
Unsupervised Modeling of Partially Observable
Environments

Vincent Graziano, Jan Koutńık, and Jürgen Schmidhuber

IDSIA, SUPSI, University of Lugano,
Manno, CH-6928, Switzerland

{vincent,hkou,juergen}@idsia.ch

Abstract. We present an architecture based on self-organizing maps for
learning a sensory layer in a learning system. The architecture, tempo-
ral network for transitions (TNT), enjoys the freedoms of unsupervised
learning, works on-line, in non-episodic environments, is computation-
ally light, and scales well. TNT generates a predictive model of its inter-
nal representation of the world, making planning methods available for
both the exploitation and exploration of the environment. Experiments
demonstrate that TNT learns nice representations of classical reinforce-
ment learning mazes of varying size (up to 20× 20) under conditions of
high-noise and stochastic actions.

Keywords: Self-Organizing Maps, POMDPs, Reinforcement Learning

1 Introduction

Traditional reinforcement learning (RL) is generally intractable on raw high-
dimensional sensory input streams. Often a sensory input processor, or more
simply, a sensory layer is used to build a representation of the world, a simplifier
of the observations of the agent, on which decisions can be based. A nice sensory
layer produces a code that simplifies the raw observations, usually by lowering
the dimensionality or the noise, and maintains the aspects of the environment
needed to learn an optimal policy. Such simplifications make the code provided
by the sensory layer amenable to traditional learning methods.

This paper introduces a novel unsupervised method for learning a model
of the environment, Temporal Network Transitions (TNT), that is particularly
well-suited for forming the sensory layer of an RL system. The method is a gen-
eralization of the Temporal Hebbian Self-Organizing Map (THSOM), introduced
by Koutńık [7]. The THSOM places a recurrent connection on the nodes of the
Self-Organizing Maps (SOM) of Kohonen [5]. The TNT generalizes the recurrent
connections between the nodes in the THSOM map to the space of the agent’s
actions. In addition, TNT brings with it a novel aging method that allows for
variable plasticity of the nodes. Theses contributions make SOM-based systems
better suited to on-line modeling of RL data.

The quality of the sensory layer learned is dependent on at least (I) the
representational power of the sensory layer, and (II) the ability of the RL layer



get the agent the sensory inputs it needs to best improve its perception of the
world.

There are still few works where unsupervised learning (UL) methods have
been combined with RL [1,8,4]. Most of these approaches deal with the UL
separately from the RL, by alternating the following two steps: (1) improving the
UL layer on a set of observations, modifying its encoding of observations, and (2)
developing the RL on top of the encoded information. (1) involves running UL,
without being concerned about the RL, and (2) involves running RL, without
being concerned about the UL. It is assumed that the implicit feedback inherent
in the process leads to both useable code and an optimal policy. For example, see
the SODA architecture, introduced by Provost et al. [12,11], which first uses a
SOM-like method for learning the sensory layer and then goes on to create high-
level actions to transition the agent between internal states. Such approaches
mainly ignore aspect (II). Still fewer approaches actually deal with the mutual
dependence of the UL and RL layers, and how to solve the bootstrapping problem
that arises when integrating the two [9].

The TNT system immediately advances the state-of-the-art for SOM-like
systems as far as aspect (I) is concerned. In this paper we show how the TNT
significantly outperforms the SOM and THSOM methods for learning state rep-
resentations in noisy environments. It can be introduced into any pre-existing
system using SOM-like methods without any fuss and will generate, as we shall
see in Section 4, nice representations of challenging environments. Further, the
TNT is a natural candidate for addressing both aspects (I) and (II) simultane-
ously, since a predictive model of the environment grows inside of it. We only
touch on this in the final section of the paper, leaving it for a further study.

In Section 2 we describe the THSOM, some previous refinements, the Topo-
logical THSOM (T2HSOM) [2], as well as some new refinements. Section 3 intro-
duces the TNT, a generalization of the T2HSOM architecture that is suited for
on-line modeling noisy high-dimension RL environments. In Section 4 we study
the performance of the TNT on partially observable RL maze environments, in-
cluding an environment with 400 underlying states and large amounts of noise
and stochastic actions. We make direct comparisons to both SOM and T2HSOM
methods. Section 5 discusses future directions of research.

2 Topological Temporal Hebbian Self-Organizing Map

We review the original THSOM and T2HSOM architectures here, along with
some refinements which appear for the first time here. This helps to introduce
the TNT, and aids comprehension when the three methods are compared in Sec-
tion 4. Briefly, a THSOM is a Self-organizing Map (SOM) that uses a recurrent
connection (trained using a Hebbian update rule) on its nodes.

The THSOM consists of N nodes placed at the vertices of a finite lattice in
Euclidean space. Each node i has a prototype vector wi ∈ RD, where D is the
dimension of the observations. In what follows, the variable for the time step, t,
is suppressed only when its omission cannot create confusion.



2.1 Network Activation

The activation yi(t) of node i at step t consists of a spatial component, yi,S(t),
and a temporal component, yi,T (t). For observation x(t) at time t the spatial
activation is

y(t)S,i =
√
D − ‖x(t)−wi(t)‖, (1)

and the temporal activation is

y(t)T,i = y(t− 1) ·mi(t), (2)

where y(t−1) is the normalized network activation from the previous time step,
and mi(t) is row i of the N x N temporal weight matrix M , whose entry mi,j

represents the strength of the connection from node j to node i.
In the original formulation of the THSOM, the network activation, before

normalization, was given by yi = yS,i + yT,i. The factor
√
D in the spatial

activation was used to help equalize the influence the spatial and temporal com-
ponents. Experimental evidence has shown that the network often benefits from
a finer weighting of the two components. A parameter η is introduced to alter
the balance between the components,

yi = ηyS,i + (1− η)yT,i. (3)

The offset
√
D in the spatial component (obviated by η) is kept for historical

reasons, so that when η = 0.5 the original balance is recovered. Putting η = 1
makes the activation of the map, and therefore also the learning (as we shall
later see), entirely based on the spatial component, i.e., a SOM. In the case of
a deterministic HMM (a cycle of underlying states) a perfectly trained THSOM
can ‘predict’ the next underlying state blindly, that is, without making use of
the spatial component, η = 0, when given the initial underlying state.

Normalizing the Activation. It is necessary to normalize the activations
with each step to maintain the stability of the network, otherwise the values
become arbitrarily large. In the original formulation of the THSOM the activa-
tion of each node yi was normalized by the maximum activation over all nodes,
yi = yi/maxk yk. Normalization is now done using the softmax function and
a parameter τ for the temperature. The temperature decreases as the network
is trained; training provides an increasingly accurate model of the transition
matrix, and a cooler temperature allows the network to make good use of the
model.

2.2 Learning

The spatial and temporal components are learned separately. The spatial com-
ponent is trained in the same way as a conventional SOM and the training of



the temporal component is based on a Hebbian update rule. Before each up-
date the node b with the greatest activation at step t is determined. This node
b(t) = arg maxk yk(t) is called the best matching unit (BMU). The neighbors of
a node are those nodes which are nearby on the lattice, and are not necessarily
the nodes with the most similar prototype vector.

Learning the Spatial Component. The distance di of each node i on the
lattice to b is computed using the Euclidean distance, di = ‖c(i)− c(b)‖, where
c(k) denotes the location of node k on the lattice. The BMU and its neighbors
are trained in proportional to the cut-Gaussian spatial neighborhood function
cS , defined as follows:

cS,i =

exp

(
− d2i

2σ2
S

)
if di ≤ νS ,

0 if di > νS ,
(4)

where σS and νS are functions of the age of the network (discussed in Sec-
tion 3.3). Typically, these functions are monotone decreasing with respect to t.
The value of σS determines the shape of the Gaussian and νS is the topological
neighborhood cut-off. The prototype vector corresponding to node i is updated
using the following rule:

wi(t+ 1) = wi(t) + αScS,i (x(t)−wi(t)) , (5)

where αS is the learning rate, and is also a function of the age of the network.

Learning the Temporal Component. To learn the temporal weight matrix
M , the BMUs b(t− 1) and b(t) are considered and three Hebbian learning rules
are applied:

1. Temporal connections from node j = b(t − 1) to i = b(t) and its neighbors
are strengthened (see Figure 1(a)):

mi,j(t+ 1) = mi,j(t) + αT cT,i (1−mi,j(t)) . (6)

2. Temporal connections from all nodes j, except b(t − 1), to i = b(t) and its
neighbors are weakened (see Figure 1(b)):

mi,j(t+ 1) = mi,j(t)− αT cT,imi,j(t). (7)

3. Temporal connections from j = b(t− 1) to all nodes outside some neighbor-
hood of b(t) are weakened (see Figure 1(c)):

mi,j(t+ 1) = mi,j(t)− αT (1− cT,i)mi,j(t). (8)



t c Tt 1-

(a)

t c Tt 1-

(b)

t

Tν 2 

t 1- 1 c T-

(c)

Fig. 1. T2HSOM learning rules: The BMU nodes are depicted with filled circles. (a)
excitation of temporal connections from the previous BMU to the current BMU and its
neighbors, (b) inhibition of temporal connections from all nodes, excluding the previous
BMU, to the current BMU and its neighbors, (c) inhibition of temporal connections
from the previous BMU to all nodes outside some neighborhood of the current BMU.
The connections are modified using the values of a neighborhood function (Gaussian
given by σT ), a cut-off (νT ), and a learning rate (αT ). Figure adapted from [2].

The temporal neighborhood function cT,i is computed in the same way the
spatial neighborhood cS,i (Equation 4) is except that temporal parameters are
used. That is, the temporal learning has its own parameters, σT , νT , and αT , all
of which, again, are functions of the age of the network.

The original THSOM [6,7] contained only the first 2 temporal learning rules,
without the use of neighborhoods. In [2], Ferro et al. introduced the use of
neighborhoods for the training of temporal weights as well as rule (3). They
named the extension the Topological Temporal Hebbian Self-organizing Map
(T2HSOM).

3 Temporal Network for Transitions

SOMs lack the recurrent connection found in the T2HSOM. As a result, when
using a SOM to learn an internal state-space representation for RL the following
factor plays an important role: noise may conflate the observations arising from
the underlying states in the environment, preventing an obvious correlation be-
tween observation and underlying state from being found. Noise can make the
disambiguation of the underlying state impossible, regardless of the number of
nodes used. The recurrent connection of the T2HSOM keeps track of the previous
observation, allowing the system to learn a representation of the environment
that can disambiguate states that a SOM cannot. The theoretical representa-
tional power of the T2HSOM architecture is that it can model HMMs (which



can be realized as POMDPs with a single action) but not POMDPs. While the
T2HSOM does consider the previous observation for determining the current
internal state it ignores the action that was taken between the observations. The
TNT architecture extends the T2HSOM by making explicit use of the action
taken between observations. As a result, TNT can in theory model a POMDP.

3.1 Network Activation

As in the THSOM, two components are used to decide the activation of the
network.

Spatial Activation. As with SOMs, the spatial matching for both the TNT
and THSOM can be carried-out with metrics other than the Euclidean distance.
For example a dot-product can be used to measure the similarity between an
observation and the prototype vectors. In any case, the activation and learning
rules need to be mutually compatible. See [5] for more details.

Temporal Activation. The key difference between the THSOM and TNT
architectures is the way in which the temporal activation is realized. Rather
than use a single temporal weight matrix M , as is done in the THSOM, to
determine the temporal component, the TNT uses a separate matrix Ma, called
a transition-map, for each action a ∈ A. The ‘temporal’ activation is now given
by

y(t)T,i = y(t− 1) ·ma
i (t), (9)

where ma
i is row i of transition-map Ma and y(t− 1) is the network activation

at the previous time step (see Equation 2).

Combining the Activations. We see two general ways to combine the com-
ponents: additively and multiplicatively. The formulations of the THSOM and
T2HSOM considered only the additive method, and can be used successfully
with the TNT as well. The two activations are summed using a balancing term
η, precisely as they were in Equation 3.

Since the transition-maps are effectively learning a model of the transition
probabilities between the nodes on the lattice it is reasonable to interpret both
the spatial and the temporal activations as likelihoods and use an element-wise
product to combine them. The spatial activation roughly gives a likelihood that
an observation belongs to a particular node, with better matching units being
considered more likely. In the case of the Euclidean distance, the closer the
observation is to a prototype vector the more likely the correspondence, whereas
with the dot-product the better matched units take on values close to 1.

For example, when using a Euclidean metric with a multiplicative combina-
tion the spatial component can be realized as



y(t)S,i = exp (−η ‖x(t)−wi(t)‖) , (10)

where η controls how quickly the “likelihood” values drop-off with respect to the
distance. This is important for balancing the spatial and temporal components
when using a multiplicative method.

After the two activations are combined the value needs to be normalized.
Normalization by the maximum value, the length of the activation vector, and
the softmax all produce excellent results. In our experiments, for simplicity, we
have chosen to normalize by the length of the activation vector.

The experiments in Section 4 were carried out using a multiplicative method
with the spatial activation determined by Equation 10. The multiplicative ap-
proach produces excellent results, and though the additive method also produces
significant results when compared to the SOM and THSOM we have found it
to be less powerful than the multiplicative approach. As such, we do not report
the results of the additive approach in this paper.

3.2 Learning

The learning step for the TNT is, mutatis mutandis, the same as it was for the
T2HSOM. Rather than training the temporal weight matrix M at step t, we
train the appropriate transition-map Ma (which is given by the action at).

3.3 Aging the TNT

Data points from RL environments do not arrive in an independent and iden-
tically distributed (i.i.d.) fashion. Therefore, it is important to impart any sys-
tem learning an internal representation of the world with a means to balance
plasticity and stability. Prototype nodes and transition-maps that have been up-
dated over many samples should be fairly stable, and less likely to forget while
maintaining the ability to slowly adapt to a changing environment. Likewise,
untrained nodes and transition-maps should adapt quickly to new parts of the
environment.

To achieve this variable responsiveness a local measure of age or plasticity
is required. In classical SOM-like systems the learning parameters decay with
respect to the global age of the network. In [5], the use of individual learning
rates1, αS , is discussed but dismissed, as they are unnecessary for the successful
training of SOMs on non-RL data. Decay with respect to a global age is sufficient
in batch-based settings where the ordering of the data is unimportant. Assigning
an age to the nodes allows for a finer control of all the parameters. As a result,
powerful learning dynamics emerge. See Figure 2 for examples.

1 Marsland [10] uses counters to measure the activity of the nodes in a growing SOM.
The counters are primarily used to determine when to instantiate new nodes. They
are also used to determine the learning rate of the nodes, though in a less sophisti-
cated way than introduced here.



(a) (b)

Fig. 2. Plasticity: (a) when the BMU is young, it strongly affects training of a large
perimeter in the network grid. The nodes within are dragged towards the target (×),
the old nodes are stable due to their low learning rate. (b) when the BMU is old, a small
neighborhood of nodes is weakly trained. In well-known parts of the environment new
nodes tend not be recruited for representation, while in new parts the young nodes,
and their neighbors are quickly recruited for representation, while the older nodes are
left in place.

Formally, training in SOM-like systems amounts to moving points P , proto-
type vectors w, towards a point Q, the input vector x, along the line connecting
them:

P ← (1− h)P + hQ,

where h is the so-called neighborhood function. E.g., see Equation 5. This neigh-
borhood function, for both the spatial and temporal learning, is simply the
product of the learning rate of the prototype vector, i, and the cut-Gaussian of
the BMU, b,

hi(t) = αi(t)cb(t).

Each node i is given a spatial age, ξS,i, and a temporal age ξaT,i for each
action a ∈ A. After determining the activation of the TNT and the BMU, b,
the age of the nodes are simply incremented by the value of their spatial and
temporal neighborhood functions, hS,i and hT,i respectively:

ξi(t+ 1) = ξi(t) + αi(t)cb(t). (11)

3.4 Varying the Parameters

Now that the nodes have individual ages we can determine the learning rate
and cut-Gaussian locally. One approach is to decay the spatial, σS , νS , αS , and



(a) (b) (c)

Fig. 3. 5× 5 maze experiment: (a) two dimensional maze with randomly placed
walls, (b) noisy observations of a random walk (σ = 1/3 cell width), (c) trained TNT.
Disks depict the location of the prototype vectors, arrows represent the learned tran-
sitions, and dots represent transitions to the same state.

temporal, σT , νT , αT , learning parameters using the exponential function. For
each parameter Λ choose an initial value Λ◦, a decay rate Λk, and an asymptotic
value Λ∞. The value of any parameter is then determined by

Λ(ξ) = (Λ◦ − Λ∞) exp(−ξ/Λk) + Λ∞, (12)

where ξ is the appropriate age for the parameter being used. Note that setting
Λk to “∞” makes the parameter constant.

4 Experiments

The aim of the experiments is to show how the recurrent feedback (based on
previous observations and actions) empowers the TNT to discern underlying-
states from noisy observations.

4.1 Setup

The TNT is tested on two-dimensional mazes. The underlying-states of the maze
lie at the centers of the tiles constituting the maze. There are four possible ac-
tions: up, down, left, and right. A wall in the direction of intended movement,
prevents a change in underlying-state. After each action the TNT receives a
noisy observation of the current state. In the experiments a random walk (Fig-
ure 3(b)) is presented to the TNT. The TNT tries to (1) learn the underlying-
states (2-dimensional coordinates) from the noisy observations and (2) model the
transition probabilities between states for each of the actions. The observations
have Gaussian noise added to the underlying-state information. The networks
were trained on a noise level of σ = 1/3 of the cell width, so that 20% of the
observations were placed in a cell of the maze that did not not correspond to
the underlying-state.



Mazes of size 5×5, 10×10, and 20×20 were used. The length of the training
and random walks were 104, 5× 104, and 105 respectively.

A parameter γ determines the reliability, or determinism, of the actions. A
value of 0.9 means that the actions move in a direction other than the one
indicated by their label with a probability of 1− 0.9 = 0.1.

The parameters used for training the TNT decay exponentially according to
Equation 12. Initially, the spatial training has a high learning rate at the BMU,
0.9, and includes the 12 nearest nodes on the lattice. This training decays to
a final learning rate of 0.001 at the BMU and also includes the neighboring 4
nodes. The temporal training only effects only the BMU, with an initial learning
rate of 0.25 that decays to 0.001. The complete specification of the learning
parameters is recorded in Table 1.

Table 1. TNT learning parameters:

αS σS νS αT σT νT

Λ◦ 0.90 1.75 2.10 0.25 2.33 0.5
Λ∞ 0.001 0.75 1.00 0.001 0.75 0.5
Λk 10 10 10 10 10 ∞

After a network is trained, disambiguation experiments are performed. The
TNT tries to identify the underlying-state from the noisy observations on newly
generated random walks. The amount of noise and the level of determinism are
varied throughout the disambiguation experiments. 10 trials of each disambigua-
tion experiment were run, with the average results reported. Added noise was
drawn from normal distributions with σ = { 16 , 1

3 , 1
2 , 1, 3

2}, and the determinism
of the actions was either 1.0 or 0.9. Putting σ = 1/6 results in only slightly
noisy observations, whereas with σ = 3/2 more than 80% of the observations are
placed in the wrong cell, effectively hiding the structure of the maze, see Table 2.

We compare the TNT to a SOM and a T2HSOM on mazes, with varying
levels of noise and determinism. The SOM and T2HSOM were also trained on-
line using the aging methods introduced for the TNT. We then examine the
performance of the TNT on larger environments with determinism γ = 0.9,
while varying the amount of noise.

4.2 Results

In the 5 × 5 mazes the variable plasticity allows for the prototype vectors (the
spatial component) of all three methods to learn the coordinates of the under-
lying states arbitrarily well. The performance of the SOM reached its theoretical
maximum while being trained on-line on non-i.i.d data. That is, it misidentified
only those observations which fell outside the correct cell. At σ = 1/2 the SOM
can only identify around 55% of the observations correctly. The TNT on the



Table 2. Observation disambiguation: For a variance of Gaussian noise relative
to the maze cell width, the percentage of ambiguous observations is shown on the
first line. A SOM can, at best, achieve the same performance. The second line shows
the percentage of observations correctly classified by the T2HSOM (single recurrent
connection). The third line shows the percentage of observations correctly classified by
the TNT when the actions are deterministic, γ = 1. The last lines gives the performance
of the TNT when the actions are stochastic, γ = 0.9.

σ = 1/6 1/3 1/2 1 3/2

SOM 99.6 79.4 55.6 25.5 16.6
T2HSOM 96.6 80.4 59.2 27.8 17.9
TNT, γ = 1 100.0 100.0 99.9 99.0 98.2
TNT, γ = 0.9 96.4 94.4 85.0 73.1 56.0

other-hand is able to essentially identify 100% of all such observations in a com-
pletely deterministic environment (γ = 1.0), and 85% in the stochastic setting
(γ = 0.9). Both the SOM and THSOM are unaffected by the level of stochas-
ticity, since they do not model the effects of particular actions. See Table 2 for
further comparisons.

After training, in both deterministic and stochastic settings, the transition-
maps accurately reflect the transition tables of the underlying Markov model.
The tables learned with deterministic actions are essentially perfect, while the
ones learned in the stochastic case, suffer somewhat, see Table 3. This is reflected
in the performance degradation with higher amounts of noise.

Table 3. Observation disambiguation for larger mazes: Percentage of observa-
tions assigned to correct states in stochastic setting, γ = 0.9.

σ = 1/6 1/3 1/2 1 3/2

TNT, 5× 5 96.4 94.4 85.0 73.1 56.0
TNT, 10× 10 93.8 92.2 77.0 56.9 29.4
TNT, 20× 20 86.8 83.6 72.9 45.3 23.0

The degradation seen as the size of the maze increases is partially a result
using the same learning parameters for environments of different size; the trouble
is that the younger nodes need to recruit enough neighboring nodes to represent
new parts of the environment while stabilizing before some other part of the



Fig. 4. The trouble with stochastic actions: The “go right” action can transition
to 4 possible states. Noisy observations coupled with stochastic actions can make it
impossible to discern the true state.

maze is explored. The learning parameters need to be sensitive to the size of the
environment. Again, this problem arises since we are training on-line and the
data is not i.i.d. This problem can be addressed somewhat by making the ratio
of nodes-to-states greater than 1. We return to this issue in Section 5.

It is important to note that the percentage of ambiguous observations that
can actually be distinguish decreases sharply as the noise increases in stochastic
settings. Simply, when the noise is sufficiently high there is no general way to dis-
ambiguate an observation following a misrepresented action from an observation
following a well-represented action with high noise. See Figure 4.

5 Discussion

Initial experiments show that the TNT is able to handle much larger environ-
ments without a significant degradation of results. The parameters while they
do not require precise tuning, do require that they are reasonably matched to
the environment. The drop-off seen in Table 3 can be mostly attributed to not
having used better suited learning parameters, as the same decay functions were
used in all the experiments. Though the aging rules and variable plasticity have
largely addressed the on-line training problem, they have not entirely solved
it. As a result, we plan to explore a constructive TNT, inspired by the “grow
when required” [10] and the “growing neural gas” [3] architectures. Nodes will
be added on the fly making the recruitment of nodes to new parts of the envi-
ronment more organic in nature; as the agent goes somewhere new it invokes a
new node. We expect such an architecture to be more flexible, able to handle a
larger range of environments without an alteration of parameters, bringing us
closer a general learning system.

In huge environments where continual-learning plays an increasing role, the
TNT should have two additional, related features. (1) The nodes should be able
to forget, so that resources might be recruited to newly visited parts of the
environment, and (2) a minimal number of nodes should be used to represent
the same underlying state. (1) can be solved by introducing a youthening aspect
to the aging. Simply introduce another term in the aging function which slightly



youthens the nodes, so that nodes near the BMU increase in age overall, while
nodes further away decrease. (2) is addressed by moving from a cut-Gaussian to
a similar “Mexican hat” function for the older nodes. This will push neighboring
nodes away from the expert, making him more distinguished.

We have found that the Markov model can be learned when the nodes in
the TNT are not in 1-to-1 correspondence with the underlying states. Simple
clustering algorithms, based on the proximity of the prototype vectors and the
transition-maps, are able to detect likely duplicates. An immediate and impor-
tant follow-up to this work would consider continuous environments. We expect
the topological mixing, inherent to SOM-based architectures, to give dramatic
results.

A core challenge in extending reinforcement learning (RL) to real-world
agents is uncovering how such an agent can select actions to autonomously build
an effective sensory mapping through its interactions with the environment. The
use of artificial curiosity [13] with planning to address this problem has been
carried out in [9], where the sensory layer was built-up using vector quantization
(a SOM without neighborhoods). Clearly, as we established in this paper, a TNT
can learn a better sensory layer than any SOM. The transition-maps effectively
model the internal-state transitions and therefore make planning methods nat-
urally available to a learning system using a TNT. A promising line of inquiry,
therefore, is to derive a curiosity signal from the learning updates inside the
TNT to supply the agent with a principled method to explore the environment
so that a nicer representation of it can be learned.

Acknowledgments

This research was funded in part through the following grants: SNF– Theory and
Practice of Reinforcement Learning (200020-122124/1), and SNF– Recurrent
Networks (200020-125038/1).

References

1. Fernández, F., Borrajo, D.: Two steps reinforcement learning. International Journal
of Intelligent Systems 23(2), 213–245 (2008)

2. Ferro, M., Ognibene, D., Pezzulo, G., Pirrelli, V.: Reading as active sensing: a
computational model of gaze planning during word discrimination. Frontiers in
Neurorobotics 4 (2010)

3. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural
Information Processing Systems 7. pp. 625–632. MIT Press (1995)

4. Gisslén, L., Graziano, V., Luciw, M., Schmidhuber, J.: Sequential Constant Size
Compressors and Reinforcement Learning. In: Proceedings of the Fourth Confer-
ence on Artificial General Intelligence (2011)

5. Kohonen, T.: Self-Organizing Maps. Springer-Verlag, 3rd edn. (2001)
6. Koutńık, J.: Inductive modelling of temporal sequences by means of self-

organization. In: Proceeding of Internation Workshop on Inductive Modelling
(IWIM 2007). pp. 269–277. CTU in Prague, Ljubljana (2007)



7. Koutńık, J., Šnorek, M.: Temporal hebbian self-organizing map for sequences. In:
16th International Conference on Artificial Neural Networks Proceedings (ICANN
2006), Part I. vol. 1, pp. 632—-641. Springer Berlin / Heidelberg (2008)

8. Lange, S., Riedmiller, M.: Deep auto-encoder neural networks in reinforcement
learning. In: Neural Networks (IJCNN), The 2010 International Joint Conference
on. pp. 1–8 (July 2010)

9. Luciw, M., Graziano, V., Ring, M., Schmidhuber, J.: Artificial Curiosity with Plan-
ning for Autonomous Perceptual and Cognitive Development. In: Proceedings of
the International Conference on Development and Learning (2011)

10. Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows when
required. Neural Netw. 15 (October 2002)

11. Provost, J.: Reinforcement Learning in High-Diameter, Continuous Environments.
Ph.D. thesis, Computer Sciences Department, University of Texas at Austin,
Austin, TX (2007)

12. Provost, J., Kuipers, B.J., Miikkulainen, R.: Developing navigation behavior
through self-organizing distinctive state abstraction. Connection Science 18, 2006
(2006)

13. Schmidhuber, J.: Formal Theory of Creativity, Fun, and Intrinsic Motivation
(1990–2010). Autonomous Mental Development, IEEE Transactions on 2(3), 230–
247 (2010)


	Unsupervised Modeling of Partially Observable Environments
	Introduction
	Topological Temporal Hebbian Self-Organizing Map
	Network Activation
	Normalizing the Activation.

	Learning
	Learning the Spatial Component.
	Learning the Temporal Component.


	Temporal Network for Transitions
	Network Activation
	Spatial Activation.
	Temporal Activation.
	Combining the Activations.

	Learning
	Aging the TNT
	Varying the Parameters

	Experiments
	Setup
	Results

	Discussion


