
The Two-Dimensional Organization of Behavior
Mark Ring, Tom Schaul, Juergen Schmidhuber

IDSIA / University of Lugano / SUPSI
Galleria 2

6928 Manno-Lugano, Switzerland
Email: mark,tom,juergen@idsia.ch

Abstract—This paper addresses the problem of continual learn-
ing [1] in a new way, combining multi-modular reinforcement
learning with inspiration from the motor cortex to produce a
unique perspective on hierarchical behavior. Most reinforcement-
learning agents represent policies monolithically using a single
table or function approximator. In those cases where the policies
are split among a few different modules, these modules are
related to each other only in that they work together to produce
the agent’s overall policy. In contrast, the brain appears to
organize motor behavior in a two-dimensional map, where nearby
locations represent similar behaviors. This representation allows
the brain to build hierarchies of motor behavior that correspond
not to hierarchies of subroutines but to regions of the map
such that larger regions correspond to more general behaviors.
Inspired by the benefits of the brain’s representation, the system
presented here is a first step and the first attempt toward the
two-dimensional organization of learned policies according to
behavioral similarity. We demonstrate a fully autonomous multi-
modular system designed for the constant accumulation of ever
more sophisticated skills (the continual-learning problem). The
system can split up a complex task among a large number of
simple modules such that nearby modules correspond to similar
policies. The eventual goal is to develop and use the resulting
organization hierarchically, accessing behaviors by their location
and extent in the map.

I. BACKGROUND AND PHILOSOPHY

This paper addresses the problem of continual learning by
introducing and describing a two-dimensional topological map
in which behaviors are organized according to their similarity.
Continual learning was first described by Ring (1994) as “the
constant development of complex behaviors with no final end
in mind”. It is the process of “building more complicated skills
on top of those already developed, ... the transfer of skills
developed so far towards the development of new skills of
greater complexity” [2].

The principal requirements of such systems include the
ability to learn new behaviors incrementally and hierarchically
based on existing behaviors while avoiding catastrophic for-
getting [1]. While constantly trying to maximize its reward, a
continual-learning system should be able to learn new skills
indefinitely. Since new skills should be based in some way on
existing ones, some kind of mechanism is required for dealing
with a complex hierarchy of skills.

One of the fundamental difficulties facing any mechanism
that accrues new capabilities is how to add new pieces to
the existing ones. One method is to add new pieces when
necessary, and then, maybe later, if resources get tight, find a
different method for pruning away less useful pieces. While it

is usually easy enough to add new pieces, it can be perplexing
to figure out which ones should be removed. (This was one
of the principal problems faced by CHILD [1]). Once such a
method is found, the system will eventually need to balance
the parts added by deleting other parts, eventually reaching a
kind of dynamic equilibrium such that system resources are
utilized effectively.

We approach this differently. Rather than devise one method
for building up and another for pruning, we instead address
the resource-constraint problem at the outset as one of the core
principles: there should always be exactly as many modules as
the hardware can support. The system must figure out how to
allocate resources as an essential component of its underlying
methodology.

This paper presents a new approach for dealing with the
problem and explores a new way of thinking about the
hierarchical organization of behavior for continual learning.
We describe a fairly general system and discuss its advantages
and disadvantages. But it is not practical to give an explicit
demonstration of all aspects of the system in the scope of
this paper. Thus, we will discuss the system in broad terms
and then choose one specific instantiation for illustration in
Sections IV and V.

II. THE MOT SYSTEM

We envision a fixed-sized pool of generic modules that can
be plugged into a larger architecture arbitrarily and can find a
role to play there. The modules must learn to combine their
individually limited powers to address the needs of the agent,
spreading out to cover the most critical regions of behavior
space. If there are more modules than necessary, they should
redundantly be drawn to the same areas, which should increase
robustness. In the more usual case, when there are too few
modules, they should distribute themselves in such a way as
to cover the most important areas best.

Each module is called a mot1 and each mot represents a
motor behavior. The mot system is a framework for investi-
gating reinforcement-learning agents composed of a very large
number (ideally thousands or millions) of learning modules,
though here we will focus on one specific instantiation of the
framework.

The name “mot” recognizes several aspects of the system.
First, each mot represents only a very tiny piece of the agent’s

1Pronounced “mōt” or “moUt” and rhymes with “boat” as in “motor boat”.

overall behavior and is in principle individually insignificant,
thus recalling the English homophone “mote”. Second, each
mot represents a component of motor behavior, thus the name
“mot” alludes to the mot’s role in the motor system. Third, in
combination, the mots represent the agent’s entire collection
of skills, its entire motor vocabulary, where each mot is like
a word in that vocabulary. Just as words can be combined
to produce a nearly limitless variety of meaning, the mots
should combine in the same way to produce the agent’s broad
repertoire of skills. Each mot individually is something like
a basis function within that repertoire. Thus, “mot” recalls
the French word for “word” and emphasizes the combination
of different components to produce skills in contrast to a
hierarchical ordering of functions, where higher-level ones
represent compositions or sequences of lower-level ones. Just
as new words tend to represent new ideas rather than fixed
sequences of existing words, mots do not represent ever-
growing sequences of simpler actions, but critical components
of common behaviors.

III. THE MOTMAP AND THE FUNCTIONAL ORGANIZATION
OF THE MOTOR CORTEX

It seems likely that the motor cortex is not laid out as
the homunculus that we learned about in our psychology
and neurophysiology classes. Recent research reveals strong
evidence that this part of the brain might instead be best un-
derstood as a topological map organized according to behavior,
where similar behaviors occur close together and very different
behaviors lie far apart [3], [4]. The key idea is that behaviors
vary more-or-less smoothly from one region to another, such
that as the distance between two regions decreases, the more
likely they are to represent very similar behaviors. Inspired
by this research, we have come to appreciate that this simple
regularity might provide an excellent method for organizing
large numbers of modules in a number of advantageous ways,
even without reproducing all the details of the motor cortex
or even requiring biological plausibility.

As envisioned, each mot thus has two aspects: its func-
tionality and its location. Its functionality, described in detail
later, refers to how the mot computes its estimate of the
value function. The mot’s location is its position in a two-
dimensional map, called the “motmap.” The motmap is a low-
dimensional representation of the mots, organized by behav-
ioral similarity. Organizing behavior by similarity provides
multiple advantages for continual learning, both computational
and functional. The most obvious of these advantages are:
smoothness, robustness, automatic emergence of hierarchy,
dimensionality reduction, and efficient distribution and reuse
of mots (which is probably not a complete list).

Smoothness. Assuming that the map can find a smooth low-
dimensional organization of policies, it must also have found
critical similarities and—most important—gradients among
the policies. Our eventual hope is that the best policy for a
novel situation can be found using a hill-climbing search in
the map.

Robustness. If each mot’s overall behavior is quite similar
to that of its neighbors, then the actions suggested by a mot and
its neighbors is also usually similar. If the granularity is fine
enough, then each mot should closely resemble the average
of any mots in the region enclosing it, which can be useful
in the following ways. First, should a mot stop functioning
for some reason, its neighbors can provide behavior nearly as
good. Therefore, instead of ever relying on any single mot’s
recommendation, the agent could in general combine mots
within a region and use their average or weighted recom-
mendations. (This method for choosing actions is discussed
in the future-work section.) In effect, mots can be chosen
according to vicinity, and their combined recommendations
can decide the next action. Secondly, learning can also be done
by vicinity rather than by individual mot. The agent presented
here updates all the mots within a certain radius surrounding
the winning mot. This is the primary force responsible for
bringing about smooth variation between regions.

Hierarchy by region. If a small region is selected, the
values of the mots can be combined (by average or weighted
average) to produce a final action. The radius of the region can
then determine the specificity of the action. If a large region is
selected, then a very typical, generic behavior is produced. As
the radius narrows, the agent’s responses become more refined
and suited to the situation.

Take as an example the behavior of grasping, and imagine
a library of different policies that handle different kinds of
grasps for different kinds of objects: heavy, light, wide, narrow,
delicate, rigid, soft, those with a handle and those without, etc.
This library could be embedded in a large region, where the
region as a whole might produce a generic arm movement
and hand closure in the vicinity of an object. A smaller region
might perform a grasp of a cup or glass, or a particular kind
of ball or piece of clothing, etc. An even more focused region
might produce a grasp dedicated to a specific type of glass, an
empty wine glass, for example. Thus, hierarchy of behavior
in this sense is about generality vs. specificity rather than
about sequential combinations of policies. It emerges as a
consequence of the limited ability of any individual module
to deal with the entire variety of conditions that occur when
trying to grasp objects. Two mots may agree about nearly
everything, except in a few different cases. Thus, their policies
are almost the same, but in certain situations, one is the expert,
and in other cases, the other is expert, and in these cases they
are different from each other. Therefore, in the general case,
behaviors are not stored in just one mot in just one place;
narrower regions store the exceptions to average behaviors
stored across broader regions.

Notice that the traditional sense of hierarchy in RL is based
on the notion of breaking up long sequences into shorter
sequences defined by subgoals [5]–[8]. (CHILD is a major
exception here [1]). But a policy itself in principle already
provides a mechanism for chaining together a sequence of
actions in response to a sequence of changing inputs.

Dimensionality reduction. In general, the biggest obstacle

in machine learning is the curse of dimensionality. Reduc-
ing the dimensionality of inputs improves learning speed by
weeding out extraneous factors that might cause interference.
From a computational perspective, algorithms with greater
than linear complexity in the number of input parameters
quickly become impractical as the dimensionality increases,
but keeping the dimensionality low may allow more compu-
tationally demanding learning algorithms.

If specific behaviors occupy specific regions, then only the
information needed by those behaviors has to be delivered
to those regions. Sensations from the agent’s earlobes need
not be transmitted to the mots that control toe wiggling.
It may therefore be possible to drastically reduce the input
dimensionality in any given region of policies, which would
be beneficial both in terms of computation speed and learning
speed.

But using heuristics to weed out input dimensions can be
risky: some vital information might be encoded in the removed
dimensions that only later becomes evident. The mot approach,
however, keeps all the information available accessible, even
if some of dimensions are removed from some regions. The
smooth-gradient and neighborhood relationships in the map
mean that inputs delivered to only a small region can expand
their distribution in meaningful directions—outward to nearby
regions; thus, individual inputs can follow these gradients to
find policies where the information is useful.

Consider for a moment an individual input dimension. Most
likely, it will not be spread out across the entire map, needed
in every region, nor will it likely be delivered randomly
to various places in the map. One would expect that each
input dimension should become organized into various regions
where that information is necessary. Regions that require the
input effectively make it available to nearby regions. If the
nearby regions pick it up, the information can spread to more
and more distant regions, always being picked up by neighbors
with similar policies.

As a result, it is potentially safe to eliminate dimensions
from a subregion of the map (provided they are still available
elsewhere) because those inputs have a way to return if
necessary.

Reuse of mots. Regions of policy space that are critical
to the agent should become represented by a large number
of mots, each slightly different from the others. But what
happens when a behavior is no longer useful? Perhaps it has
been replaced by another skill (e.g., the agent learns to walk
and no longer needs to crawl), or perhaps the environment has
changed, and old skills are no longer needed (e.g., the agent
loses its job and has to get a new one at a different company).

In this case, the mots that were devoted to the obsolete
skills can be used for something else. At first, the obsolete
mots closest to the boundaries of existing non-obsolete skills
can be recruited to assist their neighbors. Regions with an
overabundance of mots can share them with their neighbors,
and so on, so that the mots from the unused region will
eventually be recruited for parts of the state space where
more representation is necessary. Thus, redundancy, which is a

critical component of the system and is necessary for the mots
to have similarity relationships, is organized by the motmap
to cover the state space effectively.

State aggregation by policy similarity. With learning, each
area in the motmap comes to represent the behavior or policy
that is activated in that area. But the policy is simply a mapping
from states to actions, where the states are only those in which
this region specializes. In principle, just as with observation
dimensions, all extraneous state information can therefore also
be removed. Thus, each region r specializes in a set of states,
Sr, and maps these states to actions, Sr → A according to
some set of similar policies πr, where Sr is defined as that
set for which the policies πr are roughly appropriate.

Continual Learning. There is a fundamental dilemma faced
by every real-world continual-learning agent. This dilemma is:
what should I give up? Purely theoretical solutions addressing
the continual-learning problem, such as AIXI [9], sidestep this
issue by assuming away all resource limitations, which equally
assumes away the possibility of a real-world implementation.
Every practical system must face the tradeoff between discard-
ing possibly useful saved information and failing to adapt to
important new information. The continual-learning problem is
unique in this respect because it does not assume a limit to
learning, nor, therefore, a bound on the resources required to
achieve optimality.

Thus, every real-world system must eventually contend with
saturation of resources. Once saturation occurs, a heuristic
of some kind is required to address the resulting resource-
allocation problem. The motmap helps implement that heuris-
tic by representing the entire state space of interest to the
agent as a single two-dimensional sheet, where the resource
(the mots) can both cooperate and compete to best cover that
space to meet the needs of the agent.

IV. SYSTEM DESCRIPTION

In the standard reinforcement-learning framework (see Sut-
ton and Barto, 1998), a learning agent interacts with a
Markov Decision Process (MDP) over a series of time steps
t ∈ {0, 1, 2, ...}. At each time step the agent takes an action
at ∈ A from its current state st ∈ S . As a result of
the action the agent transitions to a state st+1 ∈ S and
a reward rt ∈ < is received. The dynamics underlying
the environment are described by the state-to-state transi-
tion probabilities Pa

ss′ = Pr{st+1=s′ | st=s, at=a} and
expected rewards Ra

ss′ = E{rt+1 | st=s, at=a, st+1=s′}.
The agent’s decision-making process is described by a policy,
π(s, a) = Pr{at=a | st=s}, which the agent refines through
repeated interaction with the environment so as to maximize
Q(s0, a0) = E{

∑∞
k=0 γ

krt+k+1 | st = s0, at = a0}, the total
discounted reward it can expect to receive by taking action a0

in state s0 and following policy π thereafter.
The learning method used for the mot system described

here is based on SERL [11], a multi-modular RL method
that breaks down tasks based on the limited capacity of each
module. SERL is useful for learning in the motmap because

it is an online, incremental method that autonomously assigns
different parts of the tasks to different modules, requiring no
intervention or prior knowledge. For clarity, a brief description
of SERL is provided here, but the motmap and the two-
dimensional organization of behavior does not in general
depend on the SERL learning mechanism.

Informally, each SERL mot finds a part of the state space
where it can approximate the value function, leaving other
parts to other mots. With each new observation, the mot
with the highest estimate of value is chosen to recommend
an action. The mots can coordinate with each other because
each one also estimates its error and reduces its value-function
estimate by the estimated error. The chosen mot is the one with
the highest value after reduction by the estimated error.

More formally, SERL consists of a set of modules, M.
For the purposes of this paper, SERL’s input is provided as
an observed feature vector o ∈ O, which uniquely identifies
the state. Each module i ∈ M contains two components: a
controller function,

f c,i : O → R|A|,

which generates a vector of action-value estimates; and a
predictor function,

fp,i : O → R|A|,

which generates a vector of predicted action-value errors. At
every time step, each module generates values based on the
current observation vector, ot :

qi
t = f c,i(ot)

pi
t = fp,i(ot)

These are combined for each module to create an |M| × |A|
matrix Lt of lower confidence values such that

Li
t = qi

t − |pi
t|,

where Li
t is the ith row of Lt.

Winner. At every time step there is a winning module, wt.
In most cases the winner is a module whose highest L value
matches L∗t , the highest value in Lt . But this rule is modified
in an ε-greedy fashion [10] to allow occasional random
selection of winners, based on a random value, xt ∼ U(0, 1):

W = {i ∈M : max
a

Lia
t = L∗t }

Pr{wt = i|Li
t} =

1
|M | if xt < ε
1
|W | if xt ≥ ε and i ∈W
0 otherwise,

where Lia
t is the value for action a in Li

t. SERL then calculates
an ε-greedy policy based on the winner’s L values: Lwt

t . (In
principle, the two ε values for action and module selection
can be different but were the same for the illustration given
in Section V. Both appear to be necessary for the system to
function as desired.)

Learning. The function approximators are updated with
targets generated by TD-learning [12]. Unlike plain SERL,

which updates the controller for the winner only, the learning
algorithm for the mot system updates the controllers for a
whole a set of mots, w+

t at every time step. The update itself
is done using Q-learning [13]; thus for each i ∈ w+

t the target
for qiat

t (the component of qi
t corresponding to action at) was:

rt + γL∗t+1.
Every mot’s predictor is updated at every step; the target is

the magnitude of the mot’s TD error:

δi
t = rt + γL∗t+1 − qiat

t .

For the illustration section below, the predictors and con-
trollers are all linear function approximators. (SERL is capable
of learning non-linearly separable classifications even when its
controllers and predictors are only linear function approxima-
tors [11].)

Learning in the Motmap. The mot system coordinates a
large number of individual mots by way of selection mech-
anisms, which choose certain mots from among the rest. In
particular, certain mots are selected to be the winner(s), to be
updated by learning, or to be moved in the motmap.

We have considered two ways to organize the motmap so as
to accomplish the goals set out in Section III. One is to move
the components around the map according to a similarity-
distance metric such that the similarity in their behaviors
is reflected (as well as possible) in their two-dimensional
projection onto the map. In this case, each mot actively seeks
out regions whose average behavior most closely resembles
that of the mot itself. While promising and worthy of substan-
tial elaboration elsewhere, it is not what we focus on here.
Instead we focus on a simpler method that in many ways
resembles the self-organizing maps (SOMs) of Kohonen [14]
(though there are many and substantial differences). In this
case, the components always remain in the same places, the
topology does not change; instead, each component gradually
changes what it represents so as to preserve similarity between
neighboring units as much as possible.

The motmap described here is laid out in a fixed, two-
dimensional grid.2 Each mot has a specific fixed coordinate
in the grid (look ahead to Figure 3 below), and the distances
between the coordinates of different mots are easily calculated,
thus allowing selection within a given radius of any location
in the map.

V. ILLUSTRATION

While we have explored the mot framework in many differ-
ent configurations, we give a detailed illustration of just one
of these here. The intention of this illustration is to convey a
proof of concept: that learning can be done in the system and
that a map emerges having local similarity relationships, thus
in principle providing the foundation for the benefits described

2We have chosen two dimensions for three primary reasons: (1) it is
easy to visualize; (2) it provides for the most drastic useful reduction in
dimensionality, and (3) it seems to work quite well in the brain—the cortex,
though it consists of multiple layers, can for many purposes be meaningfully
approximated as a two-dimensional surface. However, we cannot say with
certainty that two dimensions are necessarily optimal.

Fig. 1. The moving-eye task. Through its “eye” (shown in gray) the agent
observes a 4×4 (16 bit) piece of the underlying black-and-white image. The
agent can move the eye one black or white square to the North, South, East
or West. It receives a reward of +1 when the upper-left corner of its “eye”
moves over an “X”, after which the eye “saccades” to a random position.

in Section III (i.e., to avoid possible confusion, it is not the
intention of this illustration to demonstrate better performance
than other systems on a reinforcement-learning testbed).

Functionally, the mots implement the SERL algorithm as
described above. In the motmap, mots are laid out in a fixed
two-dimensional grid and their positions do not change over
time. A winner is chosen as in the SERL algorithm, and
the controller of the winner is updated together with the
controllers of all the mots within a neighborhood of radius
0.1 surrounding the winner (where each side of the motmap
has a length of 1.0). This configuration allows illustration of
many, but not all, of the issues discussed above.

The illustration is shown using an artificial-eye task (the
same one used as a demonstration of SERL [11]), which allows
easy visualization of the task and the results (Figure 1). The
agent’s observation is determined by the location of its “eye”
(a 4× 4 square—shaded gray) above a 15× 15 random black
and white bitmap. Each pixel in the bitmap represents a value
of 1 (black) or 0 (white) within a 16-dimensional observation
vector, which is always expanded with a bias feature of 1.
The image was generated randomly but checked to ensure that
every 4× 4 square is unique. In this task, the agent has four
actions that move its eye one pixel North, East, West, or South.
If there is no room to move in the chosen direction, the eye
remains in place. There are 5 rewarding squares (shown as an
X) which, when reached with the upper left-hand corner of
the eye, provide a reward of +1 and force the eye to saccade
to a random position in the image. All other actions result in a
reward of 0. Thus, to achieve best performance, the agent must
learn which reward is closest and move toward that closest one.
For this task γ = 0.9, α = 0.05, and ε = 0.02.

The agent begins training with zero ability to solve the

Fig. 2. With experience, the agent learns to increase its reward on
the artificial-eye task. The vertical axis shows reward received, normalized
between 0 and 1 (optimal policy), while the horizontal axis shows the number
of actions taken. Motmaps are shown with 64, 144, 256 and 400 mots. Plain
SERL with eight modules is shown for comparison. The blue line (“Q”)
displays the results for a simple Q-learning agent using a linear function
approximator and the same parameters as with the modular system. The dotted
line shows the baseline performance of the uniform random policy.

task, but over time it achieves increasingly greater reward as
shown in Figure 2. All results are shown in proportion to the
maximum achievable reward for this task, which is represented
by a value of 1 on the vertical axis. The horizontal axis shows
the total number of steps taken. (For comparison, learning with
a simple Q-learner using a linear function approximator (and
the same parameters) did not achieve high reward.)

The purpose of this example is twofold. First, it shows that
the agent can learn non-trivial tasks. (The task exhibits non-
linearly separable decision boundaries, which cannot be drawn
by a single linear function approximator, and therefore requires
the cooperation of multiple mots).

Second, it allows demonstration of the formation of the
motmap. Note that in this illustration, formation of the motmap
comes at a slight cost, as training speed and performance
for the motmap are not as good as for SERL alone, which
is understandable, given that SERL alone has none of the
constraints (or benefits) of the motmap.

Figure 3 shows a plain motmap of 400 mots arranged in a
20×20 fixed two-dimensional grid. Each mot is represented by
a dot, where the red dots indicate the mots whose controllers
are to be updated next. The center red dot is the winning mot.

After training on the task for 500,000 steps, the mots have
become organized by similarity on the motmap. Figure 4
shows a composite view of all the mots’ error predictors.
The figure consists of 144 squares corresponding to the 144
possible positions of the eye over the image, and thus 144
possible agent observations. Each square shows a snapshot of
the motmap for the given observation. Every pixel in the image
represents a single mot’s error prediction for that observation.

Fig. 3. The motmap, where each mot’s location on the map is shown as a
blue dot, except for those mots chosen for updating, which are shown in red.

Darker values indicate lower predicted error. The values are
shown at different gray levels, on a logarithmic scale such
that the darkest spots mean that the predicted error is 10−3

or smaller, and the white pixels mean that the predicted error
was 1 or larger. The entire figure pertains to only a single
action; figures for the other three actions are not shown, but
are similar in appearance.

Figure 5 shows a progression of the motmap for a particular
set of subimages and a particular action as the motmap evolves
over time.

VI. DISCUSSION AND FUTURE DIRECTIONS

The figures reveal that after training, the map has become
organized such that similar values tend to be generated by
nearby mots in a fairly smooth fashion. Thus, the system is
able to learn and to organize the behaviors it has learned by
similarity. Furthermore, the progression from the beginning of
training to the end showed an evolving map, with different
parts becoming specialists at different times.

Continuous Selection Mechanisms. The mot system il-
lustrated above chooses actions by selecting single mots
according to the SERL algorithm, but it could in principle
produce actions by combining the outputs from all the mots
within a region, following the assumption that nearby mots
produce similar behaviors. In that case, other methods for
choosing actions may be useful, such as hill-climbing in the
motmap itself, or by directly choosing regions in the map
and representing action selection as the selection of a region.
Furthermore, both the action and update selection mechanisms
could themselves be smooth functions (e.g., Gaussians) rather
than the binary mechanism used here; i.e., instead of updating
a mot if and only if it falls within a radius of the winner, the

Fig. 4. The prediction values for the motmap, reproduced for all 144 possible
observations of the task. Each square shows all 400 mots, one pixel each, for
the observation corresponding to that square. Dark pixels represent very low
estimated error. Light pixels represent high estimated error.

Fig. 5. Motmap prediction values for a subset of observations (rows) evolving
over time (columns) during training on the task. One column is sampled every
10,000 time steps, starting at time step 10,000 for the first column. Each square
shows all 400 mots, one pixel each, as in Figure 4. Note that the last column
above corresponds to the first column of Figure 4.

learning rate of each mot could be proportional to the distance
of the mot from the winner.

Heterogeneity. The loose framework above allows enor-
mous flexibility while also providing a way that parts can be
easily mixed and matched. Among these parts are the learning
algorithms for the individual mots (for their controllers and
predictors) which can be any online supervised learning al-
gorithm. Specific kinds of learning environments may require
specific kinds of learning algorithms with specific kinds of
capabilities.

Most importantly, the framework allows heterogeneity: dif-

ferent mots can have different learning algorithms. This will
allow specialization according to capability. Some simple
function approximators might do very well in certain parts of
the state space but may be too simple for others. More complex
algorithms may be perfect for other parts of the state space, but
learn too slowly in the simple places. We expect mot systems
functioning in real-world domains to be heterogeneous.

Furthermore, while SERL was used as the multi-modular
reinforcement-learning method in this paper, in general there
is no strict dependence on this method. Other modular
reinforcement-learning methods [5]–[8], [15]–[23] that break
the task down in other ways on the basis of other constraints
might also be adaptable to a two-dimensional map, yielding
systems with different properties. Ideally, however, for max-
imum applicability such methods should be incremental, on-
line, and non-episodic, breaking down the task autonomously
and requiring no external intervention.

Temporal contiguity. It should be noted that the illustration
above only examined single responses to single observations.
Temporal contiguity of behavior is not demonstrated in this
paper but should be understood to be a clearly plausible
extension that can be accomplished in at least three ways.
The first is to include state information (using any kind of
recurrent neural network, for example, as a mot’s function
approximator). Since mots within the same local region are
likely to make similar decisions in most situations, features
encoding useful state information (e.g., hidden-unit activa-
tions) could then be shared among nearby mots within a
neighborhood, with the size of the neighborhood growing
and/or shrinking over time (as described in Section III). If
the motmap were physically implemented as a grid in actual
hardware, these relationships could potentially be exploited
to reduce communication costs. The second is to update
regions based not just on spatial neighborhood relationships
but also on temporal neighborhood relationships, thus encour-
aging regions of the motmap to encode extended trajectories
of temporally contiguous behavior. As described above, the
region of the map can become associated with certain states,
and therefore location of an active area in the map also can
provide some degree of state information. Finally, the motmap
could in principle be combined with an external selection
mechanism that chooses behaviors in the map by location
and extent (coordinates and radius). This external mechanism
might choose behaviors depending on its own record of the
state, thus exhibiting sequential regularities.

Curiosity. The idea behind the mot system, of course, is to
do continual learning: learning new skills on top of previous
skills, but this is greatly benefited by a method for exploration
that pushes the agent to learn things the agent does not yet
know. Thus, it is reasonable to ask, how can the mot system be
combined with mechanisms for curiosity [24], [25]? Curiosity
could be pursued at either the global or mot level.

Goal and subgoals. The discussion and illustrations above
did not specifically consider providing goal or subgoal infor-
mation to the mots. Doing so, for example as an explicit part

of the observation, could allow the mots to further organize
and differentiate with respect to this information. This could
be useful for building a library of useful skills independent
of the value function; for example, a collection of different
grasps or target-reaching behaviors.

Scaling. The mot system allows the task to be split among
a large collection of modules, organized by two-dimensional
similarity relationships, but how will the potential number of
stored behaviors scale with the size of the motmap? Much
further work is needed to answer this question, even for
the illustrative example given here; however, we can at least
speculate, and note that complexity is handled with two
separate mechanisms. First, each function approximator has
its own VC-dimension, its own capacity limitation, but when
multiple modules are combined together, the capacity of the
system as a whole increases, roughly linearly with respect
to the number of modules. Second, useful generalization is
the primary mechanism whereby small numbers of mots can
handle large numbers of specific cases. One of the primary
motivations of the two-dimensional organization of behaviors
is to promote useful generalization. (Most of the benefits
of the motmap described in Section III are mechanisms for
increasing useful generalization.) Verifying these hypotheses,
though beyond the scope of this paper, will be revealing. Of
particular interest will be the scaling behavior of the system
with respect to the dimensionality of the observations. Near-
term future work will also partially focus on applying the mot
framework to actual robotics systems where specific examples
more directly related to those of Section III (such as grasping)
can be evaluated.

VII. CONCLUSIONS

This paper has introduced and described the first multi-
modular, continual-learning system whose modules self-
organize in a two-dimensional map according to behavioral
similarity. We have described a broad and flexible framework
(the “mot” system), lightly inspired by recent research on the
motor cortex. We have discussed the advantages of the general
approach, and have provided a proof-of-concept demonstration
of a particular, important instance of the framework. This
example system learned to achieve reward in a reinforcement-
learning task while organizing a large number of modules
(mots) in a two-dimensional topological map such that nearby
mots represented similar behaviors. The paper opens up a
new way of addressing the continual-learning problem, based
on fixed-pool resource allocation and the two-dimensional,
topological organization of behavior.

VIII. ACKNOWLEDGMENTS

We are grateful to Vincent Graziano, Tino Gomez,
Leo Pape, and Tobias Glasmachers for helpful discussions in
the long development of these ideas. This research was funded
in part through the following grants: EU projects IM-Clever
(231722) and NeuralDynamics (grant 270247), and SNF grant
200020-122124.

REFERENCES

[1] M. B. Ring, “Continual learning in reinforcement environments,” Ph.D.
dissertation, University of Texas at Austin, Austin, Texas 78712, August
1994.

[2] ——, “CHILD: A first step towards continual learning,” Machine
Learning, vol. 28, pp. 77–104, 1997.

[3] M. S. A. Graziano and T. N. Aflalo, “Rethinking cortical organization:
moving away from discrete areas arranged in hierarchies.” Neuroscien-
tist, vol. 13, no. 2, pp. 138–47, 2007.

[4] M. Graziano, The Intelligent Movement Machine: An Ethological Per-
spective on the Primate Motor System. Oxford University Press, 2009.

[5] M. Wiering and J. Schmidhuber, “HQ-learning,” Adaptive Behavior,
vol. 6, no. 2, pp. 219–246, 1998.

[6] R. S. Sutton, D. Precup, and S. P. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[7] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ
value function decomposition,” J. Artif. Intell. Res. (JAIR), vol. 13, pp.
227–303, 2000.

[8] S. P. Singh, “Transfer of learning by composing solutions of elemental
sequential tasks,” Machine Learning, vol. 8, pp. 323–339, 1992.

[9] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based
on Algorithmic Probability. Berlin: Springer, 2004.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press, 1998. [Online]. Available:
http://www-anw.cs.umass.edu/ rich/book/the-book.html

[11] M. Ring and T. Schaul, “Q-error as a selection mechanism in modular
reinforcement-learning systems,” in Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2011, to appear.

[12] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[13] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, May 1989.

[14] T. Kohonen, Self-Organization and Associative Memory. Springer,
second edition, 1988.

[15] C. A. Rothkopf and D. H. Ballard, “Credit assignment in multiple goal
embodied visuomotor behavior,” frontiers in Psychology, vol. 1, no. 0,
November 2010.

[16] D. Caligiore, M. Mirolli, D. Parisi, and G. Baldassarre, “A bioinspired
hierarchical reinforcement learning architecture for modeling learning of
multiple skills with continuous states and actions,” in Proceedings of the
Tenth International Conference on Epigenetic Robotics (EpiRob2010),
ser. Lund University Cognitive Studies, B. Johansson, E. Sahin, and
C. Balkenius, Eds., Sweden, November 5–7 2010.

[17] J. Tenenberg, J. Karlsson, and S. Whitehead, “Learning via task decom-
position,” in From Animals to Animats 2: Proceedings of the Second
International Conference on Simulation of Adaptive Behavior, J. A.
Meyer, H. Roitblat, and S. Wilson, Eds. MIT Press, 1993, pp. 337–343.

[18] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” in Advances
in Neural Information Processing Systems 5, C. L. Giles, S. J. Hanson,
and J. D. Cowan, Eds. San Mateo, California: Morgan Kaufmann
Publishers, 1993, pp. 271–278.

[19] B. Bakker and J. Schmidhuber, “Hierarchical reinforcement learning
based on subgoal discovery and subpolicy specialization,” in Proc. 8th
Conference on Intelligent Autonomous Systems IAS-8, F. G. et al., Ed.
Amsterdam, NL: IOS Press, 2004, pp. 438–445.

[20] T. Kohri, K. Matsubayashi, and M. Tokoro, “An adaptive architecture
for modular q-learning,” in IJCAI (2), 1997, pp. 820–825.

[21] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control,” Neural Networks, vol. 11, no. 7-8, pp. 1317–
1329, 1998.

[22] K. Samejima, K. Doya, and M. Kawato, “Inter-module credit assignment
in modular reinforcement learning,” Neural Networks, vol. 16, no. 7, pp.
985–994, 2003.

[23] K. Doya, K. Samejima, K. ichi Katagiri, and M. Kawato, “Multiple
model-based reinforcement learning,” Neural Computation, vol. 14,
no. 6, pp. 1347–1369, 2002.

[24] J. Schmidhuber, “Curious model-building control systems,” in Pro-
ceedings of the International Joint Conference on Neural Networks,
Singapore, vol. 2. IEEE press, 1991, pp. 1458–1463.

[25] ——, “Formal theory of creativity, fun, and intrinsic motivation (1990-
2010),” IEEE Transactions on Autonomous Mental Development, vol. 2,
no. 3, pp. 230 –247, 2010.

