next up previous
Next: INTRODUCTION

Feature extraction through LOCOCODE

Sepp Hochreiter, TUM
Jürgen Schmidhuber, IDSIA

Neural Computation 11(3): 679-714, 1999

Abstract:

``Low-complexity coding and decoding'' (LOCOCODE) is a novel approach to sensory coding and unsupervised learning. Unlike previous methods it explicitly takes into account the information-theoretic complexity of the code generator: it computes lococodes that (1) convey information about the input data and (2) can be computed and decoded by low-complexity mappings. We implement LOCOCODE by training autoassociators with Flat Minimum Search, a recent, general method for discovering low-complexity neural nets. It turns out that this approach can unmix an unknown number of independent data sources by extracting a minimal number of low-complexity features necessary for representing the data. Experiments show: unlike codes obtained with standard autoencoders, lococodes are based on feature detectors, never unstructured, usually sparse, sometimes factorial or local (depending on statistical properties of the data). Although LOCOCODE is not explicitly designed to enforce sparse or factorial codes, it extracts optimal codes for difficult versions of the ``bars'' benchmark problem, whereas ICA and PCA do not. It produces familiar, biologically plausible feature detectors when applied to real world images, and codes with fewer bits per pixel than ICA and PCA. Unlike ICA it does not need to know the number of independent sources. As a preprocessor for a vowel recognition benchmark problem it sets the stage for excellent classification performance. Our results reveil an interesting, previously ignored connection between two important fields: regularizer research, and ICA-related research. They may represent a first step towards unification of regularization and unsupervised learning.




next up previous
Next: INTRODUCTION
Juergen Schmidhuber 2003-02-13


Back to Independent Component Analysis page.