter and J. Schmidhuber. Flat Minima. Neural Computation, 9(1):1-42, 1997, (201 K).

Hotz:95 G. Hotz, G. Vierke, and B. Schieffer. Analytic machines. Technical Report TR95-025, Electronic Colloquium on Computational Complexity, 1995.

Huffman:52 D. A. Huffman. A method for construction of minimum-redundancy codes. Proceedings IRE, 40:1098-1101, 1952.

Hutter:99 M. Hutter. New error bounds for Solomonoff prediction. Journal of Computer and System Science, in press, 2000.

Hutter:00e M. Hutter. Optimality of universal prediction for general loss and alphabet. Technical report, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, Manno (Lugano), CH, December 2000. In progress.

Hutter:00f M. Hutter. A theory of universal artificial intelligence based on algorithmic complexity. Technical Report IDSIA-14-00 (cs.AI/0004001), IDSIA, Manno (Lugano), CH, 2000.

Kolmogorov:65 A.N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of Information Transmission, 1:1-11, 1965.

Kraft:49 L. G. Kraft. A device for quantizing, grouping, and coding amplitude modulated pulses. M.Sc. Thesis, Dept. of Electrical Engineering, MIT, Cambridge, Mass., 1949.

Levin:73a L. A. Levin. On the notion of a random sequence. Soviet Math. Dokl., 14(5):1413-1416, 1973.

Levin:73 L. A. Levin. Universal sequential search problems. Problems of Information Transmission, 9(3):265-266, 1973.

Levin:74 L. A. Levin. Laws of information (nongrowth) and aspects of the foundation of probability theory. Problems of Information Transmission, 10(3):206-210, 1974.

Levin:84 L. A. Levin. Randomness conservation inequalities: Information and independence in mathematical theories. Information and Control, 61:15-37, 1984.

LiVitanyi:97 M. Li and P. M. B. Vit\'anyi. An Introduction to Kolmogorov Complexity and its Applications (2nd edition). Springer, 1997.

Lloyd:00 S. Lloyd. Ultimate physical limits to computation. Nature, 406:1047-1054, 2000.

Loewenheim:15 L. L"owenheim. "Uber M"oglichkeiten im Relativkalk"ul. Mathematische Annalen, 76:447-470, 1915.

Mallah:00 J. Mallah. The computationalist wavefunction interpretation agenda (CWIA). Continually modified draft, Dec 2000. (nonpermanent contents).

Marchal:98 B. Marchal. Calculabilit\'e, Physique et Cognition. PhD thesis, L'Universit\'e des Sciences et Technologies De Lilles, 1998.

Martin-Loef:66 P. Martin-L"of. The definition of random sequences. Information and Control, 9:602-619, 1966.

Moravec:99 H. Moravec. Robot. Wiley Interscience, 1999.

Mostowski:57 A. Mostowski. On computable sequences. Fundamenta Mathematicae, 44:37-51, 1957.

Penrose:89 R. Penrose. The Emperor's New Mind. Oxford University Press, 1989.

Putnam:65 H. Putnam. Trial and error predicates and the solution to a problem of Mostowski. Journal of Symbolic Logic, 30(1):49-57, 1965.

Rissanen:86 J. Rissanen. Stochastic complexity and modeling. The Annals of Statistics, 14(3):1080-1100, 1986.

Rogers:67 H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

Roessler:98 Otto E. R"ossler. Endophysics. The World as an Interface. World Scientific, Singapore, 1998. With a foreword by Peter Weibel.

Ruhl:00 H. Ruhl. The use of complexity to solve dilemmas in physics. Continually modified draft, Dec 2000. (nonpermanent contents).

Christof:00 C. Schmidhuber. Strings from logic. Technical Report CERN-TH/2000-316, CERN, Theory Division, 2000.

Schmidhuber:95kol J. Schmidhuber. Discovering solutions with low Kolmogorov complexity and high generalization capability. In A. Prieditis and S. Russell, editors, Machine Learning: Proceedings of the Twelfth International Conference, pages 488-496. Morgan Kaufmann Publishers, San Francisco, CA, 1995.

Schmidhuber:97brauer J. Schmidhuber. A computer scientist's view of life, the universe, and everything. In C. Freksa, M. Jantzen, and R. Valk, editors, Foundations of Computer Science: Potential - Theory - Cognition, volume 1337, pages 201-208. Lecture Notes in Computer Science, Springer, Berlin, 1997. Submitted 1996.

Schmidhuber:97nn J. Schmidhuber. Discovering neural nets with low Kolmogorov complexity and high generalization capability. Neural Networks, 10(5):857-873, 1997 (123 K).

Schmidhuber:97art J. Schmidhuber. Low-complexity art. Leonardo, Journal of the International Society for the Arts, Sciences, and Technology, 30(2):97-103, 1997.

Schmidhuber:00version1 J. Schmidhuber. Algorithmic theories of everything. Technical Report IDSIA-20-00, Version 1.0, IDSIA, Manno (Lugano), Switzerland, November 2000.

Schmidhuber:97bias J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning 28:105-130, 1997.

Schnorr:73 C. P. Schnorr. Process complexity and effective random tests. Journal of Computer Systems Science, 7:376-388, 1973.

Shannon:48 C. E. Shannon. A mathematical theory of communication (parts I and II). Bell System Technical Journal, XXVII:379-423, 1948.

Skolem:19 T. Skolem. Logisch-kombinatorische Untersuchungen "uber Erf"ullbarkeit oder Beweisbarkeit mathematischer S"atze nebst einem Theorem "uber dichte Mengen. Skrifter utgit av Videnskapsselskapet in Kristiania, I, Mat.-Nat. Kl., N4:1-36, 1919.

Slaman:99 T. Slaman. Randomness and recursive enumerability. Technical report, Univ. of California, Berkeley, 1999. Preprint,

Soklakov:00 A. N. Soklakov. Occam's razor as a formal basis for a physical theory. Technical Report math-ph/0009007, Univ. London, Dept. Math., Royal Holloway, Egham, Surrey TW20 OEX, September 2000.

Solomonoff:64 R.J. Solomonoff. A formal theory of inductive inference. Part I. Information and Control, 7:1-22, 1964.

Solomonoff:78 R.J. Solomonoff. Complexity-based induction systems. IEEE Transactions on Information Theory, IT-24(5):422-432, 1978.

Solovay:75 R. M. Solovay. Lecture notes on algorithmic complexity, UCLA, unpublished, 1975.

Solovay:00 R. M. Solovay. A version of $\Omega$ for which ZFC can not predict a single bit. In C. S. Calude and G. P\uaun, editors, Finite Versus Infinite. Contributions to an Eternal Dilemma, pages 323-334. Springer, London, 2000.

Standish:00 R. Standish. Why Occam's razor? Technical report, High Performance Computing Support Unit, Univ. New South Wales, Sydney, 2052, Australia, July 2000.

Svozil:94 Karl Svozil. Extrinsic-intrinsic concept and complementarity. In H. Atmanspacker and G. J. Dalenoort, editors, Inside versus Outside, pages 273-288. Springer-Verlag, Heidelberg, 1994.

Hooft:99 G. 't Hooft. Quantum gravity as a dissipative deterministic system. Technical Report SPIN-1999/07/gr-gc/9903084,, Institute for Theoretical Physics, Univ. of Utrecht, and Spinoza Institute, Netherlands, 1999. Also published in Classical and Quantum Gravity 16, 3263.

Tegmark:96 M. Tegmark. Does the universe in fact contain almost no information? Foundations of Physics Letters, 9(1):25-42, 1996.

Tegmark:98 M. Tegmark. Is ``the theory of everything'' merely the ultimate ensemble theory? Annals of Physics, 270:1-51, 1998. Submitted 1996.

Toffoli:79 T. Toffoli. The role of the observer in uniform systems. In G. Klir, editor, Applied General Systems Research. Plenum Press, New York, London, 1978.

Turing:36 A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2, 41:230-267, 1936.

Uspensky:92 V. A. Uspensky. Complexity and entropy: an introduction to the theory of Kolmogorov complexity. In O. Watanabe, editor, Kolmogorov complexity and computational complexity, pages 85-102. EATCS Monographs on Theoretical Computer Science, Springer, 1992.

Vyugin:98 V. V. V'yugin. Non-stochastic infinite and finite sequences. Theoretical Computer Science, 207(2):363-382, 1998.

Wallace:68 C. S. Wallace and D. M. Boulton. An information theoretic measure for classification. Computer Journal, 11(2):185-194, 1968.

Watanabe:92 O. Watanabe. Kolmogorov complexity and computational complexity. EATCS Monographs on Theoretical Computer Science, Springer, 1992.

Wiering:96levin M.A. Wiering and J. Schmidhuber. Solving POMDPs with Levin search and EIRA. In L. Saitta, editor, Machine Learning: Proceedings of the Thirteenth International Conference, pages 534-542. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

Zurek:89b W. H. Zurek. Algorithmic randomness and physical entropy I. Phys. Rev., A40:4731-4751, 1989.

Zurek:91 W. H. Zurek. Decoherence and the transition from quantum to classical. Physics Today, 44(10):36-44, 1991.

Zvonkin:70 A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the algorithmic concepts of information and randomness. Russian Math. Surveys, 25(6):83-124, 1970.

Juergen Schmidhuber

Related links: In the beginning was the code! - Zuse's thesis - Life, the universe, and everything - Generalized Algorithmic Information - Speed Prior - The New AI