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Abstract

In this summary of previous work, I argue that data
becomes temporarily interesting by itself to some self-
improving, but computationally limited, subjective ob-
server once he learns to predict or compress the data in
a better way, thus making it subjectively more “beau-
tiful.” Curiosity is the desire to create or discover more
non-random, non-arbitrary, “truly novel,” regular data
that allows for compression progress because its regu-

“in_

larity was not yet known. This drive maximizes
terestingness,” the first derivative of subjective beauty
or compressibility, that is, the steepness of the learning
curve. It motivates exploring infants, pure mathemati-
cians, composers, artists, dancers, comedians, yourself,

and recent artificial systems.

1. Introduction

This article is a short variant of reference .

If the history of the entire universe were com-
putable®V . and there is no evidence against this pos-
sibility °”, then its simplest explanation would be the
shortest program that computes it 949 . Unfortunately
there is no general way of finding the shortest program
computing any given data 23257971 Therefore physi-
cists have traditionally proceeded incrementally, ana-
lyzing just a small aspect of the world at any given
time, trying to find simple laws that allow for describ-
ing their limited observations better than the best pre-
viously known law, essentially trying to find a program
that compresses the observed data better than the best
previously known program. For example, Newton’s law
of gravity can be formulated as a short piece of code
which allows for substantially compressing many obser-
vation sequences involving falling apples and other ob-
jects. Although its predictive power is limited—for ex-
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ample, it does not explain quantum fluctuations of ap-
ple atoms—it still allows for greatly reducing the num-
ber of bits required to encode the data stream, by as-
signing short codes to events that are predictable with
high probability '*® under the assumption that the law
holds. FEinstein’s general relativity theory yields ad-
ditional compression progress as it compactly explains
many previously unexplained deviations from Newton’s
predictions.

Most physicists believe there is still room for further
advances. Physicists, however, are not the only ones
with a desire to improve the subjective compressibility
of their observations. Since short and simple explana-
tions of the past usually reflect some repetitive regu-
larity that helps to predict the future, every intelligent
system interested in achieving future goals should be
motivated to compress the history of raw sensory in-
puts in response to its actions, simply to improve its
ability to plan ahead.

A long time ago, Piaget®® already explained the ex-
plorative learning behavior of children through his con-
cepts of assimilation (new inputs are embedded in old
schemas—this may be viewed as a type of compres-
sion) and accommodation (adapting an old schema to
a new input—this may be viewed as a type of com-
pression improvement), but his informal ideas did not
provide enough formal details to permit computer im-
plementations of his concepts. How to model a com-
pression progress drive in artificial systems? Con-
sider an active agent interacting with an initially un-
known world. We may use our general Reinforce-
ment Learning (RL) framework of artificial curios-
ity (1990-2008) 3439, 44),47),51), 54, 60),61),72) £ make the
agent discover data that allows for additional compres-
sion progress and improved predictability. The frame-
work directs the agent towards a better understanding



the world through active exploration, even when exter-
nal reward is rare or absent, through intrinsic reward or
curiosity reward for actions leading to discoveries of pre-
viously unknown regularities in the action-dependent
incoming data stream.

2. Algorithmic Framework

The basic ideas are embodied by the following
set of simple algorithmic principles distilling some of
the essential ideas in previous publications on this
topic 34)738), 44),47),51),54), 60), 61), 72)  Formal details are left
to the Appendices of previous papers, e.g.,5: %0, Asg
discussed in the next section, the principles at least
qualitatively explain many aspects of intelligent agents
such as humans. This encourages us to implement and
evaluate them in cognitive robots and other agents.

1. Store everything. During interaction with the
world, store the entire raw history of actions and sen-
sory observations including reward signals—the data is
‘holy’ as it is the only basis of all that can be known
about the world. To see that full data storage is not
unrealistic: A human lifetime rarely lasts much longer
than 3 x 10° seconds. The human brain has roughly
10'% neurons, each with 10* synapses on average. As-
suming that only half of the brain’s capacity is used for
storing raw data, and that each synapse can store at
most 6 bits, there is still enough capacity to encode the
lifelong sensory input stream with a rate of roughly 10°
bits/s, comparable to the demands of a movie with rea-
sonable resolution. The storage capacity of affordable
technical systems will soon exceed this value. If you can
store the data, do not throw it away!

2. Improve subjective compressibility. In princi-
ple, any regularity in the data history can be used to
compress it. The compressed version of the data can
be viewed as its simplifying explanation. Thus, to bet-
ter explain the world, spend some of the computation
time on an adaptive compression algorithm trying to
partially compress the data. For example, an adaptive
neural network® may be able to learn to predict or
postdict some of the historic data from other historic
data, thus incrementally reducing the number of bits
required to encode the whole.

3. Let intrinsic curiosity reward reflect compres-
sion progress. Monitor the improvements of the adap-
tive data compressor: whenever it learns to reduce the
number of bits required to encode the historic data,
generate an intrinsic reward signal or curiosity reward

signal in proportion to the compression progress, that
is, the number of saved bits.

4. Maximize intrinsic
Ward 34)~38), 44), 47), 51), 54), 60), 61), 72) .

curiosity re-

Let the action
selector or controller use a general Reinforcement
Learning (RL) algorithm (which should be able to
observe the current state of the adaptive compressor) to
maximize expected reward, including intrinsic curiosity
reward. To optimize the latter, a good RL algorithm
will select actions that focus the agent’s attention and
learning capabilities on those aspects of the world that
allow for finding or creating new, previously unknown
but learnable regularities. In other words, it will try
to maximize the steepness of the compressor’s learning
curve. This type of active unsupervised learning can
help to figure out how the world works.

The framework above essentially specifies the objec-
tives of a curious or creative system, not the way of
achieving the objectives through the choice of a particu-
lar adaptive compressor and a particular RL algorithm.
Some of the possible choices leading to special instances
of the framework will be discussed later.

2.1 Relation to external reward

Of course, the real goal of many cognitive systems
is not just to satisfy their curiosity, but to solve exter-
nally given problems. Any formalizable problem can
be phrased as an RL problem for an agent living in
a possibly unknown environment, trying to maximize
the future reward expected until the end of its possi-
bly finite lifetime. The new millennium brought a few
extremely general, even universal RL algorithms (op-
timal universal problem solvers or universal artificial
intelligences—see Appendices of previous papers > 69))
that are optimal in various theoretical but not neces-
sarily practical senses, e.g.,19):5%),55),56).58).59)  Tq the
extent that learning progress / compression progress /
curiosity as above are helpful, these universal methods
will automatically discover and exploit such concepts.
Then why bother at all writing down an explicit frame-
work for active curiosity-based experimentation?

One answer is that the present universal approaches
sweep under the carpet certain problem-independent
constant slowdowns, by burying them in the asymptotic
notation of theoretical computer science. They leave
open an essential remaining question: If the agent can
execute only a fixed number of computational instruc-
tions per unit time interval (say, 10 trillion elementary
operations per second), what is the best way of using
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them to get as close as possible to the recent theoretical
limits of universal Als, especially when external rewards
are very rare, as is the case in many realistic environ-
ments? The premise of this paper is that the curiosity
drive is such a general and generally useful concept for
limited-resource RL in rare-reward environments that
it should be prewired, as opposed to be learnt from
scratch, to save on (constant but possibly still huge)
computation time. An inherent assumption of this ap-
proach is that in realistic worlds a better explanation
of the past can only help to better predict the future,
and to accelerate the search for solutions to externally
given tasks, ignoring the possibility that curiosity may
actually be harmful and “kill the cat.”

3. Consequences

Let us discuss how many essential ingredients of in-
telligence and cognition can be viewed as natural by-
products of the principles above.

3.1 Symbols

To compress the history of observations so far, the
compressor (say, a predictive neural network) will au-
tomatically create compact internal representations or
“symbols” (for example, patterns across certain neu-
ral feature detectors) for things that frequently repeat
themselves. Even when there is limited predictability,
efficient compression can still be achieved by assigning
short codes to events that are predictable with high
probability -6, For example, the sun goes up every
day. Hence it is efficient to create internal symbols such
as “daylight” to describe this repetitive aspect of the
data history by a short reusable piece of internal code,
instead of storing just the raw repetitive data. In fact,
predictive neural networks are often observed to create
such internal codes as a by-product of minimizing their
prediction error on the training data.

3.2 Consciousness

There is one thing that is involved in all actions and
sensory inputs of the agent, namely, the agent itself.
To efficiently encode the entire data history, it will
profit from creating some sort of internal “symbol” or
code (e.g., a neural activity pattern) representing itself.
Whenever this representation is actively used, say, by
activating the corresponding neurons through new in-
coming sensory inputs or otherwise, the agent could be
called “self-aware” or “conscious.”

In the rest of this paper we will not have to attach
any particular mystic value to the notion of conscious-
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ness—in our view, it is just a natural by-product of the
agent’s ongoing process of problem solving and world
modeling through data compression, and will not play
a prominent role in the remainder of this paper.

3.3 Lazy Brain & Beauty

According to our lazy brain theory*? 43, 45),54),60),61)
at any given time ¢ in subjective agent O’s life, we
may identify the time-dependent, subjective beauty
B(D | O,t) of a new observation D (but not its in-
terestingness - see Section 3.4) as being proportional to
the number of bits required to encode D, given the ob-
server’s limited previous knowledge, embodied by the
current state of its adaptive compressor. For example,
to efficiently encode previously viewed human faces, a
compressor such as a neural network may find it useful
to generate the internal representation of a prototype
face. To encode a new face, it must only encode the
deviations from the prototype*®. Thus a new face that
does not deviate much from the prototype '© 2% will be
subjectively more beautiful than others. Similarly for
faces that exhibit geometric regularities such as sym-
metries or simple proportions*®:¢—in principle, the
compressor may exploit any regularity for reducing the
number of bits required to store the data.

Generally speaking, among several sub-patterns clas-
sified as “comparable” by a given observer, the sub-
jectively most beautiful is the one with the simplest
(shortest) description, given the observer’s current par-
ticular method for encoding and memorizing it 4»-4%.
For example, mathematicians find beauty in a simple
proof with a short description in the formal language
they are using. Others like geometrically simple, aes-
thetically pleasing, low-complexity drawings of various
objects 445,

The approach immediately explains why many human
observers prefer faces similar to their own. What they
see every day in the mirror will influence their subjective
prototype face, for simple reasons of coding efficiency.
3.4 Interestingness

What’s beautiful is not necessarily interesting. A
beautiful thing is interesting only as long as it is new,
that is, as long as the algorithmic regularity that makes
it simple has not yet been fully assimilated by the adap-
tive observer who is still learning to compress the data
better. It makes sense to define the subjective Interest-
ingness I(D | O,t) of data D observed by observer O
by



dB(D | O,1)
el (1)

the first derivative of subjective beauty: as the learn-

I(D|0,t) =

ing agent improves its compression algorithm, for-
merly apparently random data parts become subjec-
tively more regular and beautiful, requiring fewer and
fewer bits for their encoding. As long as this process
is not over the data remains interesting and reward-
ing. Appendices of previous papers®® ¢ describe de-
tails of discrete time implementations of this concept.
See 36),37), 44), 47), 51), 54), 60), 61), 72)

Note that our above concepts of beauty and interest-
ingness are limited and pristine in the sense that they
are not related to pleasure derived from external re-
wards. For example, some might claim that a hot bath
on a cold day triggers “beautiful” feelings due to re-
wards for achieving prewired target values of external
temperature sensors (external in the sense of: outside
the brain which is controlling the actions of its external
body). Or a song may be called “beautiful” for emo-
tional (e.g.,”) reasons by some who associate it with
memories of external pleasure through their first kiss.
Obviously this is not what we have in mind here—we
are focusing solely on rewards of the intrinsic type based
on learning progress.

3.5 True Novelty & Surprise vs Traditional Information
Theory

Consider two extreme examples of uninteresting, un-
surprising, boring data: A vision-based agent that al-
ways stays in the dark will experience an extremely
compressible, soon totally predictable history of un-
changing visual inputs. In front of a screen full of white
noise conveying a lot of information and “novelty” and
“surprise” in the traditional sense of Boltzmann and
Shannon ®®, however, it will experience highly unpre-
dictable and fundamentally incompressible data. In
both cases the data is boring*"- %" as it does not allow
for further compression progress. Therefore we reject
the traditional notion of surprise. Neither the arbitrary
nor the fully predictable is truly novel or surprising—
only data with still unknown algorithmic regularities
are 34)~38), 44), 47), 51), 54), 60), 61), 72) |
3.6 Attention & Curiosity

In absence of external reward, or when there is no
known way to further increase the expected external re-
ward, our controller essentially tries to maximize “true
novelty” or “interestingness,” the first derivative of sub-
jective beauty or compressibility, the steepness of the

learning curve. It will do its best to select action se-
quences expected to create observations yielding max-
imal expected future compression progress, given the
limitations of both the compressor and the compres-
sor improvement algorithm. Thus it will learn to focus
its attention ®» and its actively chosen experiments on
things that are currently still incompressible but are
expected to become compressible / predictable through
additional learning. It will get bored by things that al-
ready are compressible. It will also get bored by things
that are currently incompressible but will apparently re-
main so, given the experience so far, or where the costs
of making them compressible exceed those of making
other things compressible, etc.

3.7 Discoveries

An unusually large compression breakthrough de-
serves the name discovery. For example, as mentioned
in the introduction, the simple law of gravity can be
described by a very short piece of code, yet it allows for
greatly compressing all previous observations of falling
apples and other objects.

3.8 Artand Music

Works of art and music may have important pur-
poses beyond their social aspects ¥ despite of those who
classify art as superfluous *». Good observer-dependent
art deepens the observer’s insights about this world or
possible worlds, unveiling previously unknown regular-
ities in compressible data, connecting previously dis-
connected patterns in an initially surprising way that
makes the combination of these patterns subjectively
more compressible (art as an eye-opener), and eventu-
ally becomes known and less interesting. I postulate
that the active creation and attentive perception of all
kinds of artwork are just by-products of our principle of
interestingness and curiosity yielding reward for com-
pressor improvements.

Let us elaborate on this idea in more detail, following
the discussion in ¥ ¢, Artificial or human observers
must perceive art sequentially, and typically also ac-
tively, e.g., through a sequence of attention-shifting eye
saccades or camera movements scanning a sculpture,
or internal shifts of attention that filter and emphasize
sounds made by a pianist, while surpressing background
noise. Undoubtedly many derive pleasure and rewards
from perceiving works of art, such as certain paintings,
or songs. But different subjective observers with differ-
ent sensory apparati and compressor improvement al-

gorithms will prefer different input sequences. Hence
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any objective theory of what is good art must take
the subjective observer as a parameter, to answer ques-
tions such as: Which action sequences should he select
to maximize his pleasure? According to our principle
he should select one that maximizes the quickly learn-
able compressibility that is new, relative to his current
knowledge and his (usually limited) way of incorporat-
ing or learning new data.

3.9 Music

For example, which song should some human observer
select next? Not the one he just heard ten times in a
row. It became too predictable in the process. But also
not the new weird one with the completely unfamiliar
rhythm and tonality. It seems too irregular and contain
too much arbitrariness and subjective noise. He should
try a song that is unfamiliar enough to contain some-
what unexpected harmonies or melodies or beats etc.,
but familiar enough to allow for quickly recognizing the
presence of a new learnable regularity or compressibil-
ity in the sound stream. Sure, this song will get boring
over time, but not yet.

The observer dependence is illustrated by the fact
that Schonberg’s twelve tone music is less popular than
certain pop music tunes, presumably because its algo-
rithmic structure is less obvious to many human ob-
servers as it is based on more complicated harmonies.
For example, frequency ratios of successive notes in
twelve tone music often cannot be expressed as frac-
tions of very small integers. Those with a prior ed-
ucation about the basic concepts and objectives and
constraints of twelve tone music, however, tend to ap-
preciate Schonberg more than those without such an
education.

All of this perfectly fits our principle: The current
compressor of a given subjective observer tries to com-
press his history of acoustic and other inputs where
possible. The action selector tries to find history-
influencing actions that improve the compressor’s per-
formance on the history so far. The interesting musi-
cal and other subsequences are those with previously
unknown yet learnable types of regularities, because
they lead to compressor improvements. The boring pat-
terns are those that seem arbitrary or random, or whose
structure seems too hard to understand.

3.10 Paintings, Sculpture, Dance, Film

Similar statements not only hold for other dynamic
art including film and dance (taking into account the
compressibility of controller actions), but also for paint-
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ing and sculpture, which cause dynamic pattern se-
quences due to attention-shifting actions® of the ob-
server.

3.11  Artists vs Observers

Just as “passive” observers get intrinsic rewards from
sequentially focusing attention on artwork that exhibits
new, previously unknown regularities, the “creative”
artists get reward for making it. For example, I found it
extremely rewarding to discover (after hundreds of frus-
trating failed attempts) the simple geometric regulari-
ties that permitted the construction of the drawings pre-
sented in previous work *2) 43).4%).54).60) and the present
paper. The distinction between artists and observers is
blurred though. Both execute action sequences. The
intrinsic motivations of both are fully compatible with
our simple principle.

Some artists, of course, crave ezternal reward from
other observers, in form of praise, money, or both, in
addition to the intrinsic compression progress-based re-
ward that comes from creating a truly novel work of art.
Our principle, however, conceptually separates these
two reward types.

3.12 Artists and Scientists are Alike

From our perspective, scientists are very much like
artists. They actively select experiments in search for
simple laws compressing the observation history. In par-
ticular, the creativity of painters, dancers, musicians,
pure mathematicians, physicists, can be viewed as a
mere by-product of our curiosity framework based on
the compression progress drive. All of them try to cre-
ate new but non-random, non-arbitrary data with sur-
prising, previously unknown regularities. For example,
many physicists invent experiments to create data gov-
erned by previously unknown laws allowing to further
compress the data. On the other hand, many artists
combine well-known objects in a subjectively novel way
such that the observer’s subjective description of the
result is shorter than the sum of the lengths of the de-
scriptions of the parts, due to some previously unno-
ticed regularity shared by the parts.

The framework in the appendices of previous pa-
pers 5999 is sufficiently formal to allow for implementa-
tion of our principle on computers. The resulting arti-
ficial observers will vary in terms of the computational
power of their history compressors and learning algo-
rithms. This will influence what is good art / science
to them, and what they find interesting.



3.13 Jokes and Other Sources of Fun

Just like other entertainers and artists, comedians
also tend to combine well-known concepts in a novel
way such that the observer’s subjective description of
the result is shorter than the sum of the lengths of the
descriptions of the parts, due to some previously un-
noticed regularity shared by the parts. Once a joke is
known, however, it is not funny any more, because ad-
ditional compression progress is impossible.

In many ways the laughs provoked by witty jokes are
similar to those provoked by the acquisition of new skills
through both babies and adults. Past the age of 25 1
learnt to juggle three balls. It was not a sudden process
but an incremental one: in the beginning I managed
to juggle them for maybe one second before they fell
down, then two seconds, four seconds, etc., until I was
able to do it right. Watching myself in the mirror I
noticed an idiotic grin across my face whenever I made
progress. Later my little daughter grinned just like that
when she was able to stand up for the first time. All of
this makes perfect sense within our algorithmic frame-
work: such grins presumably are triggered by internal
reward for generating a data stream with previously un-
known regularities, such as the sensory input sequence
corresponding to observing oneself juggling, which may
be quite different from the more familiar experience of
observing somebody else juggling, and therefore truly
novel and intrinsically rewarding, until the adaptive pre-
dictor / compressor gets used to it.

3.14 Beyond Unsupervised Learning

Traditional unsupervised learning is about finding
regularities, by clustering the data, or encoding it
through a factorial code 2 4® with statistically indepen-
dent components, or predicting parts of it from other
parts. All of this may be viewed as special cases of data
compression. For example, where there are clusters,
a data point can be efficiently encoded by its cluster
center plus relatively few bits for the deviation from
the center. Where there is data redundancy, a non-
redundant factorial code*® will be more compact than
the raw data. Where there is predictability, compres-
sion can be achieved by assigning short codes to those
parts of the observations that are predictable from pre-
vious observations with high probability -0, Gener-
ally speaking we may say that a major goal of tradi-
tional unsupervised learning is to improve the compres-
sion of the observed data, by discovering a program that
computes and thus explains the history (and hopefully

does so quickly) but is clearly shorter than the shortest
previously known program of this kind.

Traditional unsupervised learning is not enough
though—it just analyzes and encodes the data but does
not choose it. We have to extend it along the dimen-
sion of active action selection, since our unsupervised
learner must also choose the actions that influence the
observed data, just like a scientist chooses his experi-
ments, a baby its toys, an artist his colors, a dancer his
moves, or any attentive system®® its next sensory in-
put. That’s precisely what is achieved by our RL-based
framework for curiosity and creativity.

4. Implementations

As mentioned earlier, predictors and compressors are
closely related. Any type of partial predictability of the
incoming sensory data stream can be exploited to im-
prove the compressibility of the whole. Therefore the
systems described in the first publications on artificial
curiosity 24 2%:3%) already can be viewed as examples of
implementations of a compression progress drive.

4.1 Reward for Prediction Error

Early work34:3%:3% described a predictor based on
a recurrent neural network ?®-3%),39.52),76).80) (in prin-
ciple a rather powerful computational device, even by
today’s machine learning standards), predicting inputs
including reward signals from the entire history of pre-
vious inputs and actions. The curiosity rewards were
proportional to the predictor errors, that is, it was im-
plicitly and optimistically assumed that the predictor
will indeed improve whenever its error is high.

4.2 Predictor Improvements

Follow-up work 3937 pointed out that this approach
may be inappropriate, especially in probabilistic envi-
ronments: one should not focus on the errors of the pre-
dictor, but on its improvements. Otherwise the system
will concentrate its search on those parts of the environ-
ment where it can always get high prediction errors due
to noise or randomness, or due to computational limita-
tions of the predictor, which will prevent improvements
of the subjective compressibility of the data. While
the neural predictor of the implementation described
in the follow-up work was indeed computationally less
powerful than the previous one?®, there was a novelty,
namely, an explicit (neural) adaptive model of the pre-
dictor’s improvements. This model essentially learned
to predict the predictor’s changes. For example, al-
though noise was unpredictable and led to wildly vary-
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ing target signals for the predictor, in the long run these
signals did not change the adaptive predictor parame-
ters much, and the predictor of predictor changes was
able to learn this. A standard RL algorithm 2?7 was
fed with curiosity reward signals proportional to the
expected long-term predictor changes, and thus tried
to maximize information gain®- -2 26,32 within the
given limitations. In fact, we may say that the system
tried to maximize an approximation of the first deriva-
tive of the subjective predictability of the data; thus
also maximizing an approximation of the first deriva-
tive of its subjective compressibility.
4.3 Entropy: Prior vs Posterior

Additional follow-up work yielded an information
theory-oriented variant of the approach in non-deter-
ministic worlds™ (1995).

again proportional to the predictor’s surprise / infor-

The curiosity reward is

mation gain, this time measured as the Kullback-Leibler
distance 2 between the learning predictor’s subjective
probability distributions before and after new observa-
tions - the relative entropy between its prior and pos-
terior. In 2005 Baldi and Itti demonstrated experimen-
tally that this approach explains certain patterns of hu-
man visual attention better than certain previous ap-
proaches Y.
4.4 Algorithmic Zero Sum Games

More recent work*:4" greatly increased the com-
putational power of controller and predictor by imple-
menting them as symmetric, opposing modules consist-
ing of self-modifying probabilistic programs®®: 7 writ-
ten in a universal programming language'?:". The
internal storage for temporary computational results of
the programs was viewed as part of the changing en-
vironment. Each module could suggest experiments in
the form of probabilistic algorithms to be executed, and
make confident predictions about their effects by bet-
ting on their outcomes, where the ‘betting money’ es-
sentially played the role of the intrinsic reward. The
opposing module could reject or accept the bet in a
zero-sum game by making a contrary prediction. In
case of acceptance, the winner was determined by exe-
cuting the algorithmic experiment and checking its out-
come; the money was eventually transferred from the
surprised loser to the confirmed winner. Both modules
tried to maximize their money using a rather general RL
algorithm designed for complex stochastic policies ) 67)
(alternative RL algorithms could be plugged in as well).
Thus both modules were motivated to discover “truly
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novel” algorithmic regularity / compressibility, where
the subjective baseline for novelty was given by what
the opponent already knew about the world’s repeti-
tive regularities. The method can be viewed as system
identification through co-evolution of computable mod-
els and tests.
4.5 Improving Real Reward Intake

The references above also demonstrated experimen-
tally that the presence of intrinsic reward or curiosity
reward actually can speed up the collection of external
reward.
4.6 Other Implementations

Recently several researchers also implemented vari-
ants or approximations of the curiosity framework.
Singh and Barto and coworkers focused on implementa-
tions within the option framework of RL ®: %9 directly
using prediction errors as curiosity rewards 343538 —
they actually were the ones who coined the expres-
sions intrinsic reward and intrinsically motivated RL.
Additional implementations were presented at the 2005
AAAI Spring Symposium on Developmental Robotics®;
compare the Connection Science Special Issue®.

5. Visual Illustrations

As mentioned above, our theory was able to explain
certain shifts of human visual attention2?. But we can
also apply it to the complementary problem of con-
structing images that contain quickly learnable regu-
larities, arguing again that there is no fundamental dif-
ference between the motivation of creative artists and
passive observers of visual art (Section 3.11) - both cre-
ate action sequences yielding interesting inputs, where
interestingness is a measure of learning progress, for
example, based on the relative entropy between prior
and posterior (Section 4.3), or the saved number of bits
needed to encode the data (Section 1), or something
similar (Section 4).

In previous work 42) 454,60 we provided several ex-
amples of subjective beauty tailored to human ob-
servers, and illustrated the learning process leading
from less to more subjective beauty. Due to the nature
of the written medium, we focused on visual examples
instead of acoustic or tactile ones. They support the
hypothesis that the creativity of artists, dancers, mu-
sicians, pure mathematicians as well as unsupervised
attention in general is just a by-product of our drive for
compression progress.

Figure 1 depicts the construction plan of a female



face*®: %9 considered ‘beautiful’ by some human ob-
servers. Its essential features follow a very simple geo-
metrical pattern to be specified by very few bits of infor-
mation. That is, the data stream generated by observ-
ing the image (say, through a sequence of eye saccades)

Fig.1 Previously published, binary construc-
tion plan *» %9 of a female face (1998). Some hu-
man observers report they feel this face is ‘beau-
tiful.” Although the drawing has lots of noisy
details (texture etc) without an obvious short
description, positions and shapes of the basic
facial features are compactly encodable through
a very simple binary geometrical scheme, sim-
pler and much more precise than ancient fa-
cial proportion studies by Leonardo da Vinci
and Albrecht Diirer. Hence the image contains
a highly compressible algorithmic regularity or
pattern describable by few bits of information.
An observer can perceive it through a sequence
of attentive eye movements or saccades, and
consciously or subconsciously discover the com-
pressibility of the incoming data stream. How
was the picture made? First the sides of a square
were partitioned into 2% equal intervals. Cer-
tain interval boundaries were connected to ob-
tain three rotated, superimposed grids based on
lines with slopes +1 or +1/23 or 23 /1. Higher-
resolution details of the grids were obtained by
iteratively selecting two previously generated,
neighboring, parallel lines and inserting a new
one equidistant to both. Finally the grids were
vertically compressed by a factor of 1 —27%, The
resulting lines and their intersections define es-
sential boundaries and shapes of eyebrows, eyes,
lid shades, mouth, nose, and facial frame in a
simple way that is obvious from the construction
plan. Although this plan is simple in hindsight,
it was hard to find: hundreds of my previous at-
tempts at discovering such precise matches be-
tween simple geometries and pretty faces failed.

is more compressible than it would be in the absence
of such regularities. Without the face’s superimposed
grid-based explanation, few people are able to imme-
diately see how the drawing was made, but most do
notice that the facial features somehow fit together and
exhibit some sort of regularity. According to our postu-
late, the observer’s reward is generated by the conscious
or subconscious discovery of this compressibility. The
face remains interesting until its observation does not
reveal any additional previously unknown regularities.
Then it becomes boring even in the eyes of those who
think it is beautiful-—as has been pointed out repeat-
edly above, beauty and interestingness are two different

Fig.2 Construction plan of the image of a but-
terfly and a vase with a flower, reprinted from
Leonardo*» °>». The plan is based on a very sim-
ple algorithm exploiting fractal circles*®. The
frame is a circle; its leftmost point is the center
of another circle of the same size. Wherever two
circles of equal size touch or intersect are cen-
ters of two more circles with equal and half size,
respectively. Each line of the drawing is a seg-
ment of some circle, its endpoints are where cir-
cles touch or intersect. There are few big circles
and many small ones. In general, the smaller
a circle, the more bits are needed to specify
it. The drawing is simple (compressible) as it
is based on few, rather large circles. Many hu-
man observers report that they derive a certain
amount of pleasure from discovering this sim-
plicity. The observer’s learning process causes
a reduction of the subjective complexity of the
data, yielding a temporarily high derivative of
subjective beauty: a temporarily steep learning
curve. (Again I needed a long time to discover a
satisfactory and rewarding way of using fractal
circles to create a reasonable drawing.)
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things.

Figure 2 provides another example drawing that can
be specified by very few bits of information as one can
construct it through a very simple procedure or algo-
rithm based on fractal circle patterns 42 42):54.60)  Peo-
ple who understand this algorithm tend to appreciate
the drawing more than those who do not. They re-
alize how simple it is. This is not an immediate, all-
or-nothing, binary process though. In absence of the
superimposed fractal circles, most people quickly no-
tice that the curves somehow fit together in a regular
way, but few are able to immediately state the precise
geometric principles underlying the drawing®¥. This
pattern, however, is learnable from studying the visual
explanation. The conscious or subconscious discovery
process leading from a longer to a shorter description of
the data, or from less to more compression, or from less
to more subjectively perceived beauty, yields reward de-
pending on the first derivative of subjective beauty, that
is, the steepness of the learning curve.

6. Conclusion & Outlook

We pointed out that a surprisingly simple algorithmic
principle based on the notions of data compression and
data compression progress informally explains funda-
mental aspects of attention, novelty, surprise, interest-
ingness, curiosity, creativity, subjective beauty, jokes,
and science & art in general. The crucial ingredients of
the corresponding formal framework are (1) a contin-
ually improving predictor or compressor of the contin-
ually growing data history, (2) a computable measure
of the compressor’s progress (to calculate intrinsic re-
wards), (3) a reward optimizer or reinforcement learner
translating rewards into action sequences expected to
maximize future reward. To improve our previous im-
plementations of these ingredients (Section 4), we will
(1) study better adaptive compressors, in particular, re-
cent, novel RNNs©® and other general but practically
feasible methods for making predictions >”; (2) investi-
gate under which conditions learning progress measures
can be computed both accurately and efficiently, with-
out frequent expensive compressor performance evalua-
tions on the entire history so far; (3) study the applica-
bility of recent improved RL techniques in the fields of
policy gradients ™ 7~79  artificial evolution !~17:27
and others®®.

Apart from building improved artificial curious
agents, we can test the predictions of our theory in
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psychological investigations of human behavior, extend-
ing previous studies in this vein?Y and going beyond
anecdotal evidence mentioned above. It should be easy
to devise controlled experiments where test subjects
must anticipate initially unknown but causally con-
nected event sequences exhibiting more or less com-
plex, learnable patterns or regularities. The subjects
will be asked to quantify their intrinsic rewards in re-
sponse to their improved predictions. Is the reward in-
deed strongest when the predictions are improving most
rapidly? Does the intrinsic reward indeed vanish as the
predictions become perfect or do not improve any more?
Finally, how to test our predictions through studies
in neuroscience? Currently we hardly understand the
human neural machinery. But it is well-known that
certain neurons seem to predict others, and brain scans
show how certain brain areas light up in response to
reward. Therefore the psychological experiments sug-
gested above should be accompanied by neurophysiolog-
ical studies to localize the origins of intrinsic rewards,
possibly linking them to improvements of neural predic-
tors.
Success in this endeavor would provide additional mo-
tivation to implement our principle on robots.
(Received Nov. 22, 2008)
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