
Natural Evolution Strategies

Daan Wierstra, Tom Schaul, Jan Peters and Juergen Schmidhuber

Abstract— This paper presents Natural Evolution Strategies
(NES), a novel algorithm for performing real-valued ‘black
box’ function optimization: optimizing an unknown objective
function where algorithm-selected function measurements con-
stitute the only information accessible to the method. Natu-
ral Evolution Strategies search the fitness landscape using a
multivariate normal distribution with a self-adapting mutation
matrix to generate correlated mutations in promising regions.
NES shares this property with Covariance Matrix Adaption
(CMA), an Evolution Strategy (ES) which has been shown
to perform well on a variety of high-precision optimization
tasks. The Natural Evolution Strategies algorithm, however, is
simpler, less ad-hoc and more principled. Self-adaptation of the
mutation matrix is derived using a Monte Carlo estimate of the
natural gradient towards better expected fitness. By following
the natural gradient instead of the ‘vanilla’ gradient, we can
ensure efficient update steps while preventing early convergence
due to overly greedy updates, resulting in reduced sensitivity
to local suboptima. We show NES has competitive performance
with CMA on unimodal tasks, while outperforming it on several
multimodal tasks that are rich in deceptive local optima.

I. INTRODUCTION

Real-valued ‘black box’ function optimization is one of
the major branches of modern applied machine learning
research [1]. It concerns itself with optimizing the continuous
parameters of some unknown objective function, also called
a fitness function. The exact structure of the objective func-
tion is assumed to be unknown or unspecified, but specific
function measurements, freely chosen by the algorithm, are
available. This is a recurring problem setup in real-world
domains, since often the precise structure of a problem is
either not available to the engineer, or too expensive to model
or simulate. Numerous real-world problems can be treated as
real-valued black box function optimization problems. In or-
der to illustrate the importance and prevalence of this general
problem setup, one could point to a diverse set of tasks such
as the classic nozzle shape design problem [2], developing
an Aibo robot gait [3] or non-Markovian neurocontrol [4].

Now, since exhaustively searching the entire space of
solution parameters is considered infeasible, and since we do
not assume a precise model of our fitness function, we are
forced to settle for trying to find a reasonably fit solution that
satisfies certain pre-specified constraints. This, inevitably,
involves using a sufficiently intelligent heuristic approach.
Though this may sound crude, in practice it has proven to

Daan Wierstra, Tom Schaul and Juergen Schmidhuber are with IDSIA,
Manno-Lugano, Switzerland (email: [daan, tom, juergen]@idsia.ch). Juergen
Schmidhuber is also with the Technical University Munich, Garching,
Germany.

Jan Peters is with the Max Planck Institute for Biological Cybernetics,
Tuebingen, Germany (email: mail@jan-peters.net).

This research was funded by SNF grants 200021-111968/1 and 200021-
113364/1.

be crucial to find the right domain-specific trade-off on issues
such as convergence speed, expected quality of the solutions
found and the algorithm’s sensitivity to local suboptima on
the fitness landscape.

A variety of algorithms has been developed within this
framework, including methods such as Simulated Anneal-
ing [5], Simultaneous Perturbation Stochastic Optimiza-
tion [6], simple Hill Climbing, Particle Swarm Optimiza-
tion [7] and the class of Evolutionary Algorithms, of which
Evolution Strategies (ES) [8], [9], [10] and in particular its
Covariance Matrix Adaption (CMA) instantiation [11] are of
great interest to us.

Evolution Strategies, so named because of their inspira-
tion from natural Darwinian evolution, generally produce
consecutive generations of samples. During each generation,
a batch of samples is generated by perturbing the parents’
parameters – mutating their genes, if you will. (Note that ES
generally uses asexual reproduction: new individuals typi-
cally are produced without crossover or similar techniques
more prevalent in the field of genetic algorithms). A number
of samples is selected, based on their fitness values, while the
less fit individuals are discarded. The winners are then used
as parents for the next generation, and so on, a process which
typically leads to increasing fitness over the generations. This
basic ES framework, though simple and heuristic in nature,
has proven to be very powerful and robust, spawning a wide
variety of algorithms.

In Evolution Strategies, mutations are generally drawn
from a normal distribution with specific mutation sizes
associated with every problem parameter. One of the major
research topics in Evolution Strategies concerns the auto-
mated adjustment of the mutation sizes for the production
of new samples, a procedure generally referred to as self-
adaptation of mutation. Obviously, choosing mutation sizes
too high will produce debilitating mutations and ensure that
convergence to a sufficiently fit region of parameter space
will be prevented. Choosing them too low leads to extremely
small convergence rates and causes the algorithm to get
trapped in bad local suboptima. Generally the mutation size
must be chosen from a small range of values – known as
the evolution window – specific to both the problem domain
and to the distribution of current individuals on the fitness
landscape. ES algorithms must therefore adjust mutation
during evolution, based on the progress made on the recent
evolution path. Often this is done by simultaneously evolving
both problem parameters and the corresponding mutation
sizes. This has been shown to produce excellent results in
a number of cases [10].

The Covariance Matrix Adaptation algorithm constitutes
a more sophisticated approach. CMA adapts a variance-



covariance mutation matrix Σ used by a multivariate normal
distributions from which mutations are drawn. This en-
ables the algorithm to generate correlated mutations, speed-
ing up evolution significantly for many real-world fitness
landscapes. Self-adaptation of this mutation matrix is then
achieved by integrating information on successful mutations
on its recent evolution path, by making similar mutations
more likely. CMA performs excellently on a number of
benchmark tasks. One of the problems with the CMA algo-
rithm, however, is its ad-hoc nature and relatively complex or
even contrived set of mathematical justifications and ‘rules
of thumb’. Another problem pertains to its sensitivity to local
optima.

The goal of this paper is to advance the state of the
art of real-valued ‘black box’ function optimization while
providing a firmer mathematical grounding of its mechanics,
derived from first principles. Simultaneously, we want to de-
velop a method that can achieve optimization up to arbitrarily
high precision, and reduce sensitivity to local suboptima
as compared to certain earlier methods such as CMA. We
present an algorithm, Natural Evolution Strategies, that is
both elegant and competitive, inheriting CMA’s strength of
correlated mutations, while enhancing the ability to prevent
early convergence to local optima.

Our method, Natural Evolution Strategies (which can ac-
tually be seen as a (1,λ)-Evolution Strategy with 1 candidate
solution per generation and λ samples or ‘children’), adapts
both a mutation matrix and the parent individual using a
natural gradient based update step [12]. Every generation,
a gradient towards better expected fitness is estimated using
a Monte Carlo approximation. This gradient is then used
to update both the parent individual’s parameters and the
mutation matrix. By using a natural gradient instead of a
‘vanilla’ gradient, we can prevent early convergence to local
optima, while ensuring large update steps. We show that
the algorithm has competitive performance with CMA on
a number of benchmarks, while it outperforms CMA on
the Rastrigin function benchmark, a task with many local
suboptima. Similar

The paper is organized as follows. The next section
provides a quick overview of the general problem framework
of real-valued black box function optimization. The ensuing
sections describe the derivation of the ‘vanilla’ gradient
approach, the concept of ‘fitness shaping’, and the natural
gradient instantiation of our algorithm. The section of ex-
perimental results shows our initial results with a number of
benchmark problems, and compares the performance to the
CMA algorithm. The paper concludes with a discussion on
the advantages and problems of the method, and points out
possible directions for future work.

II. ALGORITHM FRAMEWORK

First let us introduce the algorithm framework and the
corresponding notation. The objective is to optimize the n-
dimensional continuous vector of objective parameters x for
an unknown fitness function f : Rn → R. The function
is unknown or ‘black box’, in that the only information

accessible to the algorithm consists of function measurements
selected by the algorithm. The goal is to optimize f(x),
while keeping the number of function evaluations – which
are considered costly – as low as possible. This is done by
evaluating a number 1 . . .λ of separate individuals z1 . . . zλ

each successive generation g, using the information from
fitness evaluations f(z1) . . . f(zλ) to adjust both the current
candidate objective parameters x and the mutation sizes.

In conventional Evolution Strategies, optimization is
achieved by mimicking natural evolution: at every gener-
ation, parent solution x produces offspring z1 . . . zλ by
mutating string x using a multivariate normal distribution
with zero mean and some variance σ. After evaluating all
individuals, the best µ individuals are kept (selected), stored
as candidate solutions and subsequently used as ‘parents’ for
the next generation. This simple process is known to produce
excellent results for a number of challenging problems.

Algorithm 1 Natural Evolution Strategies
g ← 1
initialize population parameters θ(g) = 〈x,Σ = ATA〉
repeat

for k = 1 . . . λ do
draw zk ∼ π(x,Σ)
evaluate cost of f(zk)
∇x log π (zk) = Σ−1 (zk − x)
∇Σ log π (zk) =

1
2
Σ−1 (zk − x) (zk − x)T Σ−1 − 1

2
Σ−1

∇A log π (zk) = A
h
∇Σ log π (zk) +∇Σ log π (zk)T

i

end for

Φ =

2

64
∇x log π(z1) ∇A log π(z1) 1

...
...

...
∇x log π(zλ) ∇A log π(zλ) 1

3

75

R = [f(z1), . . . , f(zλ)]T

δθ = (ΦTΦ)−1ΦTR
θ(g+1) ← θ(g) − β · δθ
g ← g + 1

until stopping criterion is met

III. ‘VANILLA’ GRADIENTS FOR EVOLUTION
STRATEGIES

Our approach, however, is different from conventional
Evolution Strategies in one important respect. Instead of
‘wasting’ information by discarding low-fitness samples, we
aim to use all available fitness values, even the bad ones, to
generate a gradient for updating our population.

The core idea is that we want to optimize expected ‘fitness’
J = Ez[f(z)] of the next generation. We assume at every
generation g a population π(g) parameterized by θ = 〈x,Σ〉,
representing the current candidate solution (‘parent’) x and
mutation matrix Σ used for producing the next generation
of search points.

In order to adjust parameters θ = 〈x,Σ〉 towards solutions
that are likely more fit, we estimate a gradient on θ for the
expected fitness. Now let f(z) be the fitness at a particular
search point z, and, utilizing the familiar multivariate normal
distribution, let



π(z|θ) = N (z|x,Σ)

=
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(z− x)TΣ−1(z− x)

]

denote the probability density of search point z given the
current population θ = 〈x,Σ〉. Expected fitness can then be
expressed as

J = Ez[f(z)] =
∫

π(z|θ)f(z)dz.

Taking the derivative of J with respect to θ of population π,
we can write

∇θJ = ∇θEz[f(z)]

=
∫
∇θπ(z|θ)f(z)dz

=
∫

π(z|θ)
π(z|θ)∇θπ(z|θ)f(z)dz

=
∫

π(z|θ)∇θ log π(z|θ)f(z)dz

using the ‘likelihood-ratio’ trick. Taking a Monte Carlo
approximation of this expectation by choosing λ search
points, we get

∇θJ = Ez [∇θ log π(z|θ)f(z)]

≈ 1
λ

λ∑

k=1

∇θ log π(zk|θ)f(zk)

The population parameter vector θ = 〈x,Σ〉 is comprised
of both the current candidate solution center and its muta-
tion matrix, concatenated in one single vector. In order to
calculate the derivatives of the log-likelihood with respect
to individual elements of θ for this mixture of multivariate
normal distributions, first note that

log π (z|x,Σ) =
n

2
log(2π)− 1

2
log detΣ

− 1
2

(z− x)T Σ−1 (z− x) .

We will need its derivatives, that is, ∇x log π (z|x,Σ) and
∇Σ log π (z|x,Σ). The first is trivially

∇x log π (z|x,Σ) = Σ−1 (z− x) ,

while the latter is

∇Σ log π (z|θ) =
1
2
Σ−1 (z− x) (z− x)T Σ−1 − 1

2
Σ−1.

Mutation matrix Σ needs to be constrained, though, in order
to preserve symmetry, ensure positive variances and to keep it
positive semi-definite. We accomplish that by representing Σ
as a product Σ = ATA. Instead of using the log-derivatives

on ∇Σ log π (z) directly, we compute the derivatives with
respect to A as

∇A log π (zk) = A
[
∇Σ log π (zk) +∇Σ log π (zk)T

]
.

Using these derivatives to calculate ∇θJ , we can then update
parameters θ = 〈x,Σ = ATA〉 as θ ← θ + β∇θJ using
learning rate β. This produces a new candidate solution
x(g+1) each generation, and simultaneously self-adapts the
associated mutation matrix to Σ(g+1). This simple update
rule, which covers both object parameters and strategy pa-
rameters in one framework, is in marked contrast to the
complicated procedure the CMA algorithm uses.

IV. NONLINEAR FITNESS SHAPING

Apart from slow convergence, one of the main problems
encountered by the current ‘vanilla’ version of the algorithm
described so far is the early convergence of the algorithm
due to quickly decreased mutation sizes of Σ. To see why
this happens, one has to imagine the curvature of some
hypothetical fitness landscape around x. If the fitness de-
creases quickly in one direction along the main axis of the
hyperellipsoid defined by Σ, while it increases only slowly
in the immediate neighborbood along the opposite direction,
the estimated gradient will tend to decrease Σ too much,
even driving it towards 0.

To overcome this problem, we introduce fitness shaping,
the use of a nonlinear fitness transformation function that, in-
tuitively speaking, ‘awards’ better samples more than it ‘pun-
ishes’ bad samples. The choice of fitness shaping function is
arbitrary as long as it is monotonically increasing with the
original fitness, and should therefore be considered one of the
tuning parameters of the algorithm, and chosen in a domain-
dependent manner. We have empirically found that ranking-
based shaping functions work best for various problems, also
because they circumvent the problem of extreme fitness val-
ues disproportionately distorting the gradient, making careful
adaptation of the learning rate during evolution unnecessary
even for problems with wildly fluctuating fitnesses. The
ranking function used for all experiments in this paper shapes
fitness as f(z) = i+5λi20 where i is the relative rank of z’s
original fitness in the batch z1 . . . zλ, scaled between 0 . . . 1.

V. NATURAL EVOLUTION STRATEGIES

Standard gradient methods have been shown to converge
slowly, however, in optimization landscapes with ridges and
plateaus. An ad-hoc and often-used method for overcoming
this would be the use of momentum. Natural gradients con-
stitute a more principled approach, however. First introduced
by Amari [12], natural gradients have numerous advantages
over ‘vanilla’ gradients.

The traditional gradient ∇J simply follows the steepest
descent in the space of the actual parameters. While this
might be a good idea in many problems, the main drawback
comes if we need to maintain uncertainty as it generates
the necessary exploration for the solutions. In this case, we
need to stay close to the presented type of solutions while



maximizing the fitness. As our solutions are presented by
a random sample, we need to use a measure of distance
D(θ̂||θ) between probability distributions πθ (z) and πθ̂ (z).
The natural measure distance between two probability distri-
butions is the Kullback-Leibler divergence, but alternatively
one could use the Hellinger distance. In this case, the natural
gradient is given by

max
δθ

J (θ + δθ) = δθT∇J,

s.t. D (θ + δθ||θ) = ε,

where J (θ) is the expected fitness of population π param-
eterized by θ, δθ is the direction of constrained steepest
descent,∇J is the steepest descent or gradient, D (θ + δθ||θ)
a measure of closeness on probability distributions and ε a
small increment size.

If D (θ + δθ||θ) is the Kullback-Leibler divergence or the
Hellinger distance, we have

D (θ + δθ||θ) = δθTF (θ) δθ + (const),

for small δθ → 0, where

F (θ) =
∫

π (z)∇ log π (z)∇ log π (z)T dz,

= E
[
∇ log π (z)∇ log π (z)T

]

is the Fisher information matrix which yields the natural
gradient δθ defined by the necessary condition

F (θ) δθ = β∇J,

with β being the learning rate.
Additionally, we can introduce a fitness baseline b as

∇J =
∫
∇π (z) f (z) dz + 0

=
∫
∇π (z) f (z) dz + b∇

∫
π (z) dz

︸ ︷︷ ︸
=1

=
∫
∇π (z) f (z) dz + b

∫
∇π (z) dz

=
∫
∇π (z) [f (z)− b] dz

=
∫

π (z)∇ log π (z) [f (z)− b] dz

= E [∇ log π (z) [f (z)− b]] .

Thus, we have the fitness baseline parameter b
which can be used to reduce the estimation variance
Var [∇ log π (z) [f (z)− b]]. Note that

Var [∇ log π (z) Cf (z)] = Var [∇ log π (z) f (z)]C2,

that is, the variance grows quadratically with the average
magnitude of the fitnesses. It can be significantly reduced
if a proper fitness baseline is used, reducing the number
of samples required to correctly estimate the gradient. This
changes the equation to

E
[
φ (z) φ (z)T

]
δθ = E [φ (z) f (z)]−E [φ (z) b]

with φ (z) = ∇ log π (z) with one open parameter b. We
obtain b by realizing the lower bound

Var [φ (z) [f (z)− b]]

= f̄2 Var

[
φ (z)

(
f (z)− f̄

)

f̄

]
+ Var

[
φ (z)

[
f̄ − b

]]
,

≥ f̄2E
[
φ (z) φ (z)T

]
+ Var

[
φ (z)

[
f̄ − b

]]
,

where f̄ = E [f (z)]. Thus, we have a minimum at b = f̄ .
However, this is not ideal as it ignores the interplay between
δθ and b. However, as E [φ (z)] = 0, we can obtain the
equation

0 + b = E [f (z)] ,

E [φ (z)]T δθ + b = E [f (z)] .

Now, we have the equation system

E
[
φ (z) φ (z)T

]
δθ + E [φ (z) b] = E [φ (z) f (z)]

E [φ (z)]T δθ + b = E [f (z)] .

This system can be solved straightforwardly as a linear
regression problem using the pseudoinverse, and when re-
placing the E [·] by sample averages, we obtain the general
natural gradient estimator

δθ = (ΦTΦ)−1ΦTR

where

Φ =




∇θ log π(z1) 1

...
∇θ log π(zλ) 1





R = [f(z1), . . . , f(zλ)]T

The resulting Natural Evolution Strategies algorithm is de-
scribed in pseudocode in Algorithm 1

-4 -3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Fig. 1. The evolution of the mutation matrices over the generations. Shown
are the Σ-defined ellipsoids of generations 0, 20, 40, 60 and 80 imposed
on the fitness landscape of the Rosenbrock benchmark. The function has its
optimum at point (1, 1). It can clearly be seen how the mutations ‘learn’
to align themselves in the local direction towards improved fitness.



TABLE I
UNIMODAL AND MULTIMODAL BENCHMARK FUNCTIONS TO BE MINIMIZED.

Name Type Fitness Function
SphereFunction unimodal

∑n
j=1 z2

j

SchwefelFunction unimodal
∑n

j=1

[∑j
k=1 zj

]2

Tablet unimodal (1000z1)2 +
∑n

j=2 z2
j

Rosenbrock unimodal
∑n−1

j=1

[
100

(
z2
j − zj+1

)2 + (zj − 1)2
]

DiffPow unimodal
∑n

j=1 |zj |2+10 i−1
n−1

Elli unimodal
∑n

j=1

(
zj1000

i−1
n−1

)2

SharpR unimodal −z1 + 100
√∑n

j=2 z2
j

ParabR unimodal −z1 + 100
∑n

j=2 z2
j

Cigar unimodal z2
1 +

∑n
j=2 (1000zj)

2

Rastrigin multimodal 10n +
∑n

j=1

[
z2
j − 10 cos (2πzj)

]

Ackley multimodal −20 exp
(
−0.2

√
1
n

∑n
j=1 z2

j

)
− exp

(
1
n

∑n
j=1 cos(2πzj)

)
+ 20 + e

Weierstrass multimodal
∑n

j=1

∑20
k=0 0.5k cos(2π3k(zj + 0.5))

Griewank multimodal
∑n

j=1
z2

j

4000 −
∏n

j=1 cos( zj√
j
) + 1

0 2000 4000 6000 8000 10000
number of evaluations

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

co
st

unimodal-5

DiffPow
Rosenbrock
Tablet
Schwefel
Sphere
SharpR
ParabR
Elli
Cigar

0 5000 10000 15000 20000 25000
number of evaluations

10-7

10-5

10-3

10-1

101

103

105

107

co
st

unimodal-15

DiffPow
Schwefel
Sphere
SharpR
ParabR
Elli
Cigar

Fig. 2. Left: Results for experiments on the unimodal benchmark functions, dimensionality 5. Shown are averages over 50 runs. Right: Results for the
unimodal benchmark functions with dimensionality 15, averaged over 10 runs.

VI. EXPERIMENTS

To test the performance of the algorithm, we chose a stan-
dard set of unimodal and multimodal benchmark functions
from [13] and [11] that are often used in the literature. Good
fitness functions should be easy to interpret, but do scale up
with n. They must be highly nonlinear, non-separable, largely
resistant to hill-climbing, and preferably contain deceptive
local suboptima. The multimodal functions were tested with
both Natural Evolution Strategies and the CMA algorithm
– widely regarded as one of the premier algorithms in this
field – for comparison purposes. An overview of the function
definitions can be seen in Table I.

In order to prevent potentially biased results, and to avoid
trivial optima (e.g. at the origin), we follow [13] and con-

sistently transform (by a combined rotation and translation)
the functions’ inputs in order to make the variables non-
separable.

The tunable parameters of the NES algorithm are com-
prised of generation size λ, the fitness shaping function
applied on the fitness function f and learning rate β. The first
parameter, the generation size, should be chosen such that
underconstrained linear regression during the pseudoinverse
does not occur. This entails a minimum size of 1+n+n2 (the
size of the matrix plus the length of the vector plus one). The
second parameter, the fitness shaping function, was taken to
be ranking-based as described above for all experiments. The
algorithm proved robust to changes in the specific parameters
used in this function. The last parameter, the learning rate,



should be set as high as possible without destabilizing the
updates. Too large updates can cause destructive updates to
both x and Σ, and the algorithm diverges or reaches early
convergence especially if values of Σ are driven too close to
0.

We ran NES on the set of unimodal fitness functions with
dimensions 5 and 15 using a target precision of 10−6. On
the multimodal functions we performed experiments while
varying the distance of the initial guess to the optimum
between 1 and 100. Those runs were performed on dimension
2 with a target precision of 0.01, since here the focus was
on avoiding local minima.

Figure 2 shows the average performance over 50 runs on
the unimodal functions with dimensionality 5. The parameter
settings were identical in all runs: β = 0.02 and λ = 50,
and all runs converged. Additionally it shows the average
performance over 10 runs on the unimodal functions with
dimensionality 15. The parameter settings here are β = 0.01
and λ = 250. Note that for SharpR and ParabR the plot
stops at 10−2. This is because these two functions do not
have a minimum, but their fitness can become −∞, so they
are stopped as soon as their fitness becomes negative.

Table II shows, for all multimodal functions, the percent-
age of runs where NES found the global optimum (as op-
posed to it getting stuck in a local suboptimum) conditioned
on the distance from the initial guess to the optimum. The
percentages are computed over 100 runs.

Figure 1 shows the development of the covariance matrix
during a run on the Rosenbrock function. It can be seen how,
over the successive search batches, the covariances of the
mutation matrix adapt to align perfectly with the curvature
of the test function.

To summarize, our experiments indicate that NES is
competitive with other high-performance algorithms in black
box optimization on the selected high-precision unimodal
test functions, and even tends to outperform CMA on some
multimodal benchmarks, which is likely due to its natural
gradient-induced prevention of premature convergence of
parameters θ. We expect the algorithm to do well on future
real-world experiments with many deceptive local suboptima.

VII. DISCUSSION

Natural Evolution Strategies constitute a well-principled
approach to real-valued black box function optimization
with a relatively clean derivation from first principles. Its
theoretical relationship to the field of Policy Gradients [14],
[15], and in particular Natural Actor-Critic [16], should be
clear to any reader familiar with both fields. In recent work
carried out independently from ours, the similarities between
Policy Gradient methods and Evolution Strategies have also
been pointed out [17], which suggests there might be fruitful
future interaction between the two fields.

The experiments however show that, on most unimodal
benchmarks, NES is still roughly 2 to 5 times slower in
performance than CMA. This contrasts with the results
on the multimodal functions, on which NES occasionally
outperforms CMA. That result suggests NES might be less

sensitive to local suboptima than CMA, possibly due to the
use of natural gradients which can typically better preserve
uncertainty in the production of new samples, causing a
better exploration-exploitation trade-off.

The results also suggest that NES and CMA scale similarly
with increased dimensionality. We argue, though, that a
method such as Natural Evolution Strategies or CMA should
be used only for problems with relatively small dimensional-
ity (at most a few dozen), since the number of parameters in
θ grows squared with n. In order to prevent underconstrained
linear regression in computing the natural gradient, one needs
a sufficient number of samples per generation before execut-
ing an update step. Also for this reason the dimensionality
n needs to be kept low. Alternatively, instead of using the
entire mutation matrix, one could use only the diagonal if n
becomes infeasibly large.

NES does require the user to manually specify some
algorithm parameters: the learning rate, the batch/generation
size, and the fitness shaping function. In contrast, the CMA
algorithm has a set of excellent ‘magic’ default settings.

Future work on Natural Evolution Strategies must de-
termine whether NES can be made to outperform CMA
consistently on typical benchmarks and real-world tasks. We
suggest extending the algorithm from a single multinormal
distribution as population representation to a mixture of
Gaussians, thus further reducing its sensitivity to local subop-
tima. Another improvement could be achieved by replacing
the pseudoinverse by Recursive Least Squares, enabling the
algorithm to make update steps after every new sample,
moving away from generational batches. Finally, even though
NES uses all samples even the low-fitness ones (unlike
conventional ES and CMA), we suspect further developing
sound statistical methods for better exploiting the information
in low-fitness samples might greatly improve performance.

VIII. CONCLUSION

In this paper we presented Natural Evolution Strategies,
a novel algorithm for tackling the important class of real-
valued ‘black box’ function optimization problems. The pro-
posed method is nearly competitive with the well-established
Covariance Matrix Adaptation algorithm, which shares its
property of producing correlated mutations that greatly help
performance in real-world problem domains. Using a Monte
Carlo-estimated natural gradient for updating both candidate
solutions and the mutation matrix, one might suspect a re-
duced sensitivity to getting stuck in local suboptima, and our
initial experimental results suggest that this might indeed be
the case. Moreover, NES seems simpler and better-principled
than CMA and other Evolution Strategies. Future work
will determine whether NES can be shown to consistently
outperform CMA on more realistic problem settings and
benchmarks.

REFERENCES

[1] J. Spall, S. Hill, and D. Stark, “Theoretical framework for comparing
several stochastic optimization approaches,” Probabilistic and Ran-
domized Methods for Design under Uncertainty, pp. 99–117, 2006.



TABLE II
RESULTS FOR THE MULTIMODAL BENCHMARK FUNCTIONS. SHOWN ARE PERCENTAGES OF RUNS THAT FOUND THE GLOBAL OPTIMUM, FOR BOTH

NES AND CMA, FOR VARYING STARTING DISTANCES.

Function Distance NES CMA
Rastrigin 1 32% 13%
Rastrigin 10 24% 11%
Rastrigin 100 22% 14%
Ackley 1 95% 89%
Ackley 10 88% 70%
Ackley 100 1% 3%
Weierstrass 1 44% 90%
Weierstrass 10 58% 92%
Weierstrass 100 67% 92%
Griewank 1 99% 100%
Griewank 10 9% 2%
Griewank 100 2% 0%

[2] J. Klockgether and H.-P. Schwefel, “Two-phase nozzle and hollow
core jet experiments,” in Proc. 11th Symp. Engineering Aspects of
Magnetohydrodynamics, 1970, pp. 141–148.

[3] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in Proceedings of the IEEE International
Conference on Robotics and Automation, May 2004.

[4] F. J. Gomez and R. Miikkulainen, “Solving non-Markovian control
tasks with neuroevolution,” in Proc. IJCAI 99. Denver, CO: Morgan
Kaufman, 1999.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, Number 4598, 13 May 1983, vol. 220,
4598, pp. 671–680, 1983.

[6] J. C. Spall, “Stochastic optimization and the simultaneous perturbation
method,” in WSC ’99: Proceedings of the 31st conference on Winter
simulation. New York, NY, USA: ACM, 1999, pp. 101–109.

[7] J. Kennedy and R. C. Eberhart, Swarm intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2001.

[8] I. Rechenberg, “Evolutionsstrategie: Optimierung technischer systeme
nach prinzipien der biologischen evolution,” Ph.D. dissertation, TU
Berlin, 1971.

[9] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: A compre-
hensive introduction,” Natural Computing: an international journal,
vol. 1, no. 1, pp. 3–52, 2002.

[10] H.-G. Beyer, “Toward a Theory of Evolution Strategies: Self-
Adaptation,” Evolutionary Computation, vol. 3, no. 3, pp. 311–347,
1996.

[11] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[12] S. Amari, “Natural gradient works efficiently in learning,” Neural
Computation, vol. 10, no. 2, pp. 251–276, 1998.

[13] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the
cec 2005 special session on real-parameter optimization,” Nanyang
Technological University, Singapore, Tech. Rep., 2005.

[14] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp.
229–256, 1992.

[15] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Beijing, China, 2006, pp. 2219 – 2225.

[16] J. Peters, S. Vijayakumar, and S. Schaal, “Natural actor-critic,” in
Proceedings of the 16th European Conference on Machine Learning
(ECML 2005), 2005, pp. 280–291.

[17] V. Heidrich-Meisner and C. Igel, “Similarities and differences between
policy gradient methods and evolution strategies,” in To appear in:
16th European Symposium on Artificial Neural Networks (ESANN),
2008.


