
Low Complexity Proto-Value Function Learning
from Sensory Observations with Incremental

Slow Feature Analysis

Matthew Luciw and Juergen Schmidhuber

IDSIA-USI-SUPSI,
Galleria 2, 6928, Manno-Lugano, Switzerland

Abstract. We show that Incremental Slow Feature Analysis (IncSFA)
provides a low complexity method for learning Proto-Value Functions
(PVFs). It has been shown that a small number of PVFs provide a good
basis set for linear approximation of value functions in reinforcement
environments. Our method learns PVFs from a high-dimensional sen-
sory input stream, as the agent explores its world, without building a
transition model, adjacency matrix, or covariance matrix. A temporal-
difference based reinforcement learner improves a value function approx-
imation upon the features, and the agent uses the value function to
achieve rewards successfully. The algorithm is local in space and time,
furthering the biological plausibility and applicability of PVFs.

Keywords: Proto-Value Functions, Incremental Slow Feature Analysis,
Biologically Inspired Reinforcement Learning

1 Introduction

A reinforcement learning [21] agent, which experiences the world from its con-
tinuous and high-dimensional sensory input stream, is exploring an unknown
environment. It would like be able to predict future rewards, i.e., learn a value
function (VF), but, due to its complicated sensory input, VF learning must be
precluded by learning a simplified perceptual representation.

There has been a plethora of work on learning representation for RL, specif-
ically Markov Decision Processes (MDPs); we can outline four types. 1. Top-
Down Methods. Here, the representation/basis function parameter adaptation
is guided by the VF approximation error only [13, 16]. 2. Spatial Unsuper-
vised Learning (UL). An unsupervised learner adapts to improve its own
objective, which treats each sample independently, e.g., minimize per-sample
reconstruction error. The UL feeds into a reinforcement learner. UL methods
used have included nearest-neighbor type approximators [17] or autoencoder
neural nets [11]. 3. Hybrid Systems. Phases of spatial UL and top-down VF-
based feedback are interleaved [5, 11]. 4. Spatiotemporal UL. Differs from
the spatial UL type by using a UL objective that takes into account how the
samples change through time. Such methods include the framework of Proto-
Reinforcement Learning (PRL) [15], and Slow Feature Analysis (SFA) [22, 12].



2 Luciw and Schmidhuber

There are some potential drawbacks to types 1,2 and 3. The top-down tech-
niques bias their representation for the reward function. They also require the
reward information for any representation learning to take place. In the spa-
tial UL techniques, the encoding need not capture the information important
for reward prediction — the underlying Markov Process dynamics. The spa-
tiotemporal UL do not have these drawbacks. These capture the state-transition
dynamics, the representation is not biased by any particular reward function,
and it can learn when the reward information is not available.

In PRL, the features are called Proto-Value Functions (PVFs); theoretical
analysis shows just a few PVFs can capture the global characteristics of some
Markovian processes [3, 4] and that just a few PVFs can be used as building
blocks to approximate value functions with low error. Sprekeler recently showed
how SFA can be considered a function approximation to learning PVFs [20], so
slow features (SFs) can have the same set of beneficial properties for represen-
tation learning for general RL. Kompella, Luciw and Schmidhuber recently de-
veloped an incremental method for updating a set of slow features (IncSFA; [10,
9]), with linear computational and space complexities.

The new algorithm in this paper is the combination of IncSFA and RL —
here we use a method based on temporal-differences (TD) for its local nature,
but other methods like LSTD [1] are possible — for incrementally learning a
good set of RL basis functions for value functions, as well as the value function
itself. The importance is twofold. First, the method gives a way to approximately
learn PVFs directly from sensory data. It doesn’t need to build a transition
model, adjacency matrix, or covariance matrix, and in fact does not need to
ever know what state its in. Second, it has linear complexity in the number of
input dimensions. The other methods that derive such features — batch SFA
and graphical embedding (Laplacian EigenMap) — have cubic complexity and
don’t scale up well to a large input dimension. Therefore our method is suited
to autonomous learning on sensory input streams (e.g., vision), which the other
methods are not suited for due to their computational and space complexities.

2 Slow Features as Proto-Value Functions

Due to space limits, we just skim over the background. See elsewhere [21, 15, 3,
22, 20] for further details.

Value Function Approximation for MDPs An MDP is a five-tuple:
(S,A,P,R, γ), where S is a set of states, A is a set of actions, Pa

s,s′ is the
probability of transition from state s to s′ when taking action a, Ra

s is the
expected immediate reward when taking action a in state s, and 0 < γ ≤ 1 is
the discount factor. RL often involves learning a value function on S. Values
are future expected cumulative discounted rewards. A complication: in our case,
the agent does not know s. Instead it gets an observation vector: x ∈ RI . The
dimension I is large so it relies on its sensory mapping Φ to map x to y ∈ RJ ,
where J << I. Then, values are approximated as a linear combination of these
J mappings:



IncSFA: Low Complexity Proto-Value Function Learning 3

V (x;φ, θ) =

J∑
j

φj(x)θj . (1)

We’re not so concerned with learning θ since there are good methods to do
this given suitable basis functions. Here we are interested in learning φ. We’d
like a compact set of mappings, which can deliver a reasonable approximation of
different possible value functions, and which could be learned in an unsupervised
way, i.e., without requiring the reward information. PVFs suit all these criteria,
but require that the state is known, so they do not fit Eq. 1.

Proto-Value Functions. PVFs capture global dynamic characteristics of
the MDP in a low dimensional space. The objective is to find a Φ that preserves
similarity relationships between each pair of states st and st′ , with a small set
of basis functions, formally to minimize Ψ(φj) =

∑
t,t′ At,t′ (φj(st)− φj(st′))2

with unit norm and orthogonality constraints. In general At,t′ is a matrix of
similarities, for MDPs typically a binary adjacency matrix, where a one means
the states are connected (i.e., transition probability higher than some threshold).
The objective penalizes differences between mapped outputs of adjacent states,
e.g., if states st and st′ are connected, and a good φj will have (yt − yt′)2 small.

Laplacian EigenMap (LEM) procedure Φ can be solved for through an
eigenvalue problem [2, 19]. The eigenvectors of the combinatorial Laplacian L,

Li,j =

degree(si) if i = j
−1 if i 6= j & si is adjacent to sj
0 otherwise

(2)

are used, ordered from smallest to largest eigenvalue, for Φ.
Slow Features. SFA’s objective is to find a few instantaneous functions gj

on the input that generate orthogonal output signals varying as slowly as possi-
ble (but not constant) [22]. The slow features do not require the true state to be
known. The SFA objective can be solved via eigendecomposition of the covari-
ance matrix Ċ of the temporal differences of the (whitened) observations. The
slow features are low-order eigenvectors of Ċ. The batch-SFA (BSFA) technique
involves constructing such a covariance matrix from a batch of data.

Equivalence of PVFs and SFs. Sprekeler showed that the two objectives,
of SFA (slowness) and LEM (nearness), are mathematically equivalent under
some reasonable assumptions [20] (which are fulfilled when we collect data from
a random walk on an MDP). For intuition, note that saying two observations
have a high probability of being successive in time is another way of saying that
the two underlying states have a high probability of being connected. In the
LEM formulation, the neighbor relationships are explicit (through the adjacency
matrix), but in SFA’s they are implicit (through temporal succession).

The main reason the slow features (SFs) are approximations of the PVFs
depends on the relation of observations to states. If the state is not extractable
from each single observation, the problem becomes partially-observable (and
out of scope here). Even if the observation has the state information embedded



4 Luciw and Schmidhuber

Algorithm 1: IncSFA-TD(J, η, γ, α, T )

//Autonomously learn J slow features and VF approximation

coefficients from whitened samples x ∈ RI

1 {W,vβ , θ} ← Initialize ()
// W : Matrix of slow feature column vectors w1, ...,wJ

// vβ : First Principal Component in difference space, with

magnitude equal to eigenvalue

// θ : Coefficients for the VF

2 for t ← 1 to ∞ do
3 (xprev ← xcurr) //After t = 1
4 xcurr ← GetWhitenedObsv()
5 r ← ObserveReward()
6 if t > 1 then
7 ẋ ← (xcurr − xprev)

8 vβ ← CCIPCA-Update (vβ , ẋ) //For seq. addition parm.

9 β ← vβ/‖vβ‖
//Slow features update

10 l1 ← 0
11 for i ← 1 to J do
12 wi ← (1− η)wi − η [(ẋ ·wi) ẋ + li] .
13 wi ← wi/‖wi‖.
14 li+1 ← β

∑i
j(wj ·wi)wj

15 end
16 (yprev ← ycurr) //After t = 2

17 ycurr ← xTcurrW
18 if t > T then
19 δ ← r + (γycurr − yprev) θ //TD-error

20 θ ← θ + α δ yprev //TD update

21 end

22 end
23 a ← SelectAction()

24 end

within, there may not be a linear mapping. Expanded function spaces [22] and
hierarchical networks [8] are typically used with SFA to deal with such cases,
and they can be used with IncSFA as well [14].

3 PVF Learning with IncSFA for VFs

Incremental Slow Feature Analysis updates slow features, incrementally and
covariance-free, eventually converging to the same features as BSFA. It is de-
tailed elsewhere [10, 9]. We want to use it to develop φ in Eq. 1, but we also
need something to learn θ. As a motivation behind this work is to move towards
biologically plausible, practical, RL methods, we use TD learning, a simple local



IncSFA: Low Complexity Proto-Value Function Learning 5

learning method of value function coefficient adaptation. The resulting algo-
rithm, IncSFA-TD (see Alg. 1) is biologically plausible to the extent that it is
local in space and time [18], and its updating equation (Line 12) has an anti-
Hebbian form [6]. The input parameters: J , the number of features to learn, η,
the IncSFA learning rate, γ, the discount factor, α, the TD learning rate, and
T , the time to start adapting the VF coefficients. For simplicity, the algorithm
requires the observation to be drawn from a whitened distribution. Note the
original IncSFA also provides a method for incrementally doing this whitening.

On Complexity. The following table compares the time and space complex-
ities of three methods that will give approximately the same features — LEM
(Laplacian EigenMap), BSFA (Batch SFA), and IncSFA — in terms of number
of samples n and input dimension I.

Computational Complexity Space Complexity
LEM O(n3) O(n2)
BSFA O(I3) O(n+ I2)

IncSFA O(I) O(I)

The computational burden on BSFA and LEM is the one time cost of ma-
trix eigendecomposition, which has cubic complexity [7]. SFA uses covariance
matrices of sensory input, which scale with input dimension I. However LEM’s
graph Laplacian scales with the number of data points n. So the computational
complexity of batch SFA can be quite a bit less than LEM, especially for agents
that collect a lot of samples (since typically I << n). IncSFA has linear updating
complexity since it avoids batch-based eigendecomposition altogether. However,
as an incremental method, it will be less efficient with each data point. The
space burden in BSFA and LEM involves collecting the data and building the
matrices, which IncSFA avoids.

4 Experiment

Environment. We use a vision-based Markovian environment (Fig 1), intro-
duced by Lange and Reidmiller, 2010 [11]. The observation at any time is a
30× 30 (slightly noisy) image, which shows a top-down view of the agent’s po-
sition in a room. The agent is the 5 x 5 white square in the image. It can move
up, down, left, or right, each by 5 pixels. The white “L” are walls. The envi-
ronment borders on the image edges are also impassable. Reward. During an
initial phase, there are no rewards. During a second phase, one point in the image
will be associated with positive reward; all other places have zero reward. It has
to learn features during the first phase (without any rewards) and approximate
(and use) the value function in the second.

Setup. The agent explores the environment via random walk for 40, 000
steps. After each step, the slow features are updated, with learning rate η =
0.0002. At t = 40, 000, the reward appears, and the agent continues its random
walk for 3, 000 more steps, while learning the value function coefficients, with
learning rate α = 0.0001. After t = 43, 000, the agent enters exploitation mode,



6 Luciw and Schmidhuber

0

0.5

1

0
0.5

1
0

0.5
1

R

UL

0
0.5

1

00.51
0

0.5

1

R

UL

0 2000 4000 6000
0

0.5

1
Reward Per Step

0 1000 2000 3000 4000 5000
0

0.5

1

Reward Per Step

In
cS

FA
LE

M

IncSFA LEM

Same Features, Different Reward Functions

 random 
   walk
(explore)   exploit

Fig. 1. Upper left: sample observation (30 × 30 image) from the environment. The
IncSFA features developed from the exploration sequence directly from these observa-
tions are approximately the same as LEM features learned from eigendecomposition
of the graph Laplacian of the true transition model. Upper center/right: embedding
of a trajectory through the environment for both LEM features and IncSFA features
(UL refers to the upper left corner of the room and R refers to the small inner room).
Lower left: feature responses upon a grid of different images, where the agent is at
different possible positions, for each of LEM and IncSFA (best viewed in color). Lower
right: the agent goes to exploitation mode (maximize reward) using its value function
learned upon the incrementally developed slow features. The performance shoots up
to a nearly optimal level, for two different reward positions.

where it picks the action that will take it to the most valuable possible next state
(using its current VF approximation), but with a 5% random action chance. To
avoid the agent staying at the reward in exploitation mode, when the reward
is reached, the agent teleports away. The features and coefficients continue to
adapt. To show some generality, the reward will be placed in two different places
(in two different instances) — inside the room or at the bottom center of the
image.

Results are shown in Fig. 1. First, we want to show the features learned
incrementally from sensory data actually deliver a reasonable LEM embedding.
Visually compare the features of IncSFA, developed online and incrementally
on the high-dimensional noisy images, to eigenvectors of the graph Laplacian,
using the actual underlying transition model. Also note the similarity of the
graphical embeddings of a single trajectory through the entire room upon the
first three (non-constant) features for each of LEM and IncSFA. After going into
exploitation mode, the agent quickly reaches a near optimal level of reward ac-
cumulation, for both reward functions. The features did not change significantly
in the roughly 3, 000 exploitative steps.

Discussion. We can discuss some other methods that might apply to this set-
ting. As mentioned, this environment was first developed elsewhere [11]. In that
work, deep autoencoder neural nets are trained to compress the observations,



IncSFA: Low Complexity Proto-Value Function Learning 7

and the bottleneck layer (with the fewest number of neurons) output becomes the
state representation for the agent. Neural-fitted reinforcement learning (NFQ)
learns the Q-function upon this state representation, and the NFQ net error (the
TD-error) backpropagates throughout the autoencoder, causing the state repre-
sentation to conform to a map-like embedding. This effect only emerges when
the Q-error is backpropagated; otherwise the autoencoder representation does
not resemble a map. In our case, the slow features learn a map representation
in the unsupervised phase and therefore do not need the reward information to
learn such a representation.

Another type of method that would apply is a nearest-neighbor prototype
state quantization, where new prototypes/states are added when the distance of
an observation from all existing prototypes exceeds some threshold. This type
of method provides distinct states for RL but does not provide an embedding.
Additionally, this method can lead to a large number of states, which increases
the search space for the RL.

One might want to try an incremental Principal Component Analysis (PCA),
which like SFA will also give a compressed code in a few features, but captures
directions of highest variance (a spatial encoding). SFA uses the temporal in-
formation to learn spatial features, i.e., it casts the data into a low-dimensional
space where similarity information is preserved. A low-dimensional map is quite
useful for planning and control, but PCA’s encoding does not necessarily have
these properties (it will be good for reconstructing the input).

5 Conclusions

A real-world reinforcement learning agent doesn’t get clean states, but messy
observations. Learning to represent its perceptions in such a way that will aid
its future reward prediction capabilities is just as (if not more) important than
its method for learning a value function. For biological plausibility, the methods
for learning representation and learning value need to be incremental and local
in space and time. IncSFA and TD fulfill these criteria. We hope this method
and the background we provided here influences autonomous real-world rein-
forcement learners.

Acknowledgments. We thank the anonymous reviewers and Sohrob Kazerou-
nian for their useful comments. This work was funded by Swiss National Sci-
ence Foundation grant CRSIKO-122697 (Sinergia project), and through the 7th
framework program of the EU under grant #270247 (NeuralDynamics project).

References

1. S.J. Bradtke and A.G. Barto. Linear least-squares algorithms for temporal differ-
ence learning. Machine Learning, 22(1):33–57, 1996.

2. F.R.K. Chung. Spectral graph theory. AMS Press, Providence, Rhode Island, 1997.



8 Luciw and Schmidhuber

3. R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, and S.W.
Zucker. Geometric diffusions as a tool for harmonic analysis and structure defini-
tion of data: Diffusion maps. Proceedings of the National Academy of Sciences of
the United States of America, 102(21):7426, 2005.

4. R.R. Coifman and M. Maggioni. Diffusion wavelets. Applied and Computational
Harmonic Analysis, 21(1):53–94, 2006.

5. A. da Motta Salles Barreto and C.W. Anderson. Restricted gradient-descent algo-
rithm for value-function approximation in reinforcement learning. Artificial Intel-
ligence, 172(4-5):454–482, 2008.

6. P. Dayan and L.F. Abbott. Theoretical neuroscience: Computational and mathe-
matical modeling of neural systems. 2001.

7. G.E. Forsythe and P. Henrici. The cyclic Jacobi method for computing the principal
values of a complex matrix. Applied Mathematics and Statistics Laboratories,
Stanford University, 1958.

8. M. Franzius, H. Sprekeler, and L. Wiskott. Slowness and sparseness lead to place,
head-direction, and spatial-view cells. PLoS Computational Biology, 3(8):e166,
2007.

9. V. R. Kompella, M. D. Luciw, and J. Schmidhuber. Incremental slow feature
analysis: Adaptive low-complexity slow feature updating from high-dimensional
input streams. Neural Computation, 2012. Accepted and to appear.

10. V.R. Kompella, M. Luciw, and J. Schmidhuber. Incremental slow feature analysis.
In International Joint Conference of Artificial Intelligence, 2011.

11. S. Lange and M. Riedmiller. Deep auto-encoder neural networks in reinforcement
learning. In International Joint Conference on Neural Networks, Barcelona, Spain,
2010.

12. R. Legenstein, N. Wilbert, and L. Wiskott. Reinforcement learning on slow features
of high-dimensional input streams. PLoS Computational Biology, 6(8), 2010.

13. L.J. Lin. Reinforcement learning for robots using neural networks. School of Com-
puter Science, Carnegie Mellon University, 1993.

14. M. Luciw, V. R. Kompella, and J. Schmidhuber. Hierarchical incremental slow
feature analysis. In Workshop on Deep Hierarchies in Vision, 2012.

15. S. Mahadevan. Proto-value functions: Developmental reinforcement learning. In
Proceedings of the 22nd international conference on Machine learning, pages 553–
560. ACM, 2005.

16. I. Menache, S. Mannor, and N. Shimkin. Basis function adaptation in temporal
difference reinforcement learning. Annals of Operations Research, 134(1):215–238,
2005.

17. J.C. Santamaria, R.S. Sutton, and A. Ram. Experiments with reinforcement
learning in problems with continuous state and action spaces. Adaptive behav-
ior, 6(2):163, 1997.

18. J. Schmidhuber. A local learning algorithm for dynamic feedforward and recurrent
networks. Connection Science, 1(4):403–412, 1989.

19. J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

20. H. Sprekeler. On the relation of slow feature analysis and laplacian eigenmaps.
Neural Computation, pages 1–16, 2011.

21. R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction, volume 1.
Cambridge Univ Press, 1998.

22. Laurenz Wiskott and Terrence Sejnowski. Slow feature analysis: Unsupervised
learning of invariances. Neural Computation, 14(4):715–770, 2002.


