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Abstract

We present a model-free reinforcement learning method for partially observ-
able Markov decision problems. Our method estimates a likelihood gradi-
ent by sampling directly in parameter space, which leads to lower variance
gradient estimates than obtained by regular policy gradient methods. We
show that for several complex control tasks, including robust standing with
a humanoid robot, this method outperforms well-known algorithms from the
fields of standard policy gradients, finite difference methods and population
based heuristics. We also show that the improvement is largest when the pa-
rameter samples are drawn symmetrically. Lastly we analyse the importance
of the individual components of our method by incrementally incorporating
them into the other algorithms, and measuring the gain in performance after
each step.

1. INTRODUCTION

Policy gradient methods, so called because they search in policy space
instead of deriving the policy directly from a value function, are among the
few feasible optimisation strategies for complex, high dimensional reinforce-
ment learning problems with continuous states and actions Benbrahim and
Franklin (1997); Peters and Schaal (2006); Schraudolph et al. (2006); Pe-
ters et al. (2005). However a significant problem with policy gradient algo-
rithms such as REINFORCE Williams (1992) is that the high variance in
their gradient estimates leads to slow convergence. Various approaches have
been proposed to reduce this variance Baxter and Bartlett (2000); Aberdeen
(2003); Peters and Schaal (2006); Sutton et al. (2000).
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However, none of these methods address the underlying cause of the high
variance, which is that repeatedly sampling from a probabilistic policy has
the effect of injecting noise into the gradient estimate at every time-step. Fur-
thermore, the variance increases linearly with the length of the history Munos
and Littman (2006), since each state depends on the entire sequence of pre-
vious samples. As an alternative, we propose to use policy gradients with

parameter based exploration (PGPE), where the policy is defined by a distri-
bution over the parameters of a controller. The parameters are sampled from
this distribution at the start of each sequence, and thereafter the controller
is deterministic. Since the reward for each sequence depends on only a single
sample, the gradient estimates are significantly less noisy, even in stochastic
environments.

Among the advantages of PGPE is that it does not have the same credit
assignment problem. By contrast, a standard policy gradient method must
first determine the reward gradient with respect to the policy, then differen-
tiate the parameters with respect to that reward gradient resulting in two
drawbacks. Firstly, it assumes that the controller is always differentiable
with respect to its parameters, which our approach does not. Secondly, it
makes optimisation more difficult since very different parameter settings can
determine very similar policies, and vice-versa.

An important refinement of the basic PGPE algorithm is the use of sym-
metric parameter sample pairs, similar to those found in finite difference
methods Spall (1998a). As we will see, symmetric sampling improves both
convergence time and final performance.

The PGPE algorithm is derived in detail in Section 2. In Section 3 we test
PGPE on five control experiments, and compare its performance with RE-
INFORCE, evolution strategies Schwefel (1995), simultaneous perturbation
stochastic adaptation Spall (1998a), and episodic natural actor critic Peters
and Schaal (2008a,b)

In Section 4 we analyse the relationship between PGPE and the above
algorithms, by iteratively modifying each of them so that they become more
like PGPE, and measuring the performance gain at each step. Conclusions
and an outlook on future work are presented in Section 5.

2. Method

In this section we derive the PGPE algorithm from the general framework
of episodic reinforcement learning in a Markovian environment. In Particular,
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we highlight the differences between PGPE and policy gradient methods such
as REINFORCE. In 2.3 we introduce symmetric sampling and explain why
it improves convergence speed.

2.1. Policy Gradients with Parameter-Based Exploration

Consider an agent whose action at is based on the state st at time t and
results in the state st+1 in the next step. As we are interested in continuous
state and action spaces required for the control of most technical systems,
we represent both at and st by real valued vectors. We assume that the
environment is Markovian, i.e., that the conditional probability distribution
over the next states st+1 is entirely determined by the preceding state-action
pair, st+1 ∼ p(st+1|st, at). We also assume that a stochastic policy suffices,
i.e., the distribution over actions only depends on the current state and the
real valued vector θ of agent parameters: at ∼ p(at|st, θ). Lastly, we assume
that each state-action pair produces a scalar Markovian reward rt(at, st). We
refer to a length T sequence of state-action pairs produced by an agent as a
history h = [s1:T , a1:T ] (elsewhere in the literature such sequences are called
trajectories or roll-outs).

Given the above formulation we can associate a cumulative reward r
with each history h by summing over the rewards at each time step: r(h) =
∑T

t=1 rt. In this setting, the goal of reinforcement learning is to find the
parameters θ that maximize the agent’s expected reward

J(θ) =

∫

H

p(h|θ)r(h)dh. (1)

An obvious way to maximize J(θ) is to estimate ∇θJ and use it to carry out
gradient ascent optimization. Noting that the reward for a particular history
is independent of θ, we can use the standard identity ∇xy(x) = y(x)∇x log x
to obtain

∇θJ(θ) =

∫

H

p(h|θ)∇θ log p(h|θ)r(h)dh. (2)

Since the environment is Markovian, and the states are conditionally in-
dependent of the parameters given the agent’s choice of actions, we can
write p(h|θ) = p(s1)Π

T
t=1p(st+1|st, at)p(at|st, θ). Substituting this into Eq. (2)

yields

∇θJ(θ) =

∫

H

p(h|θ)
T

∑

t=1

∇θp(at|st, θ)r(h)dh. (3)
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Clearly, integrating over the entire space of histories is unfeasible, and we
therefore resort to sampling methods

∇θJ(θ) ≈
1

N

N
∑

n=1

T
∑

t=1

∇θp(an
t |s

n
t , θ)r(h

n). (4)

where the histories hi are chosen according to p(hi|θ). The question then is
how to model p(at|st, θ). In policy gradient methods such as REINFORCE,
the parameters θ are used to determine a probabilistic policy πθ(at|st) =
p(at|st, θ). A typical policy model would be a parametric function approxi-
mator whose outputs define the probabilities of taking different actions. In
this case the histories can be sampled by choosing an action at each time step
according to the policy distribution, and the final gradient is then calculated
by differentiating the policy with respect to the parameters. However, sam-
pling from the policy on every time step leads to a high variance in the sample
over histories, and therefore to a noisy gradient estimate.

PGPE addresses the variance problem by replacing the probabilistic pol-
icy with a probability distribution over the parameters θ, i.e.

p(at|st, ρ) =

∫

Θ

p(θ|ρ)δFθ(st),at
dθ, (5)

where ρ are the parameters determining the distribution over θ, Fθ(st) is the
(deterministic) action chosen by the model with parameters θ in state st,
and δ is the Dirac delta function. The advantage of this approach is that
the actions are deterministic, and an entire history can therefore be gener-
ated from a single parameter sample. This reduction in samples-per-history
is what reduces the variance in the gradient estimate. As an added bene-
fit the parameter gradient is estimated by direct parameter perturbations,
without having to backpropagate any derivatives, which allows the use of
non-differentiable controllers.

The expected reward with a given ρ is

J(ρ) =

∫

Θ

∫

H

p(h, θ|ρ)r(h)dhdθ. (6)

Differentiating this form of the expected return with respect to ρ and applying
the log trick as before we obtain

∇ρJ(ρ) =

∫

Θ

∫

H

p(h, θ|ρ)∇ρ log p(h, θ|ρ)r(h)dhdθ. (7)
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Noting that h is conditionally independent of ρ given θ, we have p(h, θ|ρ) =
p(h|θ)p(θ|ρ) and therefore ∇ρ log p(h, θ|ρ) = ∇ρ log p(θ|ρ). Substituting this
into Eq. (7) yields

∇ρJ(ρ) =

∫

Θ

∫

H

p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)r(h)dhdθ. (8)

Sampling methods can again be applied, this time by first choosing θ from
p(θ|ρ), then running the agent to generate h from p(h|θ). This process yields
the following gradient estimator:

∇ρJ(ρ) ≈
1

N

N
∑

n=1

∇ρ log p(θ|ρ)r(hn). (9)

Assuming that ρ consists of a set of means {µi} and standard deviations
{σi} that determine an independent normal distribution for each parameter
θi in θ 1, some rearrangement gives the following forms for the derivative of
log p(θ|ρ) with respect to µi and σi

∇µi
log p(θ|ρ) =

(θi − µi)

σ2
i

, ∇σi
log p(θ|ρ) =

(θi − µi)
2 − σ2

i

σ3
i

, (10)

which can be substituted into Eq. (9) to approximate the µ and σ gradients.

2.2. Sampling with a baseline

Given enough samples, Eq. (9) will determine the reward gradient to
arbitrary accuracy. However each sample requires rolling out an entire state-
action history, which is expensive. Following Williams (1992), we obtain a
cheaper gradient estimate by drawing a single sample θ and comparing its
reward r to a baseline reward b given by a moving average over previous
samples. Intuitively, if r > b we adjust ρ so as to increase the probability of
θ, and r < b we do the opposite. If, as in Williams (1992), we use a step size
αi = ασ2

i in the direction of positive gradient (where α is a constant) we get
the following parameter update equations:

∆µi = α(r − b)(θi − µi), ∆σi = α(r − b)
(θi − µi)

2 − σ2
i

σi

(11)

1More complex forms for the dependency of θ on ρ could be used, at the expense of
higher computational cost
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2.3. Symmetric sampling

While sampling with a baseline is efficient and reasonably accurate for
most scenarios, it has several drawbacks. In particular, if the reward distri-
bution is strongly skewed then the comparison between the sample reward
and the baseline reward is misleading. A more robust gradient approximation
can be found by measuring the difference in reward between two symmetric
samples on either side of the current mean. That is, we pick a perturbation
ǫ from the distribution N (0, σ), then create symmetric parameter samples
θ+ = µ + ǫ and θ− = µ − ǫ. Defining r+ as the reward given by θ+ and r−

as the reward given by θ−, we can insert the two samples into Eq. (9) and
make use of Eq. (10) to obtain

∇µi
J(ρ) ≈

ǫi(r
+ − r−)

2σ2
i

, (12)

which resembles the central difference approximation used in finite difference
methods. Using the same step sizes as before gives the following update
equation for the µ terms

∆µi =
αǫi(r

+ − r−)

2
. (13)

The updates for the standard deviations are more involved. As θ+ and θ−

are by construction equally probable under a given σ, the difference between
them cannot be used to estimate the σ gradient. Instead we take the mean
r++ r−

2
of the two rewards and compare it to the baseline reward b. This

approach yields

∆σi = α

(

r+ + r−

2
− b

) (

ǫ2
i − σ2

i

σi

)

(14)

Compared to the method in Section 2.2, symmetric sampling removes the
problem of misleading baselines, and therefore improves the µ gradient es-
timates. It also improves the σ gradient estimates, since both samples are
equally probable under the current distribution, and therefore reinforce each
other as predictors of the benefits of altering σ. Even though symmetric
sampling requires twice as many histories per update, our experiments show
that it gives a considerable improvement in convergence quality and time.

As a final refinement, we make the step size independent from the (possi-
bly unknown) scale of the rewards by introducing a normalization term. Let
m be the maximum reward the agent can receive, if this is known, or the
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Algorithm 1 The PGPE Algorithm without reward normalization: Left
side shows the basic version, right side shows the version with symmetric
sampling. T and S are P × N matrices with P the number of parameters
and N the number of histories. The baseline is updated accordingly after
each step. α is the learning rate or step size.

Initialize µ to µinit

Initialize σ to σinit

while TRUE do

for n = 1 to N do

draw θn ∼ N (µ, Iσ2)

evaluate rn = r(h(θn))

end for

T = [ tij ] ij with tij := (θj
i−µi)

S = [ sij ] ij with sij :=
t2ij−σ2

i

σi

r = [(r1 − b), . . . , (rN − b)]T

update µ = µ + αTr

update σ = σ + αSr

update baseline b accordingly
end while

Initialize µ to µinit

Initialize σ to σinit

while TRUE do

for n = 1 to N do

draw perturbation ǫn ∼ N (0, Iσ2)
θ+,n = µ + ǫn

θ−,n = µ − ǫn

evaluate r+,n = r(h(θ+,n))
evaluate r−,n = r(h(θ−,n))

end for

T = [ tij ] ij with tij := ǫ
j
i

S = [ sij ] ij with sij :=
(ǫj

i )
2
−σ2

i

σi

rT = [(r+,1 − r−,1), . . . , (r+,N − r−,N )]T

rS = [ (r
+,1+r−,1

2 −b), . . . , ( (r+,N+r−,N

2 −b)]T

update µ = µ + αTrT

update σ = σ + αSrS

update baseline b accordingly
end while

maximum reward received so far if it is not. We normalize the µ updates by
dividing them by the difference between m and the mean reward of the sym-
metric samples. We normalize the σ updates by dividing by the difference
between m and the baseline b. This insight gives

∆µi =
αǫi(r

+ − r−)

2m − r+ − r−
, ∆σi =

α

m − b

(

r+ + r−

2
− b

) (

ǫ2 − σ2
i

σi

)

. (15)

Pseudocode for PGPE with and without symmetric sampling is provided by
Algorithm 1. Note that the reward normalization terms have been omitted
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for brevity.

3. Experiments

In this section we compare PGPE with REINFORCE, simultaneous per-
turbation stochastic adaptation (SPSA), episodic natural actor critic (eNAC)
and evolution strategies (ES) on three simulated control scenarios. These
scenarios allow us to model problems of similar complexity to today’s real-
life RL problems Müller et al. (2007); Peters and Schaal (2006). For most
experiments we also compare the performance of PGPE with and without
symmetric sampling (SyS).

For all experiments we plot the agent’s reward against the number of
training episodes. An episode is a sequence of T interactions of the agent
with the environment, where T is fixed for each experiment, during which
the agent makes one attempt to complete the task. For all methods, the
agent and the environment are reset at the beginning of every episode.

For eNAC and REINFORCE we employed an improved algorithm that
perturbs the actions at randomly sampled time steps instead of perturbing
at every time step.

For all the ES experiments we used a local mutation operator. We did not
examine correlated mutation and covariance matrix adaptation-ES because
both mutation operators add n(n − 1) strategy parameters to the genome;
given the more than 1000 parameters for the largest controller, this approach
would lead to a prohibitive memory and computation requirement. In ad-
dition, the local mutation operator is more similar to the perturbations in
PGPE, making it easier to compare the algorithms.

All plots show the average results of 40 independent runs. All the exper-
iments were conducted with hand-optimized metaparameters, including the
perturbation probabilities for eNAC and REINFORCE. For PGPE we used
the metaparameters αµ = 0.2, ασ = 0.1 and σinit = 2.0 in all tasks.

3.1. Pole balancing

The first scenario is the extended pole balancing benchmark as described
in Riedmiller et al. (2007). In contrast to Riedmiller et al. (2007) however,
we do not initialize the controller with a previously chosen stabilizing policy
but rather start with random policies. In this task the agent’s goal is to
maximize the length of time a movable cart can balance a pole upright in the
centre of a track. The agent’s inputs are the angle and angular velocity of
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Figure 1: PGPE with and without SyS
compared to ES, SPSA and eNAC on the
pole balancing benchmark. All plots show
the mean and half standard deviation of 40
runs.

Figure 2: PGPE with and without SyS com-
pared to ES, SPSA and REINFORCE on
the FlexCube walking task. All plots show
the mean and half standard deviation of 40
runs.

the pole and the position and velocity of the cart. The agent is represented
by a linear controller with four inputs and one output unit. The simulation
is updated 50 times a second. The initial position of the cart and angle of
the pole are chosen randomly.

Figure 1 shows the performance of the various methods on the pole bal-
ancing task. All algorithms quickly learned to balance the pole, and all
eventually learned to do so in the centre of the track. PGPE with SyS was
both the fastest to learn and the most effective algorithm on this benchmark.

3.2. FlexCube Walking Task

The second scenario is a mass-particle system with 8 particles. The par-
ticles are modelled as point masses on the vertices of a cube, with every
particle connected to every other by a spring (see Fig. 3). The agent can
set the desired lengths of the 12 edge springs to be anywhere between 0.5 to
1.5 times the original spring lengths. Included in the physics simulation are
gravity, collision with the floor, a simple friction model for particles colliding
with the floor and the spring forces. We refer to this scenario as the FlexCube

framework. Though relatively simple, FlexCube can be used to perform so-
phisticated tasks with continuous state and action spaces. In this case the
task is to make the cube “walk” — that is, to maximize the distance of its
centre of gravity from the starting point. Its inputs are the 12 current edge
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Figure 3: From left to right, a typical solution which worked well in the walking task is
shown: 1. Stretching forward. 2. Off the ground. 3. Landing on front vertices. 4. Retract-
ing back vertices 5. Bouncing off front vertices, landing on back vertices. 6. Stretching
forward (cycle closed).

spring lengths, the 12 previous desired edge spring lengths (fed back from
its own output at the last time step) and the 8 floor contact sensors in the
vertices. The policy of the agent is represented by a Jordan network Jordan
(1986) with 32 inputs, 10 hidden units and 12 output units. Figure 2 shows
the results on the walking task. All the algorithms learn to move the Flex-
Cube. PGPE substantially outperforms the other methods, both in learning
speed and final reward. Here SyS has a big impact on both as well. Figure 3
shows a typical scenario of the walking task. For better understanding please
refer to the video on Sehnke (2009).

3.3. Biped Robot Standing Task

The task in this scenario was to keep a simulated biped robot standing
while perturbed by external forces. The simulation, based on the biped robot
Johnnie Ulbrich (2008) was implemented using the Open Dynamics Engine.
The lengths and masses of the body parts, the location of the connection
points, and the range of allowed angles and torques in the joints were matched
with those of the original robot. Due to the difficulty of accurately simulating
the robot’s feet, the friction between them and the ground was approximated
by a Coulomb friction model. The framework has 11 degrees of freedom and
a 41 dimensional observation vector (11 angles, 11 angular velocities, 11
forces, 2 pressure sensors in feet, 3 degrees of orientation and 3 degrees of
acceleration in the head).

The controller was a Jordan network Jordan (1986) with 41 inputs, 20
hidden units and 11 output units.

The aim of the task is to maximize the height of the robot’s head, up to
the limit of standing completely upright. The robot is continually perturbed
by random forces (depictured by the particles in Figure 6) that would knock
it over unless it counterbalanced.
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Figure 4: The real Johnnie robot (left),
its simulation (centre) and the FlexCube
(right).

Figure 5: PGPE with and without SyS com-
pared to ES, SPSA and REINFORCE on
the robust standing benchmark. All plots
show the mean and half standard deviation
of 40 runs.

Figure 6: From left to right, a typical solution which worked well in the robust standing
task is shown: 1. Initial posture. 2. Stable posture. 3. Perturbation by heavy weights
that are thrown randomly at the robot. 4. - 7. Backsteps right, left, right, left. 8. Stable
posture regained.

As can be seen from the results in Fig. 5, the task was relatively easy, and
all the methods were able to quickly achieve a high reward. REINFORCE
learned especially quickly, and outperformed PGPE in the early stages of
learning. However PGPE overtook it after about 500 training episodes. Fig-
ure 6 shows a typical scenario of the robust standing task. For more details
please refer to the video on Sehnke (2009).

3.4. Ship Steering Task

In this task an ocean-going ship with substantial inertia in both forward
motion and rotation (plus noise resembling the impact of the waves) is simu-
lated. The task in this scenario was to keep the ship on course while keeping
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Figure 7: The ship steering simulation. The
color of the ”cargo container” corresponds
to the agent’s reward. The color changes
continuously from green for maximal reward
to red for minimal reward. The scale in the
background shows the distance the ship has
travelled.

Figure 8: PGPE with SyS, without SyS,
with two samples batch size and with clas-
sical reward normalization. All plots show
the mean and half standard deviation of 40
runs.

maximal speed. While staying on a predefined course with an error less
than 5 degrees, the reward is equal to the ship’s speed. Otherwise the agent
receives a reward of 0. The framework has 2 degrees of freedom and a 3-
dimensional observation vector (velocity, angular velocity, error angle). The
agent is represented by a linear controller with 3 inputs and 2 output units.
The simulation is updated every 4 seconds. The initial angle of the ship is
chosen randomly.

In this experiment we only compare different versions of our algorithm
with each other. Table 3.4 gives an overview of the different properties used.
As can be seen from the results in Fig. 8, the task could be solved easily
with PGPE. PGPE with SyS (version 1) is faster in convergence speed than
its non-symmetric counterpart (version 2). However, both versions 1 and 2
reach the same optimal control strategy.

The improvement cannot be explained by the fact that SyS uses 2 samples
rather than one, as can be seen when comparing it to the third version: PGPE
with random sampling and 2 samples batch size. This algorithm performs
even worse than the two others. Hence the improvement does in fact come
from the symmetry of the two samples. Version 4 of the algorithm assumes
that the maximum reward rmax is known in advance. Instead of the reward
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Table 1: Overview of algorithms used in the ship steering task. The results are plotted in
Fig. 8 with respective marker shapes and colours.

# markers SyS reward normalization # samples

1 red circle yes yes 2
2 green triangle no yes 1
3 blue diamond no yes 2
4 yellow square yes no 2

Figure 9: The CCRL
robot. Courtesy
Institute of Auto-
matic Control En-
gineering Buss and
Hirche (2008)

Figure 10: From left to right, a typical solution which worked
well in the grasping task is shown for 2 different positions of the
object with the same controller: 1. Initial posture. 2. Approach.
3. Enclose. 4. Take hold. 5. Lift.

normalization introduced in Eq. (15) the reward is then simply divided by
rmax. Our experiments show, that even if knowledge of rmax is available, it is
still beneficial to use the adaptive reward normalization instead of the real
maximum, since it accelerates convergence during the early learning phase.
In Wierstra et al. (2008) other beneficial reward normalization techniques
are discussed, especially for bigger batch sizes.

3.5. Grasping Task

The task in this scenario was to grasp an object from different positions
on a table. The simulation, based on the CCRL robot Buss and Hirche (2008)
was implemented using the Open Dynamics Engine. The lengths and masses
of the body parts and the location of the connection points were matched
with those of the original robot. Friction was approximated by a Coulomb
friction model. The framework has 8 degrees of freedom and a 35 dimensional
observation vector (8 angles, 8 angular velocities, 8 forces, 2 pressure sensors
in hand, 3 degrees of orientation and 3 values of position in hand, 3 values
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of position of object). The controller was a Jordan network Jordan (1986)
with 35 inputs, 10 hidden units and 8 output units. The task was learned in
4 phases, with progressively more difficult initial positions for the object. In
the first phase, the object was always in the same place on the edge of the
table. In the second phase it was still in a fixed position, but away from the
edge. In the third phase it was normally distributed around the centre of
the reachable region (standard deviation of 10cm). In the last phase it was
placed with equal probability anywhere in the reachable area. Every phase
required 10.000 episodes and used the final controller of the preceding phase.
Figure 10 shows a typical solution of the grasping task. For more detailed
views of the solution please see the video on Sehnke (2009).

3.6. Discussion

One general observation from our experiments was that the longer the
episodes the more PGPE outperformed policy gradient methods. This ef-
fect is a result of the variance increase in REINFORCE gradient estimates
with the number of actions. As most interesting real-world problems require
much longer episodes than in our experiments, this improvement can have
a strong impact. For example, in biped walking Benbrahim and Franklin
(1997), object manipulation Peters and Schaal (2006) and other robot control
tasks Müller et al. (2007) update rates of hundreds of Hertz and task lengths
of several seconds are common. Another observation was that symmetric
sampling has a stronger impact on tasks with more complex, multimodal
reward functions, such as in the FlexCube walking task.

4. Relationship to Other Algorithms

In this section we attempt to evaluate the differences between PGPE,
SPSA, ES and REINFORCE. Figure 11 shows an overview of the relationship
of PGPE to the other compared learning methods. Starting with each of the
other algorithms, we incrementally alter them so that their behaviour (and
performance) becomes closer to that of PGPE. In the case of SPSA we end up
with an algorithm identical to PGPE; for the other methods, the transformed
algorithm is similar but still inferior to PGPE.

4.1. From SPSA to PGPE

Three changes are required to transform SPSA into PGPE. First the uni-
form sampling of perturbations is replaced by Gaussian sampling. Second,
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Figure 11: Relationship of PGPE to other
stochastic optimisation methods.

Figure 12: Three variants of SPSA on the
FlexCube walking task: the original algo-
rithm (SPSA Original), the algorithm with
normally distributed sampling and likeli-
hood gradient (SPSA LikeGrad.), and with
adaptive variance (SPSA LocExp.). All
plots show the mean and half standard de-
viation of 40 runs.

correspondingly the finite differences gradient is replaced by the likelihood
gradient. Third, the variances of the perturbations are turned into free pa-
rameters and trained with the rest of the model. Initially the Gaussian sam-
pling is carried out with fixed variance, just as the range of uniform sampling
is fixed in SPSA.

Figure 12 shows the performance of the three variants of SPSA on the
walking task. Note that the final variant is identical to PGPE (solid line).
For this task the main improvement comes from the switch to Gaussian
sampling and the likelihood gradient (circles). Adding adaptive variances
actually gives slightly slower learning at first, although the two converge
later on.

The original parameter update rule for SPSA is

θi(t + 1) = θi(t) − α
y+ − y

−

2ǫ
(16)

with y+ = r(θ + ∆θ) and y
−

= r(θ − ∆θ), where r(θ) is the evaluation
function and ∆θ is drawn from a Bernoulli distribution scaled by the time
dependent step size ǫ(t), i.e. ∆θi(t) = ǫ(t) rand(−1, 1). In addition, a set
of metaparameters is used to help SPSA converge. The step size ǫ decays
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according to ǫ(t) = ǫ(0)
tγ

with 0 < γ < 1. Similarly, the step size α decreases
over time with α = a/(t+A)E for some fixed a, A and E Spall (1998a). The
choice of initial parameters ǫ(0), γ, a, A and E is critical to the performance
of SPSA. In Spall (1998b) some guidance is provided for the selection of these
coefficients (note that the nomenclature differs from the one used here).

To switch from uniform to Gaussian sampling we simply modify the per-
turbation function to ∆θi(t) = N (0, ǫ(t)). We then follow the derivation of
the likelihood gradient outlined in Section 2, to obtain the same parameter
update rule as used for PGPE (Eq. (11)). The correspondence with PGPE
becomes exact when we calculate the gradient of the expected reward with
respect to the sampling variance, giving the standard deviation update rule
of Eq. (11).

As well as improved performance, the above modifications greatly reduce
the number of hand-tuned metaparameters in the algorithm, leaving only
the following: a step size αµ for updating the parameters, a step size ασ

for updating the standard deviations of the perturbations, and an initial
standard deviation σinit. We found that the parameters αµ = 0.2, ασ = 0.1
and σinit = 2.0 worked very well for a wide variety of tasks.

4.2. From ES to PGPE

We now examine the effect of two modifications that bring ES closer to
PGPE. First we switch from standard ES to derandomized ES Hansen and
Ostermeier (2001), which somewhat resembles the gradient based variance
updates found in PGPE. Then we change from population based search to
following a likelihood gradient. The results are plotted in Figure 13. As can
be seen, both modifications bring significant improvements, although neither
can match PGPE. While ES performs well initially, it is slow to converge
to good optima. This is partly because, as well as having stochastic muta-
tions, ES has stochastic updates to the standard deviations of the mutations,
and the coupling of these terms slows down convergence. Derandomized ES
addresses that problem by using instead a deterministic standard deviation
update rule, based on the change in parameters between the parent and
child. Population-based search has advantages in the early phase of search,
when broad, relatively undirected exploration is desirable. This is particu-
larly true for the multimodal fitness spaces typical of realistic control tasks.
However in later phases convergence is usually more efficient with gradient
based methods. Applying the likelihood gradient, the ES parameter update
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Figure 13: Three variants of ES on the Flex-
Cube walking task: the original algorithm
(ES Original), derandomized ES (ES Deran-
dom) and gradient following (ES Gradient).
PGPE is shown for reference. All plots show
the mean and half standard deviation of 40
runs.

Figure 14: REINFORCE on the pole bal-
ancing task, with various action pertur-
bation probabilities (1, 0.5, 0.25, 0.125).
PGPE is shown for reference. All plots show
the mean and half standard deviation of 40
runs.

rule becomes

∆θi = α

M
∑

m=1

(rm − b)(ym,i − θi), (17)

where M is the number of samples and ym,i is parameter i of sample m.

4.3. From REINFORCE to PGPE

We previously asserted that the lower variance of PGPE’s gradient es-
timates is partly due to the fact that PGPE requires only one parameter
sample per history, whereas REINFORCE requires samples every time step.
This suggests that reducing the frequency of REINFORCE perturbations
should improve its gradient estimates, thereby bringing it closer to PGPE.

Fig. 14 shows the performance of episodic REINFORCE with a per-
turbation probability of 1, 0.5, 0.25, and 0.125 per time step. In general,
performance improved with decreasing perturbation probability. However
the difference between 0.25 and 0.125 is negligible. This is because reducing
the number of perturbations constrains the range of exploration at the same
time as it reduces the variance of the gradient, leading to a saturation point
beyond which performance does not increase.
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Note that the above trade off does not exist for PGPE, because a single
perturbation of the parameters can lead to a large change in the overall
behaviour.

A related approach is taken in Rückstieß et al. (2008) where the ex-
ploratory noise in each time step is replaced by a state-dependent exploratory
function (SDE) with additional parameters. Rather than generating random
noise in each time step, the parameters of this exploration function are drawn
at the beginning of each episode and kept constant thereafter, which leads to
smooth trajectories and reduced variance. SDE allows to use any gradient
estimation technique like Natural Actor-Critic or the classical REINFORCE
algorithm by Williams, while still ensuring smooth trajectories, a property
that PGPE naturally has.

5. Conclusion and Future Work

We have introduced PGPE, a novel algorithm for episodic reinforcement
learning based on a gradient based search through model parameter space.
We have derived the PGPE equations from the basic principle of reward max-
imization, and explained why they lead to lower variance gradient estimates
than those obtained by policy gradient methods. We compared PGPE to a
range of stochastic optimisation algorithms on three control tasks, and found
that it gave superior performance in every case. We have also shown that
PGPE is substantially improved by symmetric parameter sampling. Lastly,
we provided a detailed analysis of the relationship between PGPE and the
other algorithms.

A possible objection to PGPE is that the parameter space is generally
higher dimensional than the action space, and therefore has higher sampling
complexity. However, standard policy gradient methods in fact train the
same number of parameters — in PGPE they are just trained explicitly
instead of implicitly. Additionally, recent results Riedmiller et al. (2007)
indicate that this drawback was overestimated in the past. In this paper we
present experiments where PGPE successfully trains a controller with more
than 1000 parameters. Another issue is that PGPE, at least in its present
form, is episodic, because the parameter sampling is carried out once per
history. This contrasts with policy gradient methods, which can be applied
to infinite horizon settings as long as frequent rewards can be computed.

One direction for future work would be to establish whether Williams’
local convergence proofs for REINFORCE can be generalised to PGPE. An-
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other would be to combine PGPE with recent improvements in policy gra-
dient methods, such as natural gradients and base-line approximation Pe-
ters et al. (2005). We will also compare PGPE to the related SDE method
Rückstieß et al. (2008) to investigate performance differences, especially for
problem sets with a large number of parameters. Lastly, we would like to see
if symmetric sampling is beneficial to other stochastic optimisation methods
such as evolution strategies.
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