
Compressed Network Complexity Search
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Abstract. Indirect encoding schemes for neural network phenotypes
can represent large networks compactly. In previous work, we presented a
new approach where networks are encoded indirectly as a set of Fourier-
type coefficients that decorrelate weight matrices such that they can
often be represented by a small number of genes, effectively reducing the
search space dimensionality, and speed up search. Up to now, the com-
plexity of networks using this encoding was fixed a priori, both in terms
of (1) the number of free parameters (topology) and (2) the number
of coefficients. In this paper, we introduce a method, called Compressed
Network Complexity Search (CNCS), for automatically determining net-
work complexity that favors parsimonious solutions. CNCS maintains
a probability distribution over complexity classes that it uses to select
which class to optimize. Class probabilities are adapted based on their ex-
pected fitness. Starting with a prior biased toward the simplest networks,
the distribution grows gradually until a solution is found. Experiments
on two benchmark control problems, including a challenging non-linear
version of the helicopter hovering task, demonstrate that the method
consistently finds simple solutions.

1 Introduction

Indirect or generative encoding schemes for neural network phenotypes [2–4,9,11]
offer the potential of allowing very large networks to be represented compactly.
In previous work [5,6], we presented a new encoding where network weight ma-
trices are represented indirectly as a set of Fourier-type coefficients that are
transformed into weight values via an inverse Fourier transform, so that evolu-
tionary search is conducted in the frequency-domain instead of weight space. If
adjacent weights in the matrices are correlated, then this regularity can be en-
coded using fewer coefficients than weights, effectively reducing the search space
dimensionality. For problems exhibiting a high-degree of redundancy, this “com-
pressed” approach can result in an order of magnitude fewer free parameters and
significant speedup [5].

Up to now the complexity of networks using this encoding was fixed a pri-
ori, both in terms of (1) the number of free parameters or topology and (2)
the number of coefficients (compression ratio). In this paper, we introduce a
method inspired by universal search [7], called Compressed Network Complex-
ity Search (CNCS), that automatically determines network complexity, favoring
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Fig. 1. Decoding the compressed networks. The figure shows the three step pro-
cess involved in transforming a genome of frequency-domain coefficients into a recurrent
neural network. First, the genome (left) is divided into k chromosomes, one for each
of the weight matrices specified by the network architecture, Ψ. Each chromosome is
mapped, by Algorithm 1, into a coefficient array of a dimensionality specified by Ω. In
this example, an RNN with two inputs and four neurons is encoded as 8 coefficients.
There are k = |Ω| = 3, chromosomes and Ω = {3, 3, 2}. The second step is to apply
the inverse DCT to each array to generate the weight values, which are mapped into
the weight matrices in the last step.

parsimonious solutions. CNCS maintains a probability distribution over com-
plexity classes, which it uses to select which class to optimize. The probability of
a given class is adapted based on the expected fitness of individuals sampled from
it. Starting with a prior biased toward the simplest networks, the distribution
adapts gradually until a solution is found.

The idea of enforcing parsimony in neuroevolution has been explored pre-
viously [15, 16], usually by adding a regularization term to the fitness function
that penalizes complexity. Our approach is more in line with NEAT [10] where
simple networks are favored by starting evolution with a population of directly
encoded networks that have minimal topologies.

The next section describes how networks are encoded in the frequency do-
main. Section 3, introduces the complexity search method, CNCS. Section 4,
presents experiments applying CNCS to the octopus arm task with high-dimen-
sional actions to determine the number of coefficient genes used to represent
networks; and in section 5 it is used to search for both the number of neurons
(topology) and coefficients, for networks controlling a challenging version of the
Helicopter Hovering benchmark.

2 DCT Network Representation

Networks are encoded as a string or genome, g = {g1, . . . , gk}, consisting of k sub-
strings or chromosomes of real numbers representing Discrete Cosine Transform
(DCT) coefficients. The number of chromosomes is determined by the choice
of network architecture, Ψ, and data structures used to decode the genome,
specified by Ω = {D1, . . . , Dk}, where Dm, m = 1..k, is the dimensionality
of the coefficient array for chromosome m. The total number of coefficients,

C =
∑k
m=1 |gm| � N (where N is the number of weights), is user-specified (for
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Algorithm 1: Coefficient mapping(g, d)

j ← 0
K ← sort(diag(d) − I)
for i = 0 to |d| − 1 +

∑|d|
n=1 dn do

l ← 0

si ← {e|
∑|d|
k=1 eξj = i}

while |si| > 0 do
ind[j] ← argmin

e∈si

∥∥e−K[l++ mod |d|]
∥∥

si ← si \ ind[j++]

for i = 0 to |ind| do
if i < |g| then

coeff array[ind[i]] ← ci
else

coeff array[ind[i]] ← 0

1
Fig. 2. Mapping the coefficients. The cuboidal array is filled with the coefficients
from chromosome g one simplex at a time, according to Algorithm 1, starting at the
origin and moving to the opposite corner one simplex at a time.

a compression ratio of N/C), and the coefficients are distributed evenly over the
chromosomes. Which frequencies should be included in the encoding is unknown.
The approach taken here restricts the search space to band-limited neural net-
works where the power spectrum of the weight matrices goes to zero above a
specified limit frequency, cm` , and chromosomes contain all frequencies up to cm` ,
gm = (cm0 , . . . , c

m
` ).

Figure 1 illustrates the procedure used to decode the genomes. In this ex-
ample, a fully-recurrent neural network (on the right) is represented by k = 3
weight matrices, one for the input layer weights, one for the recurrent weights,
and one for the bias weights. The weights in each matrix are generated from a
different chromosome which is mapped into its own Dm-dimensional array with
the same number of elements as its corresponding weight matrix; in the case
shown, Ω = {3, 3, 2}: 3D arrays for both the input and recurrent matrices, and
a 2D array for the bias weights.

In previous work [5], the coefficient matrices were 2D, where the simplexes
are just the secondary diagonals; starting in the top-left corner, each diagonal
is filled alternately starting from its corners. However, if the task exhibits in-
herent structure that cannot be captured by low frequencies in a 2D layout,
more compression can potentially be gained by organizing the coefficients in
higher-dimensional arrays.

Each chromosome is mapped to its coefficient array according to Algorithm 1
which takes a list of array dimension sizes, d = (d1, . . . , dDm) and the chromo-
some, gm, to create a total ordering on the array elements, eξ1,...,ξDm . In the first
loop, the array is partitioned into (Dm−1)-simplexes, where each simplex, si,
contains only those elements e whose Cartesian coordinates, (ξ1, . . . , ξDm), sum
to integer i. The elements of simplex si are ordered in the while loop according
to their distance to the corner points, pi (i.e. those points having exactly one
non-zero coordinate; see example points for a 3D-array in figure 2), which form
the rows of matrix K = [p1, . . . , pm]T , sorted in descending order by their sole,
non-zero dimension size. In each loop iteration, the coordinates of the element



Algorithm 2: CNCS(D,f ,s,n,σθ)

while ¬converged do
for k = 1 to s do

xk ∼ D //draw sample
(µxk

, σxk ) ← SNES(f ,µxk
, σxk , λ(Ck), n)

φxk ← f(µxk
) //store fitness

foreach xi ∈ D do

g(xi) ←


∑

∀xj∈D

φxj

1

hd
K
(

xi−xj
h

)
max(σxi)>σθ

0 otherwise

foreach xi ∈ D do

p(xi) ← g(xi)∑
∀xj∈D

g(xj)
//normalize

with the smallest Euclidean distance to the selected corner is appended to the
list ind, and removed from si. The loop terminates when si is empty.

After all of the simplexes have been traversed, the vector ind holds the or-
dered element coordinates. In the final loop, the array is filled with the coeffi-
cients from low to high frequency to the positions indicated by ind; the remaining
positions are filled with zeroes. Finally, a Dm−dimensional inverse DCT trans-
form is applied to the array to generate the weight values, which are mapped to
their position in the corresponding 2D weight matrix. Once the k chromosomes
have been transformed, the network is complete.

3 Compressed Network Complexity Search

The basic idea of CNCS is to discover networks with minimal complexity by
running multiple independent evolutionary processes in parallel, one for each
complexity class, allocating run-time to each according to an adaptive probabil-
ity mass function, D. Algorithm 2 describes CNCS in pseudocode. The algorithm
is initialized with a prior distribution over the complexity classes (C, Ψ), where
C is the number of coefficients used to encode the network, and Ψ is the num-
ber of neurons (equivalently, the topology). In order to bias the search toward
low-complexity solutions, D should be initialized with a prior that gives high
probability to small networks (low Ψ), represented by the fewest number of co-
efficients (low C).

Each xι = (Cι, Ψι) pair in D has its own dedicated search algorithm used
to optimize that particular configuration. In the current implementation we use
Separable Natural Evolution Strategies (SNES; [13]), an efficient variant in the
NES [12] family of black-box optimization algorithms. In each generation, SNES
samples a population of λ individuals, computes a Monte Carlo estimate of the
fitness gradient, transforms it to the natural gradient and updates the search
distribution parameterized by a mean vector, µ, and diagonal covariance matrix,
σ (see [12] for a full description of NES). The SNES search distribution associated
with configuration xι has mean µxι and covariance σxι .
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Fig. 3. Octopus arm task. (a) A flexible arm consisting of p compartments, each
with 3 muscles, must be controlled to touch a goal location with the arm tip from
3 different initial positions, −π/2, 0 and π/2. (b) The arm is controlled by a fully
recurrent network with 32 neurons, one for each action (muscle). This topology is
fixed, and only the number of coefficients used to represent its weights is determined
automatically by CNCS.

Each iteration, CNCS draws s samples from D, and runs the SNES corre-
sponding to each sample for n generations, after which the search distribution
(µ,σ) and its expected fitness value φ are saved. The distribution D is then re-
estimated using a multivariate Parzen window estimator with radial-symmetric
Gaussian kernel K [8]. First, the values g(x) are computed by applying the ker-
nel weighted by the normalized fitnesses, φxj (the first forall loop), where h
is the kernel width, and d is the dimensionality of D, e.g. 2 when estimating C
and Ψ (the SNES distributions that have converged, max(σ) ≤ σθ, are assigned
a g value of 0). Then the g values are normalized into probabilities, and the
cycle repeats. The algorithm terminates when all search distributions (within
the bounds of D) have converged, or either the desired fitness or the maximum
number of iterations has been reached.

4 Octopus Arm Control

The octopus arm consists of p compartments floating in a 2D water environment
(see figure 3a). Each compartment has a constant volume and contains three
controllable muscles (dorsal, transverse and ventral). The goal of the task to
reach a target position with the tip of the arm, starting from three different initial
positions, by contracting the appropriate muscles at each 1s step of simulated
time. While initial positions −π/2 and π/2 look symmetrical, they are actually
quite different due to gravity. The state of a compartment is described by the
x, y-coordinates of two of its corners plus their corresponding x and y velocities.
Together with the arm base rotation, the arm has 8p+2 state variables. Though
there are 3p + 2 muscles, the task is normally simplified by aggregating them
into 8 “meta”-actions that contract groups of muscles simultaneously (i.e. all
dorsal, all transverse, etc.). Here, instead we use the more difficult configuration
where the “raw” actions are controlled directly, so that each muscle must be
coordinated with the others to move the arm.
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Fig. 4. Network decoding schemes. (a) for the octopus arm networks the genome
is split into 3 chromosomes, Ω={4, 4, 2}. The coefficients in the chromosome used to
generate the input weight matrix are placed in a 4D array, and a 2D array for the bias
weights. (b) for the helicopter networks there are 5 chromosomes, Ω={2, 2, 1, 2, 1}: a
2D input and recurrent and output arrays, and 1D arrays for the input and output
bias weights.

4.1 Setup

For the p = 10 compartment arm used in these experiments, a network with
32 neurons (one for each raw action) is sufficient to perform well on this task.
Therefore, CNCS is used only to search for the number of coefficients, so that
the distribution, D, is one-dimensional, with a uniform prior over C = 1..10,
a sample size of s = 1, and number of SNES generations per CNCS update,
n = 1. The kernel width was h = 7, and the convergence condition was set to
σθ = 0.01. Each SNES used a population size of 16. Five experiments were run,
for 4 thousand iterations each.

The octopus arm was controlled using the fully-recurrent network architec-
ture shown in figure 3b which is decoded using the following scheme,Ω= {4, 4, 2},
depicted in figure 4a: the genome is partitioned into k = 3 chromosomes, mapped
into three arrays: (1) a 4D 8×(p+1)×3×(p+1) array that contains input weights
for a 3×(p+1) grid of neurons, one for each raw action, (2) a 3×(p+1)×3×(p+1)
recurrent weight array, and (3) and a 3×(p+1) bias array. The dimension size of
3 in these arrays refers to the number of muscles per compartment.

The fitness was computed as the average of the following score over three
trials: max

[
1− t

T
d
D , 0

]
, where t is the number of time steps before the arm

touches the goal, T is the maximum number of time steps in a trial, d is the final
distance of the arm tip to the goal and D is the initial distance of the arm tip to
the goal. Each of the three trials starts with the arm in a different configuration
(see figure 3a). This fitness measure is different to the one used in [14], because
minimizing the integrated distance of the arm tip to the goal causes greedy
behaviors. In the viscous fluid environment of the octopus arm, a greedy strategy
using the shortest length trajectory does not lead to the fastest movement: the
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Fig. 5. Octopus arm results. The 3D plots show how (a) the distribution over the
number of coefficients, C, adapts over time in CNCS, and (b) configurations with
a better fitness are explored. The final distribution after 4,000 iterations is focused
between C = 15 and C = 50, and peaks at C = 18, for a compression ratio of 204:1;
3680 weights/18 coefficients and fitness reaching 0.88.

arm has to be compressed first, and then stretched in the appropriate direction.
Our fitness function favors behaviors that reach the goal within a small number
of time steps.

4.2 Results

Figure 5 shows how the distribution (a) over coefficients, C, and the fitness
of each configuration (b) adapts over the course of 4, 000 iterations of CNCS
(averaged over 20 runs). The distribution is initialized with a prior that favors
networks with low complexity, expressed solely with C (top-right corner of the
graphs). The expected fitness forms a ridge with a peak between C = 15 and
C = 18 with a moderate slope on the left, towards higher C. This focuses
the search between C = 15 and C = 50. The expected fitness for C < 15
drops significantly lowering the probability of sampling configurations in this
area. Reasonable fitness of 0.75 was reached at iteration 350 using less than 15
coefficients. A fitness of 0.88 that is close to optimum was reached at iteration
2560 using 18 coefficients. The weight matrices of such networks were compressed
down from 3680 weights (compression ratio of 204:1).

5 Helicopter Hovering with Gusting Wind

The standard Helicopter Hovering benchmark involves maintaining the position
of a simulated XCell Tempest [1] as close as possible to origin of a bounded
3D space (see figure 6a). The helicopter model consists of 12 state variables:
the coordinates and angular rotations in 3-space and their derivatives; and 4
control variables: longitudinal and latitudinal cyclic pitch and tail, and main
rotor collective pitch. The fitness is the sum of squares of all state variables over
the course of a flight lasting t time steps. If the helicopter moves more that 20m
away from the origin in any direction or its velocity exceeds 5 m/s, then it is
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Fig. 6. Helicopter hovering task with gusting wind. (a) The helicopter must be
controlled to stay within 20m from its initial position at the origin (as shown). Unlike
the standard version of the task where wind blows at a constant velocity, the wind
here blows in gusts with much higher velocity, forcing the controller to react quickly to
sudden changes in wind. (b) The helicopter is controlled by a simple recurrent network
(SRN). Both the number of neurons and the number of coefficients are determined
automatically by CNCS.

considered to have crashed, and the trial is terminated. The fitness is normalized
between 0 and 1 and the minimum over 5 trials is used.

The original 2008 RL competition version of this problem featured wind along
the x- and y-axes with a drag of up to 5m/s, which is initialized at random in
the beginning of each trial. With this setup, it turns out that a linear controller
can be easily trained to solve the task. Therefore, in order to make the task more
challenging, requiring non-linear control, the original wind model was modified
so that instead of constant wind, strong “gusts” buffet the helicopter at random.
Wind gusts occur in both x and y directions with probability 0.4 and a velocity
of 20m/s, which decays exponentially after striking the helicopter. The gusting
wind makes the task significantly harder—a linear controller cannot cope with
the abrupt wind perturbations. Because higher velocities are required to control
the helicopter under these conditions, the limit on the velocity was removed.

5.1 Setup

The helicopters were controlled using simple recurrent networks (SRN/Elman;
figure 6b). The decoding scheme for the genomes, Ω= {2, 2, 1, 2, 1}, is depicted
in figure 4b. The original benchmark involves flights of t = 6000 time steps
(equivalent to 60s flight). For the task with gusting wind used here, this was
reduced to 100 both for efficiency, and because, due to the severity of the wind,
such a short trial is enough to evaluate relative controller competence.

CNCS was used to search for both the network topology, Ψ (number of neu-
rons), and number of coefficients, C. The complexity distribution, D, was ini-
tialized with a uniform prior over the range {1, 2} for both Ψ and C, i.e. p(C, Ψ)
= 0.25, C, Ψ = 1, 2, and a sample size s = 2. As in the octopus task, h = 7,
σθ = 0.01, n = 1, and each SNES used a population size of 16. A total of 20
experiments were run, for 20 thousand iterations each.



10 50 200 1000 5000 20 000

0

40

0 10 0 10 0 10 0 10 0 10 0 10

CNCS evaluations

C
o
e

ff
ic

ie
n

ts

Neurons

0 1 0 1

0 10 0 10 0 10 0 10 0 10 0 10

10 50 200 1000 5000 20 000

Fig. 7. Complexity search distribution for helicopter hovering task. The fig-
ure shows how the distribution D (left) and fitness (right) evolve over time, averaged
across 20 runs. The algorithm first explores simple networks, with only a few neurons,
represented by a small number of DCT coefficients (around 500 steps), then gradually
spreads the distribution toward more complex configurations, identifying two clusters
with high fitness (networks with 3 neurons defined with 8 coefficients and 3-node net-
works defined with 12 coefficients).

5.2 Results

Figure 7 shows how the distribution over (Ψ,C) configurations (top row) and
the fitness of each configuration (bottom row) adapts over the course of 20k
iterations of CNCS (averaged over 20 runs). The distribution is initialized with
a prior that concentrates on networks with the lowest complexity (upper-left
corner of the graphs). Gradually, as the distribution expands, it finds high fit-
ness individuals with 1 to 3 neurons, using ≈8 coefficients, at around iteration
1000. These networks are simple both in terms of their topology (model complex-
ity) and in the regularity of their weight matrices (compression ratio of 8:1, 64
weights/8 coefficients). The distribution then focuses on this area, moving away
from configurations with fewer coefficients (C < 8) as they cannot express the
level of complexity required for nets with more that 3 neurons. At this point, the
distribution begins to follow a narrow, high-fitness corridor, adding coefficients
to networks with 2 and 3 neurons, until it reaches C = 12 (≈ 2000 iterations)
and starts to grow the size of networks. The shape of the distribution at 20k
iterations emerged consistently for all runs, with a maximum relative entropy
between the distributions of any two runs of only 0.038.

6 Discussion and Future Work
CNCS consistently found low-complexity solutions for the two tasks tested. The
octopus arm reaching task was successfully solved with networks having 3680
weights that were generated using just 18 DCT coefficients, and networks with 2
neurons (64 weights) represented by 8 DCT coefficients were found in the early
stage of the CNCS for the Helicopter Hovering task. Helicopter networks were
progressively improved by increasing the number of DCT coefficients beyond 12,
and broadening the search to more hidden neurons.

The experimental results show that updating the distribution on complex-
ity classes elegantly addresses the question of how to configure the evolution-



ary search. Running all configurations in parallel would be prohibitive, whereas
CNCS quickly adapts the search distribution towards promising configurations.

A potential drawback of CNCS lies in wide valleys of low fitness that span
across complexity space. One has to ensure, that the width of the smoothing
kernel used is wider than the potential valley. Otherwise, the distribution will
never reach across to sample networks of higher complexity. A possible solution
could be to use a variable kernel width for each complexity class based on e.g.
the number of samples evaluated from that class.

Future experiments will test the generalization of the evolved controllers to
verify whether complexity is correlated with robustness. We expect that the small
networks, although they have slightly worse fitness during the training (like those
small networks that can control the helicopter to hover), will generalize better.
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