
Learning Skills from Play: Artificial Curiosity on a
Katana Robot Arm

Hung Ngo, Matthew Luciw, Alexander Forster, and Juergen Schmidhuber
IDSIA / SUPSI / USI

6928, Galleria 1, Manno-Lugano, Switzerland
Email: {hung, matthew, alexander, juergen}@idsia.ch

Abstract—Artificial curiosity tries to maximize learning
progress. We apply this concept to a physical system. Our Katana
robot arm curiously plays with wooden blocks, using vision,
reaching, and grasping. It is intrinsically motivated to explore
its world. As a by-product, it learns how to place blocks stably,
and how to stack blocks.

I. INTRODUCTION

How can embedded robots learn skills to act successfully
in situations that their designers did not anticipate, ideally
without a teacher?

The answers could lie in how children learn skills: by
intrinsically motivated playing: “Children do not play for a
reward-praise, money, or food. They play because they like
it” [20] (p28). There are different types of playing (e.g.,
physical, social, following rules of games, etc. [9]); we focus
on constructive play, where children create things by manipu-
lating their environment, for example, by building towers from
blocks. Constructive play gives children the opportunity to
experiment with the objects in the environment, discovering
what works and what doesn’t. It leads to basic knowledge and
skills, such as block stacking. Playing is recognized as being
critical to future success. How can robots learn skills in a
similar fashion?

There is a mathematical theory of how artificial systems
can develop skills through playing [14], [15], based on two
decades of work on artificial curiosity [15] (AC). According
to this theory of curiosity and intrinsic motivation (IM), a
creative agent needs two learning components: a general rein-
forcement learner and an adaptive world model (i.e., predic-
tor/compressor of the agent’s growing history of perceptions
and actions). The learning progress or expected improvement
of the model becomes an intrinsic reward for the reinforcement
learner. Hence, to achieve high intrinsic reward, the reinforce-
ment learner is motivated to create new experiences such that
the model makes quick progress.

Here we apply principles of AC to a robot (a Katana
robot arm), in an environment with a few manipulable objects
(blocks). The robot plays with the objects in its environment,
through an implementation of artificial curiosity. Through
playing, the robot learns skills. However, the general useful-
ness or value of the skills is not apparent to the robot during
learning. It is only driven to improve its understanding of the
world as quickly as possible. The most interesting (to us) skill

learned as a by-product of its curiosity-satisfying drive is a
block stacking skill.

Fig. 1. The Katana robot arm in its block-world environment. It
reaches for, grasps, and places blocks. The sensory input is an image
from the overhead camera. There is a Markov Decision Process en-
vironment representation (discrete states and actions). Reinforcement
learning updates a policy for action selection. The only reward is
intrinsic: learning progress of a set of predictors (one for each state)
that predict the outcome of that action. At any time, it prefers to try
the state-action pairs that are associated with higher progress.

The rest of the paper is organized as follows. Section II
outlines the high-level design of the system that enables skill
learning through play. It describes a few challenges faced in
this real-world implementation. Section III walks through the
entire architecture in detail. Section IV presents experiments
and results. Section V concludes the paper.

II. SYSTEM DESIGN: CHALLENGES

Our robot, a Katana arm [13], and its environment setting,
which we simply call block-world, are shown in Fig 1. We
would like the robot to play with the blocks and learn some
useful skills as a byproduct. Two skills we desire the robot
to learn: 1. how to reliably place a block stably, 2. how to
reliably stack a few blocks. A more developmental system
would not be designed such that we (the designers) know what
the robot will eventually learn. We hope lessons learned from
this system can inform an improved system so that the robot
eventually learns things that even we do not expect.

Artificial curiosity couples reinforcement learning (RL)
techniques with an intrinsic reward estimator. The intrinsic
reward is (generally) the expected learning progress of some
adaptive world model. We have to decide what the world
model will be, and, given that, how to define the intrinsic
reward (improvement). We can take inspiration from some
previous work.

Storck et al. [16], albeit in a grid-world simulation, had
an implementation of AC on top of an improving model of
the environment, represented as a Markov Decision Process
(MDP) [18]. An MDP is a four-tuple: (S,A,P,R), where S
is a set of states, A is a set of actions, Pas,s′ is the probability
of transitioning from state s ∈ S to s′ when taking action a,
and Ras is the expected immediate reward when taking action
a in state s.

In the system of Storck et al., the agent learns the transition
probabilities P through experience. It updates an approxima-
tion of P after it executes some action in some state and it
observes the outcome state. These probabilities are the agent’s
model of the world. The intrinsic reward r associated with pair
(s, a) is in proportion to the Kullback-Leibler (KL) distance
between the transition probabilities before and after when the
agent took action a in state s. The agent’s reward is based
on how much the probability estimates changed after the new
experience.

Does change represent learning progress? Yes, since a
property of the probability learner is that it is guaranteed
to converge to the true probabilities with enough experience.
Since there is no forgetting, the agent will not get reward for
learning things it knew earlier, but forgot.

The policy π gives action selection probabilities condi-
tioned on the current state. Through policy iteration [3], a
reinforcement learner, updates the policy using the current
approximation of P . Accurate transition probabilities allow
an agent to optimally select actions to move around in the
MDP. The skills this agent is driven to quickly learn are how
to travel from some state to another.

The above system’s AC is totally contained within the
framework of MDPs since the intrinsic reward is based on
the adaptive model of P . Another type of approach bases its
intrinsic reward on a learning system “outside” of the MDP.
Kompella et al. [10] couple an MDP — where each state is
a range of joint angles on a single joint of a robot arm, and
the two actions are angle changes, e.g., go left or right —

with multiple predictors. Each predictor tries to predict the
output of a different sensory feature. The intrinsic reward is
associated with the expected decrease in prediction error on
the features. Expectations of intrinsic reward are calculated on
the (recent) samples collected at each state-action.

We can say the external (outside the MDP framework)
learner represents knowledge about some property of the
world, and the AC system drives the agent to create policies
(upon the MDP) that will improve the agent’s knowledge (most
quickly improve the performance of the predictors).

As in both systems, we’ll make the world an MDP — we’ll
design what is meant by state and what is meant by action. The
potential downside of this approach is that some information is
lost — not accounted for within the state-actions we defined —
thus limiting the limits of exploration. Our system has a set of
predictors outside the MDP (“knowledge”), which will be the
basis for intrinsic reward. Our predictors try to predict a basic
physical concept — whether the block it places will stay there
after it releases it. This corresponds to two classes: “stable”
or “falling”. There are separate predictors, one for each state.
The transitions in the MDP must be learned from experience
(“skills”), and their improvements could be a basis for intrinsic
reward. Learning these probabilities corresponds to learning
skills. The skills are useful for achieving improvement in
knowledge — for improving the classification ability of the
associate predictors.

The elephant in the room at this point is the issue of
representation. The input from the camera is 640×480 pixels.
The commands to the robot are based on the continuous joint
angles, which is a point in six dimensional joint-space. It
is intractable to apply standard RL directly on such high-
dimensional continuous spaces. What are the states? What are
the actions?

To simplify the robot’s world, the top-down image is not
handled holistically, but instead scanned over locally using
much smaller “receptive fields”. Each receptive field can be
thought of as a window into a world where the robot can
explore. Yet, what the robot learns in one world applies to
all other worlds. Block stacking can be thought of as mostly
invariant to global position in the workspace. Further, it is
not important how the other blocks, which have no chance of
interacting with the block the robot is placing, are positioned.
This is why the system prominently uses receptive-fields —
an attention module. When it is holding a block and figuring
out where to place it, the robot can only “consider” a small
part of the workspace, small enough to include the blocks that
would matter if the block it is holding were placed there.

For some block configuration, each world-under-
consideration boils down into a single state and action
in an MDP that applies to all the worlds. The state is the
height of the stack of blocks at this location. The action is
designed to capture potential stability. Details are given in an
example, provided in the next section. The resulting MDP
becomes a basis for tractable exploration and captures the
skills of stable block placement and block stacking.

Another challenging issue emerged in development on a real

robotic platform: there is a limited time for learning. In real-
world systems, time and the number of repeated executions
needed are limited resources. Each environment interaction
takes several seconds to complete. First, as mentioned above,
the MDP world constrains the amount of stuff the robot can
do, ensuring the robot will get to something interesting in the
limited time we have. Second, we use RL techniques based
on dynamic programming to quickly formulate policies. Such
techniques are global, as they can update all values at once,
which is essential for systems driven by intrinsic reward. We
use Least Square Policy Iteration (LSPI) [12]. LSPI greatly
reduces the number of samples needed for learning.

Now we can discuss our working definition of skill: a
combination of policy and approximate transition model P .
Due to approximate dynamic programming, if P (or the
relevant part thereof) is good enough, the robot can formulate
the policy (instantiate the skill) all at once. At this point, we
can say the robot has learned that skill. A skill is for reaching
some state from the current state. The original purpose of
the skill is to improve the robot’s knowledge (improve the
predictor as quickly as possible). After the intrinsic rewards
have been exhausted — once all the predictors are as good
as possible — we can say the robot has learned all the skills.
These skills may become useful for another purpose later (i.e.,
external reward).

Another challenging issue was the robot’s physical limita-
tions. Actions that might lead to awkward collisions must be
avoided, since, in the worst case, they could break the robot.
For example, the gripper in our Katana arm is not amenable
to the robot forcing it forward onto a surface, yet it does not
give force feedback signals, which we might like to use as
negative reward (pain). In our system, there is a teacher, who
plays a transparent but essential role, which is that of a “safety
monitor”. His job is to prevent catastrophic physical collisions
of the robot. This involves, for example, moving the block
the robot is reaching for slightly if the gripper is about to
collide with it. In childrens’ play, the teacher has a central
role [11]. The teacher often shapes the environment so learning
is more likely or easier, related to the scaffolding concept of
Vygotsky [4].

III. DETAILS OF THE SYSTEM

A. Architecture

Fig. 2 shows the system architecture.
Perception. There are four different colored blocks some-

where in the robot’s play area. The perception module detects
the center positions and orientations of those which are visible
from above. It takes a high-dimensional camera image as input,
does an L.A.B color space conversion, thresholds to four
binary images through different rule sets for each block color
(each block has a different color), fills in small holes, and
takes the largest connected component in each image as the
block. It outputs the visible blocks’ centroids and orientations,
in pixel coordinates.

Memory. This module maintains a list of estimated block
positions, orientations, and heights. It uses input from the

perception module and some basic built-in inferences, to
update the world model. We need this to keep track of the
blocks underneath other blocks. We also need this to estimate
the height at different locations.

The memory module updates the world model after each
block placement using an outcome perception. This model
update takes as input: the previous world model, the ID
(color) of the last placed block, the detected blocks from the
overhead image, and the inferred outcome of the placement.
The outcome is one of two options: “stable” or “falling”. In
one case, the block stays where it is placed, in which case the
color at this location becomes that of the placed block and the
height increases. In the other case, the resulting height of the
placed color is less than expected. The first case corresponds
to stable, and the second corresponds to unstable.

Attention. This module breaks the image into smaller over-
lapping (40× 40 pixels) receptive fields. Each receptive field
subimage corresponds to a location of potential placement.
Every subimage is encoded as a discrete state-action pair. The
state at this location is the maximum height ∈ {0, 1, 2, 3, ...}
of any existing stack here. The action a ∈ {0, 1, 2, 3, 4, 5}
encodes properties of the surface upon where the robot will
place the block (explained further below).

Using the memory module’s information about the occluded
blocks, it converts the subimage to a binary image, with each
bit set to 1 if it is a block pixel of all blocks beneath, and
0 otherwise. A feature detection function outputs a 1 if the
center of the receptive field image is inside the convex hull
constructed from all the connected pixels within this binary
image, and 0 otherwise. To take into account the noise in its
vision and movement system, the system applies this function
centered at four other points; here we let it move three pixels
along four directions (Up, Down, Left, Right).

We might use each possible binary vector as a unique action,
leading to 25 = 32 actions. But we can remove redundancy
due to symmetry of the binary features. They are further
grouped into 6 groups based on number of “on” bits. There
are 6 possible actions. We think an example would be useful
at this point — see Figs. 3 and 4.

The attention module maps the current situation to a set of
the possible transitions in the global MDP model.

It is computationally heavy to extract the state-action at
all receptive-field positions. We designed a biased-search
mechanism, which is informed by the value system and the
memory system. Its memory gives it the heights of the blocks
in the workspace, which informs it of the possible state-actions
currently available. It then sorts the values of these possible
state-actions to get a desired state-action. The memory also
tells it the locations where the blocks currently are. It will
preferentially search around these locations — unless the most
desired transition is to place a block at height zero. As soon
as the robot finds the desired state-action, the search halts.

Cognition. This includes the two predictive models of how
the environment reacts to the robots actions: an MDP model,
which predicts the next state from the current state and action,
and the sensory predictors — one associated with each state.

Fig. 2. System Architecture. See text for details.

We do this since the dynamics are different at different block-
stack heights (noise accumulation). For a given state-action,
the appropriate predictor predicts whether the placed block
will stay where it is placed (stable/unstable). We want to
approximate the underlying dynamics of block-world as a
linear system on the extracted features — basically, the more
bits set, the more stable it should be.

The state-action encoding leads to a learnable transition
model Pas,s′ . Since we have a small number of states and
actions, values of P are stored in a table. The model is updated
using basic probability estimation from samples.

Each sensory predictor is realized by a Regularized Least
Squares [8], [19] binary classifier. A measure of confidence
improvement in the predictive estimates of the classifier is
used as an intrinsic reward.

Value. The value system measures learning progress as a
function of how the models improve after each update. RL
method — LSPI — assigns value to all state-actions.

Instead of the agent being in a certain state, and selecting
from all actions (typical in RL), at any time our system could
potentially be in several possible states, each of which has just
a subset of actions available to it. These possible transitions
inform the action selection module inside the value system,
which will select a transition with the highest value.

Motor. The overhead camera has been calibrated [5], and
the system can convert pixel coordinates to the robot’s arm-
centered coordinates. When picking a block up, the robot arm
selects one randomly. For placing, the motor module is advised
by the action selection of the value system. To perform a place
action, the robot selects a single receptive field, corresponding
to the highest value of the corresponding state-action pair.
The corresponding pixel-coordinates and height (we fixed the
orientation) are given to the motor module, and the robot

(a) (b) (c)

(d) (e) (f)

Fig. 3. Feature extraction from the attention module. The thick lines
represent the boundaries of block pixels. The receptive fields are
represented by dotted squares, centered at the selected placement
locations (blue small circles). The pink lines represent the convex
hulls of the block pixels inside the receptive fields. A feature is set
to a) one if the placement location is inside the convex hull, or b) zero
otherwise. Note the case c) where the selected placement position is
outside any block underneath the receptive field, but the placement
location is inside the convex hull, and thus the feature is still set to
one. For stacks of several blocks as in d), the intersection of all the
block pixels are constructed first, on which the receptive field is then
applied to construct the convex hull. To account for the noise, the
receptive field is shifted around the selected placement location to
extract an extended set of features. In our implementation we shift
the receptive field in 4 directions, so the set has 5 features. With
placement location as in e) the set of features has 4 bits set to one,
and as in f) only one bit set.

places the block at that location. It places gently upon the
highest surface at that point (using input from the memory
module). After releasing the block, it moves aside so as not
to block the view of the overhead camera.

B. Procedure: Curious Behavior in the Block-World

1) The camera takes a snapshot.

s0,a0

s1,a5

s1,a1

s1,a1

s2,a5

Fig. 4. An illustration of states and actions with a block configuration
having one stack of height 2, and two other blocks on the table.
Below: several possible placement locations, with associated state
and action represented by the height and feature set of the blocks
underneath the receptive fields centered at those placement locations.
Note that this formulation allows generalization: placing on top of
a block with set of features having one bit set is exactly the same
(s1, a1) for both the red block and the black block.

2) The Perception System detects the positions and orien-
tations of the blocks on top.

3) The Memory System updates the 3D world model (po-
sition, orientation, height of each block in the world).

4) The Value System decides among the current top blocks,
which state (height) and action it should try.

5) Selective Attention searches in the current configuration
among receptive fields for a good placement location,
biased by the desired state-action selected above.

6) Selective Attention searches for any available block
outside the selected placement location above, to pick
up.

7) The Motor System uses action primitives (e.g. reach,
grasp, move up, move down, release, move out of
camera view) to pick up the block at place at the selected
placement location.

8) The associated sensory predictor predicts the outcome
(Stable/Falling).

9) Do steps 1-3 again.
10) The actual outcome (Stable/Falling) is inferred from the

changes in the 3D world model. It then updates its
predictive model associated with this state-action, and
calculates its learning progress.

11) Value System uses the learning progress to update its
Q-values and update the policy.

12) Return to step 1.

C. Learning (Model, Value, and Policy Updating)

Updating the MDP. For a transition update, we need
s, a, s′. Both s and a are given by the attention module and
the action selection. The outcome state s′ will be the height
of the stack after block placement. To get the outcome height,
a new snapshot is taken, and the memory module updated.
The transition probabilities from state s under action a are
represented by a vector cstates,a where the i-th entry in the vector
represents the probability of transitioning to the i-th internal
state. These probabilities can be updated at once via vector
addition:

cstates,a ← (1− µ)cstates,a + µy′, (1)

where y′ is a vector whose entries are 0 except for the entry
corresponding to the outcome state s′ where it is 1. The
learning rate µ decreases (inversely proportional) with the
number of transitions [2].

Updating the Appropriate Sensory Predictor. The sensory
predictor associated with the current state predicts the result
of the placement in terms of the result — either stable or
unstable.

Each predictor is an online linear regressor implemented
using the well-known Regularized-Least-Square (RLS) algo-
rithm [8], [19], which operates similarly to 2nd-order (or
ridge regression)-like algorithms. The RLS algorithm is a
well-studied algorithm with a provably optimal online regret
bound [19], and it is efficient in implementation.

The predictor takes as input the attended binary feature
vector xt(s) ∈ {0, 1}7. See Fig. 4. Each of the first six
components corresponds to each of the six actions, and the
last bit is a bias (always on). If all the five dots are filled, for
example, then xt(s) = (0, 0, 0, 0, 0, 1, 1). t(s) is the number
of training samples this state’s predictor has encountered. In
what follows we will omit the s, but one should note that
each different predictor is treated completely separate from
the others, meaning there are completely separate counters,
weights and model parameters.

The current state-action corresponds to the current input
feature vector: xt. The predictor tries to guess whether the
result is stable or falling: ŷt = sign(w>t−1xt). After observing
the true outcome yst(s) ∈ {−1, 1}, the weights wt are updated
using Algorithm 1.

Intrinsic Reward Calculation. How can we assign an
expected reward to the state-action pairs? The “true” learn-
ing progress would be the reduction in deviation between
the estimated decision boundary and the optimal Bayesian
decision boundary from the previous time to the current.
Whatever state-action is associated with the current time would
be assigned intrinsic reward equal to this deviation reduction.

But we cannot compute the true learning progress directly
since the Bayesian optimal decision boundary is unknown to
the robot. As an approximate solution, we approximate the
learning progress using the reduction in confidence interval
of the RLS margin estimate corresponding to each action,
representing progress towards the optimal decision boundary.

Algorithm 1: RLS-UPDATE(α, t,xt, yt,A−1t−1,bt−1)

//t: number of updates for this predictor

//xt: input (action representation)

//yt: output (stable/falling)

1 if t = 0 then
2 A−10 ← 1

α I // d× d matrix

3 w0 ← 0 // d× 1 vector

4 b0 ← 0 // d× 1 vector

5 else
//Sherman-Morrison update

6 A−1t ← A−1t−1 −
(A−1

t−1xt)(A
−1
t−1xt)

>

1+x>t A
−1
t−1xt

7 bt ← bt−1 + ytxt
//Update model

8 w>t ← b>t A
−1
t

9 end
10 return {A−1t ,bt,wt}

The idea of exploiting second order information in reward
distribution estimates as a bonus for balancing exploration-
exploitation has been applied quite successfully in the RL
literature (e.g., [1], [17]), but, as far as we know, never in
a purely curious system. The current confidence interval is

ηt =

√
x>t A

−1
t xt. (2)

and the previous one,

η−t =
√
x>t A

−1
t−1xt, (3)

is calculated using A−1t−1 prior to incorporating input data xt.
Then the learning progress (intrinsic reward) for the state-
action pair (s, a) — which was attempted at time t — be

Ras(t) = η−t − ηt (4)

Two important properties of ηt are worth mentioning: it
diminishes as the number of observations of each action
increases; and it also has the potential to diminish for a
particular action when other actions are taken (e.g., if they
are correlated). See appendix for more information.

Updating the Values and Policy. Values are initialized
optimistically. After each block placement, the system updates
all Q-values at once using the version of LSPI that uses the
MDP model [12]. In our case, it uses the approximation of
P , and the learning progress at each state-action as expected
reward R. Through LSPI-enabled policy iteration, the policy
updates.

IV. EXPERIMENTS AND RESULTS

A. In Simulation

Environment. We designed a simulation in order to com-
pare the learning efficiency of our method to a few other
possible methods. In simulation, hundreds of trials can be run,
which would take far too long on the real robot. Of course

0 500 1000 1500 20000

5

10

15

20

25

Interactions with Environment

D
ev

ia
tio

n
fro

m
 T

ru
e

M
od

el
 (S

q.
Er

r)

Max Height = 8, Average of 3 Trials

Random Actions
Try New Things (Optimistic)
Curiosity

Fig. 5. Comparison of learning efficiency (deviation between current
predictor weights and the optimal ones) in a simulated version of
block-world (see text for details). The comparison is between a purely
random policy, a policy for trying things not tried before — which
acts randomly once all things have been tried — and our method of
learning-progress-based artificial curiosity.

we cannot capture all aspects of the real-world robot setting,
but we try to capture enough so that we can compare a few
different methods of generating policies.

The simulated environment allows us to analyze perfor-
mance for any number of blocks (corresponding to maximum
tower height) — here, we use eight. Each height up to eight
has a different weight vector u, as the “true model” for
this height, which enables us to generate simulated block
placement outcomes in lieu of real physics. For each height,
the components of u are randomly generated between -1 and
1.

At any time, the eight blocks’ configuration is represented
by vector q. Each element |qj | is the height of the correspond-
ing block j. We set −1 = sign(qj) if that block is occluded
from top view (stacked upon), or 1 = sign(qj) means block j
is on top. The set of different positive elements of q constitute
the set of current available states (heights to place upon) —
in addition to height zero, which is always available.

As an example q = (−1,−2,−3, 4,−1, 4,−2,−3) is a
configuration with two different stacks of height four, having
block IDs 4 and 6 on top of the two stacks. The set of available
states will be height zero and height four. All six actions are
available for each available state. The available transitions are
pairs from the available states and available actions. Some
policy will be used to select one of the available transitions to
execute.

After selecting the state and action, the agent picks an
“available” — meaning it will not disrupt execution of the
selected transition — top block, and “places it”. The outcome
(stable/falling) is generated using the corresponding height’s
true (probabilistic) model, where the actual outcome label
sign(uTxt) is flipped with probability 1−|uTxt|

2 .
If the outcome turns out to be unstable, the placed block

goes to height one as a top block, and one block in the stack
with a lower height (randomly selected) becomes a top block.
The values of other, higher blocks in the same stack are set

to +1.
Experiment. We compare our method with purely random

action selection and a method of “optimistic initialization”,
which simply only assigns expected reward (=1) to state-
actions not tried before (similar to R-max [6]). Other expected
rewards are zero. Once the optimistic system exhausts all
state-actions, it acts randomly. In both our method and the
optimistic initialization method (until it visits everywhere),
LSPI for planning is used at every time step. In our method,
we use regularization parameter (for RLS) α = 1, discount
factor γ = 0.9 and learning rate 0.1.

To compare the effectiveness of these methods, we measure
the sum of squared distances between estimated weight vectors
wi
t and their ground-truth ui for all i = 1, ..., 8.
Result. Figure 5 shows the distance to the true model

over time for the three methods. Our method explores the
environment more efficiently in the long run, but early on the
optimistic initialization method is actually more efficient.

0 10 20 30 40 50 600

1

2

Interactions with Environment

H
ei

gh
t P

la
ce

d
U

po
n

Katana Robot Experience

Fig. 6. Developmental stages of the curious robot arm.

B. On the Real Robot

Environment. Now we analyze the curious behavior of the
system on the real Katana robot arm. There are four cubic
wooden blocks of edge size 25mm with different colors. With
tower height four, the robot arm does not have many feasible
workspace points for the pick and place task. Hence we limit
the maximum height to three.

Experiment. We initially set out the blocks equally spaced,
and all at height one. Our system was then started. We
collected data from a run of 56 environment interactions
(picking up a block and placing it). At one point, the robot’s
action failed and the experiment had to be restarted, with the
blocks and the learning system both in the same configuration
as before.

Result. The left of figure 7 shows the learning progress
for all actions at heights one and two (we omit the trivial
learning progress at heights 0 and 3). On the left we plot time-
varying learning progress for each input vector representing
one action. We observe sharp drops of learning progress over
time, corresponding to when the robot tries this state-action.

The right of Figure 7 shows the predictive distribution of the
outcomes at these state-actions (less than 0.5 means unstable).
These estimations initially change rapidly as new data comes
in, but most seem to be converging to a sensible result. This

is the nature of the RLS predictor: the more training data,
the more confident the estimates. The result of action five
on height two is not what we expected since four bits being
on should mean the result would be stable. It turns out there
was some problems with sensing the green block from vision.
Since this result comes from a single run on the robot, these
errors cause the problem with this plot.

Figure 6 shows the “developmental stages” of the system.
Initially, it focuses attention on placing blocks on the floor.
Then, it becomes interested in placing them on top of another
single block (height one). Even when it occasionally observes
a stable situation (leading to height two) it still wants to
continue exploring at height one. Once the expected learning
progress at height one gets small (see Figure 7), the system
shifts its attention to exploring at height two, which it now
knows how to reach through skills learned to achieve knowl-
edge at the lower height.

After learning, the robot has gained the skills of how to
place a block stably, and how to stack blocks. Please refer to
our videos1 of the real experiment.

V. CONCLUSIONS

We addressed challenges to implementing artificial curiosity
on real robots. Our Katana robot interacts with its block-
world through vision, reaching and grasping. It plays, via a
reinforcement learning system with intrinsic reward based on
expected learning progress, and, as a byproduct, learns skills
such as stable placing of blocks, and stacking.

APPENDIX

Let’s show that Eq. 2 represents the confidence interval.
Let ∆̂t = w>t xt be the margin parameter computed via the
RLS estimate on sample t’s action. The margin parameter on
each action can be viewed as a measure of confidence for the
classification of this action’s stability. We’d like to quantify
the uncertainty in these estimates. To do so, we introduce bias
and variance bounds, Bt and vt. The bias is

Bt = u>A1A
−1
t xt, (5)

where u are the optimal weights (for the Bayes decision
boundary) — ∆t = u>xt is the margin parameter of the
Bayes-optimal classifier, parameterized by u. The variance is

vt = S>t−1A
−1
t xt, (6)

St = [x1, ...,xt] is the design matrix. It has been proven [8]
that, for the bias bound:

|Bt| ≤ ‖u‖
√
η2t + η2t , (7)

and for the variance bound:

‖vt‖2 ≤ η2t . (8)

1A video of the system can be found here: http://www.idsia.ch/∼ngo/
ijcnn2012/katana curiosity.html.

0 500

0.2

0.4

0.6

0.8
Action 1

Ex
p.

 L
ea

rn
in

g
Pr

og
re

ss

Height 1
Height 2

0 500

0.2

0.4

0.6

0.8
Action 2

0 500

0.2

0.4

0.6

0.8
Action 3

0 500

0.2

0.4

0.6

0.8
Action 4

0 500

0.2

0.4

0.6

0.8
Action 5

0 500

0.2

0.4

0.6

0.8
Action 6

0 20 400

0.5

1
Action 1

Ap
x.

 P
ro

b.
 S

ta
bi

lit
y

Height 1
Height 2

0 20 400

0.5

1
Action 2

0 20 400

0.5

1
Action 3

0 20 400

0.5

1
Action 4

0 20 400

0.5

1
Action 5

0 20 400

0.5

1
Action 6

Fig. 7. Left: intrinsic reward diminishes rapidly as environment regularities are learned. Right: Predictive knowledge gained through playing
experience.

Further, we note the following standard properties of the
RLS estimate [7], [8]):

E[∆̂t] = ∆t −Bt (9)

and for ∀ε > 0,

P
(
|∆̂t +Bt −∆t| ≤ ε

∣∣∣x1, ...,xt−1

)
≤ 2 exp

(
− ε2

2η2t

)
.

(10)
We can see that η2t represents the confidence intervals of

the algorithm corresponding to each particular input xt; the
more observations of a particular input xt the algorithm gets,
the higher its confidence on the predictive margin ∆̂t is, hence
the smaller (non-negative) ηt becomes.

The two properties above show that at the current time step
t, a small confidence interval ηt indicates that the RLS margin
∆̂t is close to the Bayes optimal decision boundary ∆t with
high probability, since the bias Bt and variance bound ‖vt‖2
of this estimate are bounded by (functions of) this confidence
interval.

ACKNOWLEDGMENT

This work was funded through the 7th framework program
of the EU under grants #231722 (IM-Clever project) and
#270247 (NeuralDynamics project), and by Swiss National
Science Foundation grant CRSIKO-122697 (Sinergia project).

The authors would like to thank Mark Ring, Faustino
Gomez, Vincent Graziano, Sohrob Kazerounian, Varun Kom-
pella, and Vien Ngo for constructive comments and encour-
agement.

REFERENCES

[1] P. Auer. Using confidence bounds for exploitation-exploration trade-offs.
The Journal of Machine Learning Research, 3:397–422, 2003.

[2] K.S. Azoury and M.K. Warmuth. Relative loss bounds for on-line
density estimation with the exponential family of distributions. Machine
Learning, 43(3):211–246, 2001.

[3] R. Bellman. Adaptive control processes: a guided tour. Princeton
University Press, 1:2, 1961.

[4] L.E. Berk, A. Winsler, et al. Scaffolding children’s learning: Vygotsky
and early childhood education. National Association for the Education
of Young Children Washington, DC, 1995.

[5] J.Y. Bouguet. Camera calibration toolbox for matlab. (2009).
[6] R.I. Brafman and M. Tennenholtz. R-max-a general polynomial time

algorithm for near-optimal reinforcement learning. The Journal of
Machine Learning Research, 3:213–231, 2003.

[7] N. Cesa-Bianchi, C. Gentile, and F. Orabona. Robust bounds for
classification via selective sampling. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 121–128. ACM,
2009.

[8] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Incremental algorithms
for hierarchical classification. The Journal of Machine Learning Re-
search, 7:31–54, 2006.

[9] J.E. Johnson, J.F. Christie, T.D. Yawkey, and F.P. Wardle. Play and
early childhood development. Scott, Foresman & Co, 1987.

[10] V.R. Kompella, L. Pape, J. Masci, M. Frank, and J. Schmidhuber. Au-
toincsfa and vision-based developmental learning for humanoid robots.
In Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International
Conference on, pages 622–629. IEEE, 2011.

[11] S. Kontos. Preschool teachers’ talk, roles, and activity settings during
free play. Early Childhood Research Quarterly, 14(3):363–382, 1999.

[12] M.G. Lagoudakis and R. Parr. Least-squares policy iteration. The
Journal of Machine Learning Research, 4:1107–1149, 2003.

[13] AG Neuronics. Katana user manual and technical description.
[14] J. Schmidhuber. Developmental robotics, optimal artificial curiosity,

creativity, music, and the fine arts. Connection Science, 18(2):173–187,
2006.

[15] J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation
(1990-2010). IEEE Transactions on Autonomous Mental Development,
2(3):230 –247, 2010.

[16] J. Storck, S. Hochreiter, and J. Schmidhuber. Reinforcement driven in-
formation acquisition in non-deterministic environments. In Proceedings
of the International Conference on Artificial Neural Networks, Paris,
volume 2, pages 159–164, 1995.

[17] A.L. Strehl and M.L. Littman. Online linear regression and its ap-
plication to model-based reinforcement learning. Advances in Neural
Information Processing Systems, 20:1417–1424, 2008.

[18] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction.
The MIT press, 1998.

[19] V. Vovk. Competitive on-line statistics. International Statistical Review,
69(2):213–248, 2001.

[20] F. Wardle. Getting back to the basics of childrens play. Child Care
Information Exchange, 57:27–30, 1987.

