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Abstract. Model complexity is key concern to any artificial learning
system due its critical impact on generalization. However, EC research
has only focused phenotype structural complexity for static problems.
For sequential decision tasks, phenotypes that are very similar in struc-
ture, can produce radically different behaviors, and the trade-off between
fitness and complexity in this context is not clear. In this paper, behav-
ioral complexity is measured explicitly using compression, and used as a
separate objective to be optimized (not as an additional regularization
term in a scalar fitness), in order to study this trade-off directly.

1 Introduction

A guiding principle in inductive inference is the concept of parsimony: given a
set of competing models that equally explain the data, one should prefer the
simplest according to some reasonable measure of complexity. A simpler model
is less likely to overfit the data, and will therefore generalize better to new data
arising from the same source.

In EC, this principle has been applied to encourage minimal phenotypic struc-
ture (e.g. GP programs, neural network topologies) by penalizing the fitness of
overly complex individuals so that selection drives the search toward simpler
solutions [6, 9, 10, 13].

The advantage of incorporating this parsimony pressure has been demon-
strated convincingly in supervised learning tasks, producing solutions that are
significantly more general. However, for dynamic tasks involving sequential de-
cisions (e.g. reinforcement learning), a phenotype’s structural complexity may
not be a good predictor of its behavioral complexity [5] (i.e. the complexity of
the observation-action sequences generated by the evolving policies). Phenotypes
that are very similar in structure, can produce radically different behaviors, and
the trade-off between fitness and complexity in this context is not clear. In this
paper, behavioral complexity is measured explicitly using compression, and used
as a separate objective to be optimized (not as an additional regularization term
in a scalar fitness), in order to study this trade-off directly.

Multi-Objective approaches have been used previously to control structural
complexity (or promote diversity [?]), but only in a supervised learning con-
text [2, 3], and always to promote parsimonious solutions. The goal here is to
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Fig. 1. Genotype-Phenotype map. The complexity of evolving candidate solutions
can be computed at different levels. In sequential decision tasks, measuring the struc-
tural (model) complexity in phenotype space may not give a reliable indication of the
relative complexity of the phenotype behavior (shown as the cycling of actions and
observations of the two highlighted phenotypes).

look at complexity more generally, and analyze how encouraging both low and

high behavioral complexity relates to and can affect performance (fitness) in
reinforcement learning tasks.

The next section describes the general idea of complexity within the context
of EC. Section 3, presents our experiments in evolving neural network controllers
using a multi-objective evolutionary algorithm for two different reinforcement
learning tasks: the Tartarus problem, and the Simplerace car driving task. Sec-
tion 4 provides some analysis of our results and direction for future research.

2 Measuring Complexity

In evolutionary algorithms, the complexity of an individual can be measured
in the genotype space where the solutions are encoded as strings, or in the
phenotype space where the solutions are manifest.

For some problem classes and genetic representations, measuring complexity
in one space is equivalent to applying it in the other: the genotype→phenotype
mapping, G, preserves the ordering between objects in each, complexity(x) >

complexity(y)→ complexity(x̂) > complexity(ŷ), where x, y are genotypes, and
x̂, ŷ their corresponding genotypes. When this is not the case, it may be more
informative to measure the complexity phenotypes (figure 1), after all what we
are truly interested in is the complexity of solutions, not there encodings.



For sequential decision tasks (e.g. reinforcement learning), G maps x to some
form of policy, π, that implements a probability distribution over a set of possible
actions, conditioned on the observation from the environment. More generally,
the choice of action at time t can be conditioned on the entire history of previous
observations, o ∈ O, and actions, a ∈ A:

at ← π(ot−1, at−1, . . . , o0, a0). (1)

where O is the set of possible observations, and A is the set of possible actions.
Such a policy could be implemented, for by a recurrent neural network. In this
case, structural complexity can be misleading as policies that are structurally
similar with respect to a chosen metric may be very different in terms of behavior
when they interact with the environment. We define the behavior of individual x

to be a set of one or more histories of the form in equation 1 resulting from one or
more evaluations in the environment. A behavior is therefore an approximation
of the true behavior of the individual that can only be sampled by interaction
with the environment.

Measuring behavior complexity requires computing a function over the space
of possible behaviors for a given {A, O}. A general framework, rooted in algo-
rithmic information theory [7], that can be used to quantify complexity is the
Minimum Description Length Principle [8], which states that any regularity in
the data can be used to compress it. Compressing the data means recoding it
such that it can be represented using fewer symbols. For a given compression
scheme, and two objects (e.g. bit-strings) of the same length, the object whose
compressed representation requires the fewest symbols can be considered less
complex as it contains more identifiable regularity [1]. In the experiments that
follow, this idea is applied to assess the complexity of evolved neural network
behaviors using an real-world compressor.

MDL inspired complexity measures have been used in conjunction with evo-
lutionary algorithms before to address bloat in Genetic Programming [6] and
to evolve minimal neural networks [9, 10, 13], i.e. to control phenotype struc-
tural complexity. In the next section, data compressibility is used to measure
the complexity of phenotype behaviors, and is used as additional objective to be
optimized in order study the interaction between fitness and complexity at the
behavioral level.

3 Experiments

To ensure a degree of generality our experiments were conducted in two substan-
tially different reinforcement learning benchmark domains: Tartarus and Sim-
plerace. The three following objectives were used in various combinations:

1. P : the standard performance measure or fitness use for the task.
2. C: the length of the behavior after applying the Lempel-Ziv [?] based gzip

compressor to it. Behaviors with low C are considered less complex as they
contain more regularity for the compressor to exploit.



3. H : the Shannon entropy of the behavior: −
∑

p(xi)log(p(xi)), where each
xi is one of the possible symbols representing an action or observation in the
behavior. The entropy computes the lower bound on the average number of
bits per symbol required to represent the behavior.

Four sets of multi-objective experiments were conducted, each using a differ-
ent pairing of objectives: MPH ,MP −H ,MP C ,MP −C , where the first subscript
is the first objective which is always maximized (P in all cases), and the sec-
ond subscript is the second objective which is maximized, unless it is preceded
by a minus sign, in which cased it is minimized. The multi-objective experi-
ments aimed at exploring the interplay between performance, P , and one of the
behavioral complexity, C or H .

For the multi-objective experiments, the NSGA-II algorithm was used, which
is one of the most widely used multi-objective GAs and is known for robust
performance in diverse conditions [4]. At each generation, the scores on all three
objectives, {P, C, H} were recorded for two individuals in the Pareto front: the
one that performed best, and the one that had the best score on the chosen
complexity-related objective. At the end of each run, all fitnesses were recorded
for all individuals in the Pareto front of the final generation, both on the set of
problem cases used during evolution and a different set of test cases.

In all of experiments, the controllers were represented by recurrent neural
networks (figure 3, details below), and the population size was set to 100. Each
run lasted for 4000 generations for the Tartarus problem, and 200 generations
for the Simplerace problem. No recombination was used; the only variation op-
erator was mutation, consisting in adding real numbers drawn from a Gaussian
distribution with mean 0 and standard deviation 0.1 to all weights in the net-
work.

For both tasks it was not necessary to include observations in the behaviors
because the environments are deterministic and the initial states were fixed for
all individuals in a single run, so that each sequence of actions only has one
corresponding sequence of observations.

3.1 The Tartarus Problem

Figure 2a describes the Tartarus problem [11], used in the experiments. Al-
though the grid-world is quite small, the task is challenging because the bull-
dozer can only see the adjacent grid cells, so that many observations that require
different actions look the same, i.e. perceptual aliasing. In order to perform the
task successfully, the bulldozer must remember previous observations such that
it can compute its location relative to the walls and record the locations of ob-
served blocks for the purpose quickly acquiring them later. In short, the agent
is quite blind which means that evolutionary search can quickly discover simple,
mechanical behaviors that produce better than random performance but do not
exhibit the underlying memory capability to perform well on the task.

The Tartarus controllers were represented by fully recurrent neural networks
with five sigmoidal neurons (figure 3a). Each controller was evaluated on 100
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Fig. 2. The (a) Tartarus and (b) Simplerace tasks. The upper Tartarus board
shows a possible initial state with the six blocks and the bulldozer placed at random
squares away from the walls; the orientation the bulldozer is also random. The bulldozer
must select an action (either turn left, turn right, or go forward) at each time-step based
on the situation within its visual field (shown in white), and its internal state (memory).
The bulldozer can only move forward if its path is unobstructed or the block in its way
has no block behind it, otherwise it will remain its current position. The lower board
is a possible final state after the alloted 80 moves. The score for this configuration is 7:
two blocks receive a score of two for being in the corner, plus one point for the other
three blocks that are against a wall. The object is the drive the car (both accelerator
and steering) through as many randomly place waypoints in an alloted amount of time.

random board configurations. To reduce evaluation noise, the set of 100 initial
boards was chosen at random for each simulation, but remained fixed for the
duration of the simulation. That is, in a given run all networks were evaluated on
the same 100 initial boards. The behaviors consisted of sequences of 80 {Left=1,
Right=2, Forward=3} actions executed in each of the 100 trials conc

3.2 Simulated Race Car Driving

The simplerace problem involves driving a car in a simple racing simulation
in order to reach as many randomly placed waypoints as possible in a limited
amount of time (figure 2b). There are plenty of good controllers to compare our
results with, as the game has previously been used as a benchmark problem in
several papers, and in two competitions associated with recent conferences1.

1 A description of the problem is available in [12], and source code can be downloaded
from http://julian.togelius.com/cec2007competition.
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Fig. 3. (a) Tartarus and (b) Simplerace controllers. The Tartarus “bulldozer”
is controlled by a fully recurrent neural network (the recurrent connections denoted
by the large black arrow) with five units. At each time step the network outputs the
action corresponding to action unit (left, right, forward) with the highest activation
based on the state of the eight surrounding grid cells. The Simplerace car is controlled
by a simple recurrent network with eight hidden units; v, speed of the car, θc, and dc,
the angle and distance to the current waypoint, θn, and dn, the angle and distance to
the next waypoint.

The Simplerace controllers were represented by simple recurrent networks
(SRN; figure 3b) with six inputs, eight hidden sigmoidal units, and two outputs.
The inputs consisted of: (1) the speed of the car, (2) the angle and (3) distance
to the current, the (4) angle and (5) distance to the next way point, and (6)
a bias term. The two output units are used to represent nine actions using the
following scheme: the first unit steers the car, an activation of < −0.3 means
“turn left”, between −0.3 and 0.3 means “go straight”, and > 0.3, means “turn
right”. The second unit controls the forward-backward motion, < −0.3 means
“go forward”, between −0.3 and 0.3 means “put the car in neutral”, and > 0.3,
means “brake” (if the car is no longer moving forward this action puts the car
in reverse). Each network was evaluated using the same set of 10 cases (i.e.
waypoint locations) each lasting 1000 time-steps (actions), chosen at random at
the beginning of each simulation.

3.3 Results

Figure 4 shows the performance, P , for the four multi-objective configurations.
The “high complexity” configurations, MPH and MPC , performed significantly
better than the “low complexity”, MP−H and MP−C , on both tasks, but the
effect was more pronounced for the Simplerace task where minimizing H inter-
feres strongly with fitness. The problem with selecting for low entropy solutions
in Simplerace may be that, because the task has nine actions (compared with
3 for Tartarus), entropy can be reduced greatly by restricting the number of
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Fig. 4. Performance on Tartarus and Simplerace. Each curve denotes the fitness
of the best individual in each generation for each of the four multi-objective configu-
rations. Average of 50 runs.
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Fig. 5. Compressed Length. Each curve shows, for the each configuration, the com-
pressed length of the most fit individual from each generation. Average of 50 runs.

actions used, whereas compression can work by forcing the sequence of actions
into regular patterns that still utilize all actions.

The difference between MPC and MPH on both tasks was not statistically
significant. Pushing complexity, either by maximizing C or H , promotes poli-
cies that make more full use of their action repertoire. As there are many more
high complexity sequences than low complexity sequences (i.e. low complexity
sequences tend to be more similar), diversity in the population is better main-
tained allowing evolutionary search to discover more fit solutions.

Figure 5 shows the compressed length (C) of the most fit individual in the
population for the four configurations. Here, again, there is a clear distinction
between the maximization and minimization runs, as should be expected, but
the two tasks have very different regimes. In both, maximizing complexity (C
or H) increases the compressed length of the most fit individual. For Tartarus
the C of the most fit individual starts at an intermediate value of around 1300,
and then rises or drops sharply until reaching a steady value for rest of the run.
In contrast, the Simplerace runs always start with very compressible behaviors,
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Fig. 7. Pareto Front: fitness/complexity trade-off. The plot on the left show
a typical final Pareto front for MP−C . When behavioral complexity as measured by
compressed length is minimized, high fitness (P > 6) is not achieved, with many When
behavioral complexity is maximized, MPC , the range of complexity values is high.

which gradually become more complex, even for the minimization configurations.
The reason for this is very likely due, at least in part, to the output representation
used in the Simplerace network. Because each output unit can select one of three
actions (as opposed the one-action-per-unit scheme for Tartarus), the initial
random networks will tend to have units that saturate at 0 or 1 such that the
behaviors will have very low complexity.

Figure 6 shows the fitness of the most complex individual (either in terms
of C or H , depending on the measure being optimized). For Tartarus, the most
complex individual in MPC is less correlated with fitness compared to MPH ,
suggesting that is P are C conflict more than P and H . For Simplerace, the
fitness of the least compressible behavior increases rapidly and then gradually



trends downward, whereas the fitness of the behavior with the highest entropy
rises steadily throughout the run.

Figure 7 shows the Pareto fronts of the final generation of a typical MPC and
MP−C run for Tartarus (Simplerace produces very similar results, also for the
PH runs). For MP−C the most fit non-dominated individuals are also the most
complex, with most solutions concentrated around the lowest complexity. For
MPC , the the complexity is in a much higher range (note the y-axis is inverted
w.r.t. fig (a)), and, in contrast with MP−C , the most fit solutions are the least

complex. So while parsimony is favorable for given level of fitness, suppressing
complexity from the outset, as in MP−C , works against acquiring high fitness
(compare the max fitness in figure 4).

4 Conclusions

This paper constitutes a preliminary study of the evolutionary trade-off between
fitness and complexity. The results, most clearly illustrated by the final Pareto
fronts in figure 7, are consistent with heuristic shaping techniques used in su-
pervised learning where model complexity is given a lower priority in the early
stages of learning so that the learner acquires more degrees of freedom with
which to reduce error. Once, the error reaches a set threshold, the complexity of
the model is penalized to reduce the number of free parameters and in order to
improve generalization [?].

The relationship between entropy and Lempel-Ziv (e.g. gzip) is complex.
Entropy is only concerned with the expected occurrence of each symbol in the
behavior, not the ordering or structure of the behavior. The compressor also relies
on entropy to encode the behavior, but only after analyzing the structure of the
symbol sequence. While entropy and algorithmic complexity are asymptotically
equivalent, two strings with equal entropy can have very different compressibility
due to structure. In our experiments, these differences produced very different
dynamics (see figures 5 and 6), but very similar fitness. The overriding effect
seems to be that of increasing diversity, as discussed in section 3.3.

Further analysis is required to measure, e.g. the correlation between complex-
ity and generalization for a given fitness level to determine whether less complex
solutions with are more robust. And the behaviors themselves should be ana-
lyzed to see if qualitatively different policies arise when complexity of driven
in terms of entropy, gzip, or other compressors (e.g. PPM, bzip2) that exploit
different algorithmic regularities.

For sequential decision tasks, behavior seems to be the right level at which to
compare individuals [5], but, of course, model complexity is critical in determin-
ing the range of possible behaviors available to the agent. Future work will also
look at combining structural and behavioral complexity criteria for evolutionary
methods that search, e.g. both neural network topology and weight space.
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