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Abstract

I argue that data becomes temporarily interesting by itself to some self-impro-
ving, but computationally limited, subjective observer once he learns to predict or
compress the data in a better way, thus making it subjectively simpler and more
beautiful. Curiosity is the desire to create or discover more non-random, non-
arbitrary, regular data that is novel and surprising not in the traditional sense of
Boltzmann and Shannon but in the sense that it allows for compression progress
because its regularity was not yet known. This drive maximizes interestingness, the
first derivative of subjective beauty or compressibility, that is, the steepness of the
learning curve. It motivates exploring infants, pure mathematicians, composers,
artists, dancers, comedians, yourself, and recent artificial systems.

Note: Variants of this preprint are scheduled to appear as references [82] and [83]
(short version), distilling some of the essential ideas in earlier work (1990-2008) on
this subject: [48, 49, 52, 50, 51, 97, 59, 63, 68] and especially recent papers [73, 79,
80, 81].
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1 Store & Compress & Reward Compression Progress
If the history of the entire universe were computable [112, 113], and there is no evi-
dence against this possibility [76], then its simplest explanation would be the shortest
program that computes it [56, 61]. Unfortunately there is no general way of finding the
shortest program computing any given data [28, 95, 96, 31]. Therefore physicists have
traditionally proceeded incrementally, analyzing just a small aspect of the world at any
given time, trying to find simple laws that allow for describing their limited observa-
tions better than the best previously known law, essentially trying to find a program
that compresses the observed data better than the best previously known program. For
example, Newton’s law of gravity can be formulated as a short piece of code which
allows for substantially compressing many observation sequences involving falling ap-
ples and other objects. Although its predictive power is limited—for example, it does
not explain quantum fluctuations of apple atoms—it still allows for greatly reducing the
number of bits required to encode the data stream, by assigning short codes to events
that are predictable with high probability [22] under the assumption that the law holds.
Einstein’s general relativity theory yields additional compression progress as it com-
pactly explains many previously unexplained deviations from Newton’s predictions.

Most physicists believe there is still room for further advances. Physicists, however,
are not the only ones with a desire to improve the subjective compressibility of their
observations. Since short and simple explanations of the past usually reflect some
repetitive regularity that helps to predict the future as well, every intelligent system
interested in achieving future goals should be motivated to compress the history of raw
sensory inputs in response to its actions, simply to improve its ability to plan ahead.

A long time ago, Piaget [40] already explained the explorative learning behav-
ior of children through his concepts of assimilation (new inputs are embedded in old
schemas—this may be viewed as a type of compression) and accommodation (adapting
an old schema to a new input—this may be viewed as a type of compression improve-
ment), but his informal ideas did not provide enough formal details to permit computer
implementations of his concepts. How to model a compression progress drive in arti-
ficial systems? Consider an active agent interacting with an initially unknown world.
We may use our general Reinforcement Learning (RL) framework of artificial curiosity
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(1990-2008) [48, 49, 52, 50, 51, 97, 59, 63, 68, 73, 80, 79, 81] to make the agent dis-
cover data that allows for additional compression progress and improved predictability.
The framework directs the agent towards a better understanding the world through ac-
tive exploration, even when external reward is rare or absent, through intrinsic reward
or curiosity reward for actions leading to discoveries of previously unknown regulari-
ties in the action-dependent incoming data stream.

1.1 Outline
Section 1.2 will informally describe our algorithmic framework based on: (1) a contin-
ually improving predictor or compressor of the continually growing data history, (2) a
computable measure of the compressor’s progress (to calculate intrinsic rewards), (3)
a reward optimizer or reinforcement learner translating rewards into action sequences
expected to maximize future reward. The formal details are left to the Appendix, which
will elaborate on the underlying theoretical concepts and describe discrete time imple-
mentations. Section 1.3 will discuss the relation to external reward (external in the
sense of: originating outside of the brain which is controlling the actions of its “ex-
ternal” body). Section 2 will informally show that many essential ingredients of in-
telligence and cognition can be viewed as natural consequences of our framework, for
example, novelty, surprise, interestingness, unsupervised shifts of attention, curiosity,
creativity, subjective beauty, art, science, music, and jokes. In particular, we reject the
traditional Boltzmann / Shannon notion of surprise, and demonstrate that both science
and art can be regarded as by-products of the desire to create / discover more data that
is compressible in hitherto unknown ways. Section 3 will give an overview of previous
concrete implementations of approximations of our framework. Section 4 will apply
the theory to images tailored to human observers, illustrating the rewarding learning
process leading from less to more subjective compressibility. Section 5 will outline
how to improve our previous implementations, and how to further test predictions of
our theory in psychology and neuroscience.

1.2 Algorithmic Framework
The basic ideas are embodied by the following set of simple algorithmic principles
distilling some of the essential ideas in previous publications on this topic [48, 49, 52,
50, 51, 97, 59, 63, 68, 73, 80, 79, 81]. As mentioned above, formal details are left to
the Appendix. As discussed in Section 2, the principles at least qualitatively explain
many aspects of intelligent agents such as humans. This encourages us to implement
and evaluate them in cognitive robots and other artificial systems.

1. Store everything. During interaction with the world, store the entire raw history
of actions and sensory observations including reward signals—the data is holy as
it is the only basis of all that can be known about the world. To see that full data
storage is not unrealistic: A human lifetime rarely lasts much longer than 3×109

seconds. The human brain has roughly 1010 neurons, each with 104 synapses on
average. Assuming that only half of the brain’s capacity is used for storing raw
data, and that each synapse can store at most 6 bits, there is still enough capacity
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to encode the lifelong sensory input stream with a rate of roughly 105 bits/s,
comparable to the demands of a movie with reasonable resolution. The storage
capacity of affordable technical systems will soon exceed this value. If you can
store the data, do not throw it away!

2. Improve subjective compressibility. In principle, any regularity in the data
history can be used to compress it. The compressed version of the data can be
viewed as its simplifying explanation. Thus, to better explain the world, spend
some of the computation time on an adaptive compression algorithm trying to
partially compress the data. For example, an adaptive neural network [4] may
be able to learn to predict or postdict some of the historic data from other his-
toric data, thus incrementally reducing the number of bits required to encode the
whole. See Appendix A.3 and A.5.

3. Let intrinsic curiosity reward reflect compression progress. The agent should
monitor the improvements of the adaptive data compressor: whenever it learns to
reduce the number of bits required to encode the historic data, generate an intrin-
sic reward signal or curiosity reward signal in proportion to the learning progress
or compression progress, that is, the number of saved bits. See Appendix A.5
and A.6.

4. Maximize intrinsic curiosity reward [48, 49, 52, 50, 51, 97, 59, 63, 68, 73, 80,
79]. Let the action selector or controller use a general Reinforcement Learning
(RL) algorithm (which should be able to observe the current state of the adaptive
compressor) to maximize expected reward, including intrinsic curiosity reward.
To optimize the latter, a good RL algorithm will select actions that focus the
agent’s attention and learning capabilities on those aspects of the world that allow
for finding or creating new, previously unknown but learnable regularities. In
other words, it will try to maximize the steepness of the compressor’s learning
curve. This type of active unsupervised learning can help to figure out how the
world works. See Appendix A.7, A.8, A.9, A.10.

The framework above essentially specifies the objectives of a curious or creative
system, not the way of achieving the objectives through the choice of a particular
adaptive compressor or predictor and a particular RL algorithm. Some of the possi-
ble choices leading to special instances of the framework (including previous concrete
implementations) will be discussed later.

1.3 Relation to External Reward
Of course, the real goal of many cognitive systems is not just to satisfy their curiosity,
but to solve externally given problems. Any formalizable problem can be phrased as an
RL problem for an agent living in a possibly unknown environment, trying to maximize
the future external reward expected until the end of its possibly finite lifetime. The new
millennium brought a few extremely general, even universal RL algorithms (universal
problem solvers or universal artificial intelligences—see Appendix A.8, A.9) that are
optimal in various theoretical but not necessarily practical senses, e. g., [23, 71, 74,
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75, 78, 77]. To the extent that learning progress / compression progress / curiosity
as above are helpful, these universal methods will automatically discover and exploit
such concepts. Then why bother at all writing down an explicit framework for active
curiosity-based experimentation?

One answer is that the present universal approaches sweep under the carpet certain
problem-independent constant slowdowns, by burying them in the asymptotic notation
of theoretical computer science. They leave open an essential remaining question:
If the agent can execute only a fixed number of computational instructions per unit
time interval (say, 10 trillion elementary operations per second), what is the best way
of using them to get as close as possible to the recent theoretical limits of universal
AIs, especially when external rewards are very rare, as is the case in many realistic
environments? The premise of this paper is that the curiosity drive is such a general
and generally useful concept for limited-resource RL in rare-reward environments that
it should be prewired, as opposed to be learnt from scratch, to save on (constant but
possibly still huge) computation time. An inherent assumption of this approach is that
in realistic worlds a better explanation of the past can only help to better predict the
future, and to accelerate the search for solutions to externally given tasks, ignoring the
possibility that curiosity may actually be harmful and “kill the cat.”

2 Consequences of the Compression Progress Drive
Let us discuss how many essential ingredients of intelligence and cognition can be
viewed as natural by-products of the principles above.

2.1 Compact Internal Representations or Symbols as General By-
Products of Efficient History Compression

To compress the history of observations so far, the compressor (say, a predictive neural
network) will automatically create internal representations or symbols (for example,
patterns across certain neural feature detectors) for things that frequently repeat them-
selves. Even when there is limited predictability, efficient compression can still be
achieved by assigning short codes to events that are predictable with high probability
[22, 86]. For example, the sun goes up every day. Hence it is efficient to create internal
symbols such as daylight to describe this repetitive aspect of the data history by a short
reusable piece of internal code, instead of storing just the raw data. In fact, predictive
neural networks are often observed to create such internal codes as a by-product of
minimizing their prediction error on the training data.

2.2 Consciousness as a Particular By-Product of Compression
There is one thing that is involved in all actions and sensory inputs of the agent, namely,
the agent itself. To efficiently encode the entire data history, it will profit from creating
some sort of internal symbol or code (e. g., a neural activity pattern) representing
the agent itself. Whenever this representation is actively used, say, by activating the
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corresponding neurons through new incoming sensory inputs or otherwise, the agent
could be called self-aware or conscious. Compare, e. g., [8].

In the rest of this paper we will not have to attach any particular mystic value to
the notion of consciousness—in our view, it is just a natural by-product of the agent’s
ongoing process of problem solving and world modeling through data compression,
and will not play a prominent role in the remainder of this paper.

2.3 The Lazy Brain’s Subjective, Time-Dependent Sense of Beauty
According to our lazy brain theory [58, 57, 60, 73, 79, 80], at any given time t in subjec-
tive agent O’s life, we may identify the time-dependent, subjective beauty B(D | O, t)
of a new observation D (but not its interestingness - see Section 2.4) as being propor-
tional to the number of bits required to encode D, given the observer’s limited previous
knowledge, embodied by the current state of its adaptive compressor. For example,
to efficiently encode previously viewed human faces, a compressor such as a neural
network may find it useful to generate the internal representation of a prototype face.
To encode a new face, it must only encode the deviations from the prototype [58].
Thus a new face that does not deviate much from the prototype [12, 39] will be subjec-
tively more beautiful than others. Similarly for faces that exhibit geometric regularities
such as symmetries or simple proportions [60, 80]—in principle, the compressor may
exploit any regularity for reducing the number of bits required to store the data.

Generally speaking, among several sub-patterns classified as comparable by a given
observer, the subjectively most beautiful is the one with the simplest (shortest) descrip-
tion, given the observer’s current particular method for encoding and memorizing it
[58, 60]. For example, mathematicians find beauty in a simple proof with a short
description in the formal language they are using. Others like geometrically simple,
aesthetically pleasing, low-complexity drawings of various objects [58, 60].

This immediately explains why many human observers prefer faces similar to their
own. What they see every day in the mirror will influence their subjective prototype
face, for simple reasons of coding efficiency.

2.4 Subjective Interestingness as First Derivative of Subjective Beau-
ty: The Steepness of the Learning Curve

What’s beautiful is not necessarily interesting. A beautiful thing is interesting only as
long as it is new, that is, as long as the algorithmic regularity that makes it simple has
not yet been fully assimilated by the adaptive observer who is still learning to compress
the data better. It makes sense to define the time-dependent subjective Interestingness
I(D | O, t) of data D observed by observer O by

I(D | O, t) =
∂B(D | O, t)

∂t
, (1)

the first derivative of subjective beauty: as the learning agent improves its compression
algorithm, formerly apparently random data parts become subjectively more regular
and beautiful, requiring fewer and fewer bits for their encoding. As long as this process
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is not over the data remains interesting and rewarding. The Appendix and Section 3 on
previous implementations will describe details of discrete time versions of this concept.
See also [50, 51, 97, 59, 63, 68, 73, 80, 79].

2.5 Pristine Beauty & Interestingness vs External Rewards
Note that our above concepts of beauty and interestingness are limited and pristine in
the sense that they are not related to pleasure derived from external rewards. For exam-
ple, some might claim that a hot bath on a cold day triggers “beautiful” feelings due to
rewards for achieving prewired target values of external temperature sensors (external
in the sense of: outside the brain which is controlling the actions of its external body).
Or a song may be called “beautiful” for emotional (e.g., [9]) reasons by some who
associate it with memories of external pleasure through their first kiss. Obviously this
is not what we have in mind here—we are focusing solely on rewards of the intrinsic
type based on learning progress.

2.6 True Novelty & Surprise vs Traditional Information Theory
Consider two extreme examples of uninteresting, unsurprising, boring data: A vision-
based agent that always stays in the dark will experience an extremely compressible,
soon totally predictable history of unchanging visual inputs. In front of a screen full
of white noise conveying a lot of information and “novelty” and “surprise” in the tra-
ditional sense of Boltzmann and Shannon [92], however, it will experience highly un-
predictable and fundamentally incompressible data. In both cases the data is boring
[63, 80] as it does not allow for further compression progress. Therefore we reject
the traditional notion of surprise. Neither the arbitrary nor the fully predictable is
truly novel or surprising—only data with still unknown algorithmic regularities are
[48, 49, 52, 50, 51, 97, 59, 63, 68, 73, 80, 79, 81]!

2.7 Attention / Curiosity / Active Experimentation
In absence of external reward, or when there is no known way to further increase the
expected external reward, our controller essentially tries to maximize true novelty or in-
terestingness, the first derivative of subjective beauty or compressibility, the steepness
of the learning curve. It will do its best to select action sequences expected to create
observations yielding maximal expected future compression progress, given the limita-
tions of both the compressor and the compressor improvement algorithm. It will learn
to focus its attention [87, 105] and its actively chosen experiments on things that are
currently still incompressible but are expected to become compressible / predictable
through additional learning. It will get bored by things that already are subjectively
compressible. It will also get bored by things that are currently incompressible but will
apparently remain so, given the experience so far, or where the costs of making them
compressible exceed those of making other things compressible, etc.
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2.8 Discoveries
An unusually large compression breakthrough deserves the name discovery. For exam-
ple, as mentioned in the introduction, the simple law of gravity can be described by a
very short piece of code, yet it allows for greatly compressing all previous observations
of falling apples and other objects.

2.9 Art &Music as By-Products of the Compression Progress Drive
Works of art and music may have important purposes beyond their social aspects [1]
despite of those who classify art as superfluous [41]. Good observer-dependent art
deepens the observer’s insights about this world or possible worlds, unveiling previ-
ously unknown regularities in compressible data, connecting previously disconnected
patterns in an initially surprising way that makes the combination of these patterns
subjectively more compressible (art as an eye-opener), and eventually becomes known
and less interesting. I postulate that the active creation and attentive perception of all
kinds of artwork are just by-products of our principle of interestingness and curiosity
yielding reward for compressor improvements.

Let us elaborate on this idea in more detail, following the discussion in [73, 80].
Artificial or human observers must perceive art sequentially, and typically also actively,
e.g., through a sequence of attention-shifting eye saccades or camera movements scan-
ning a sculpture, or internal shifts of attention that filter and emphasize sounds made by
a pianist, while surpressing background noise. Undoubtedly many derive pleasure and
rewards from perceiving works of art, such as certain paintings, or songs. But differ-
ent subjective observers with different sensory apparati and compressor improvement
algorithms will prefer different input sequences. Hence any objective theory of what
is good art must take the subjective observer as a parameter, to answer questions such
as: Which sequences of actions and resulting shifts of attention should he execute to
maximize his pleasure? According to our principle he should select one that maximizes
the quickly learnable compressibility that is new, relative to his current knowledge and
his (usually limited) way of incorporating / learning / compressing new data.

2.10 Music
For example, which song should some human observer select next? Not the one he
just heard ten times in a row. It became too predictable in the process. But also not
the new weird one with the completely unfamiliar rhythm and tonality. It seems too
irregular and contain too much arbitrariness and subjective noise. He should try a song
that is unfamiliar enough to contain somewhat unexpected harmonies or melodies or
beats etc., but familiar enough to allow for quickly recognizing the presence of a new
learnable regularity or compressibility in the sound stream. Sure, this song will get
boring over time, but not yet.

The observer dependence is illustrated by the fact that Schönberg’s twelve tone
music is less popular than certain pop music tunes, presumably because its algorithmic
structure is less obvious to many human observers as it is based on more complicated
harmonies. For example, frequency ratios of successive notes in twelve tone music
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often cannot be expressed as fractions of very small integers. Those with a prior ed-
ucation about the basic concepts and objectives and constraints of twelve tone music,
however, tend to appreciate Schönberg more than those without such an education.

All of this perfectly fits our principle: The current compressor of a given subjective
observer tries to compress his history of acoustic and other inputs where possible. The
action selector tries to find history-influencing actions that improve the compressor’s
performance on the history so far. The interesting musical and other subsequences
are those with previously unknown yet learnable types of regularities, because they
lead to compressor improvements. The boring patterns are those that seem arbitrary or
random, or whose structure seems too hard to understand.

2.11 Paintings, Sculpture, Dance, Film etc.
Similar statements not only hold for other dynamic art including film and dance (taking
into account the compressibility of controller actions), but also for painting and sculp-
ture, which cause dynamic pattern sequences due to attention-shifting actions [87, 105]
of the observer.

2.12 Blurred Boundary Between Active Creative Artists and Pas-
sive Perceivers of Art

Just as observers get intrinsic rewards for sequentially focusing attention on artwork
that exhibits new, previously unknown regularities, the creative artists get reward for
making it. For example, I found it extremely rewarding to discover (after hundreds of
frustrating failed attempts) the simple geometric regularities that permitted the con-
struction of the drawings in Figures 1 and 2. The distinction between artists and
observers is blurred though. Both execute action sequences to exhibit new types of
compressibility. The intrinsic motivations of both are fully compatible with our simple
principle.

Some artists, of course, crave external reward from other observers, in form of
praise, money, or both, in addition to the intrinsic compression improvement-based
reward that comes from creating a truly novel work of art. Our principle, however,
conceptually separates these two reward types.

2.13 How Artists and Scientists are Alike
From our perspective, scientists are very much like artists. They actively select experi-
ments in search for simple but new laws compressing the resulting observation history.
In particular, the creativity of painters, dancers, musicians, pure mathematicians, physi-
cists, can be viewed as a mere by-product of our curiosity framework based on the com-
pression progress drive. All of them try to create new but non-random, non-arbitrary
data with surprising, previously unknown regularities. For example, many physicists
invent experiments to create data governed by previously unknown laws allowing to
further compress the data. On the other hand, many artists combine well-known ob-
jects in a subjectively novel way such that the observer’s subjective description of the
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result is shorter than the sum of the lengths of the descriptions of the parts, due to some
previously unnoticed regularity shared by the parts.

The framework in the appendix is sufficiently formal to allow for implementation
of our principle on computers. The resulting artificial observers will vary in terms of
the computational power of their history compressors and learning algorithms. This
will influence what is good art / science to them, and what they find interesting.

2.14 Jokes and Other Sources of Fun
Just like other entertainers and artists, comedians also tend to combine well-known
concepts in a novel way such that the observer’s subjective description of the result
is shorter than the sum of the lengths of the descriptions of the parts, due to some
previously unnoticed regularity shared by the parts.

In many ways the laughs provoked by witty jokes are similar to those provoked by
the acquisition of new skills through both babies and adults. Past the age of 25 I learnt
to juggle three balls. It was not a sudden process but an incremental and rewarding one:
in the beginning I managed to juggle them for maybe one second before they fell down,
then two seconds, four seconds, etc., until I was able to do it right. Watching myself
in the mirror I noticed an idiotic grin across my face whenever I made progress. Later
my little daughter grinned just like that when she was able to stand on her own feet for
the first time. All of this makes perfect sense within our algorithmic framework: such
grins presumably are triggered by intrinsic reward for generating a data stream with
previously unknown regularities, such as the sensory input sequence corresponding to
observing oneself juggling, which may be quite different from the more familiar expe-
rience of observing somebody else juggling, and therefore truly novel and intrinsically
rewarding, until the adaptive predictor / compressor gets used to it.

2.15 Beyond Standard Unsupervised Learning
Traditional unsupervised learning is about finding regularities, by clustering the data,
or encoding it through a factorial code [2, 55] with statistically independent compo-
nents, or predicting parts of it from other parts. All of this may be viewed as special
cases of data compression. For example, where there are clusters, a data point can be
efficiently encoded by its cluster center plus relatively few bits for the deviation from
the center. Where there is data redundancy, a non-redundant factorial code [55] will
be more compact than the raw data. Where there is predictability, compression can be
achieved by assigning short codes to those parts of the observations that are predictable
from previous observations with high probability [22, 86]. Generally speaking we may
say that a major goal of traditional unsupervised learning is to improve the compression
of the observed data, by discovering a program that computes and thus explains the his-
tory (and hopefully does so quickly) but is clearly shorter than the shortest previously
known program of this kind.

Traditional unsupervised learning is not enough though—it just analyzes and en-
codes the data but does not choose it. We have to extend it along the dimension of
active action selection, since our unsupervised learner must also choose the actions
that influence the observed data, just like a scientist chooses his experiments, a baby its
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toys, an artist his colors, a dancer his moves, or any attentive system [87] its next sen-
sory input. That’s precisely what is achieved by our RL-based framework for curiosity
and creativity.

3 Previous Concrete Implementations of Systems Driven
by (Approximations of) Compression Progress

As mentioned earlier, predictors and compressors are closely related. Any type of par-
tial predictability of the incoming sensory data stream can be exploited to improve the
compressibility of the whole. Therefore the systems described in the first publications
on artificial curiosity [48, 49, 52] already can be viewed as examples of implementa-
tions of a compression progress drive.

3.1 Reward for Prediction Error
Early work [48, 49, 52] described a predictor based on a recurrent neural network
[104, 109, 46, 53, 38, 70] (in principle a rather powerful computational device, even
by today’s machine learning standards), predicting sensory inputs including reward
signals from the entire history of previous inputs and actions. The curiosity rewards
were proportional to the predictor errors, that is, it was implicitly and optimistically
assumed that the predictor will indeed improve whenever its error is high.

3.2 Reward for Compression Progress Through Predictor Improve-
ments

Follow-up work [50, 51] pointed out that this approach may be inappropriate, espe-
cially in probabilistic environments: one should not focus on the errors of the predic-
tor, but on its improvements. Otherwise the system will concentrate its search on those
parts of the environment where it can always get high prediction errors due to noise or
randomness, or due to computational limitations of the predictor, which will prevent
improvements of the subjective compressibility of the data. While the neural predic-
tor of the implementation described in the follow-up work was indeed computationally
less powerful than the previous one [52], there was a novelty, namely, an explicit (neu-
ral) adaptive model of the predictor’s improvements. This model essentially learned to
predict the predictor’s changes. For example, although noise was unpredictable and led
to wildly varying target signals for the predictor, in the long run these signals did not
change the adaptive predictor parameters much, and the predictor of predictor changes
was able to learn this. A standard RL algorithm [103, 27, 98] was fed with curiosity
reward signals proportional to the expected long-term predictor changes, and thus tried
to maximize information gain [11, 25, 32, 42, 10] within the given limitations. In fact,
we may say that the system tried to maximize an approximation of the (discounted)
sum of the expected first derivatives of the data’s subjective predictability, thus also
maximizing an approximation of the (discounted) sum of the expected first derivatives
of the data’s subjective compressibility.
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3.3 Reward for Relative Entropy between Agent’s Prior and Pos-
terior

Additional follow-up work yielded an information theory-oriented variant of the ap-
proach in non-deterministic worlds [97] (1995). The curiosity reward was again pro-
portional to the predictor’s surprise / information gain, this time measured as the Kullback-
Leibler distance [29] between the learning predictor’s subjective probability distribu-
tions before and after new observations - the relative entropy between its prior and
posterior.

In 2005 Baldi and Itti called this approach “Bayesian surprise” and demonstrated
experimentally that it explains certain patterns of human visual attention better than
certain previous approaches [26].

Note that the concepts of Huffman coding [22] and relative entropy between prior
and posterior immediately translate into a measure of learning progress reflecting the
number of saved bits—a measure of improved data compression.

3.4 Zero Sum Reward Games for Compression Progress Revealed
by Algorithmic Experiments

More recent work [59, 63] (1997) greatly increased the computational power of con-
troller and predictor by implementing them as co-evolving, symmetric, opposing mod-
ules consisting of self-modifying probabilistic programs [88, 89] written in a universal
programming language [13, 100]. The internal storage for temporary computational
results of the programs was viewed as part of the changing environment. Each mod-
ule could suggest experiments in the form of probabilistic algorithms to be executed,
and make confident predictions about their effects by betting on their outcomes, where
the ‘betting money’ essentially played the role of the intrinsic reward. The opposing
module could reject or accept the bet in a zero-sum game by making a contrary predic-
tion. In case of acceptance, the winner was determined by executing the algorithmic
experiment and checking its outcome; the money was eventually transferred from the
surprised loser to the confirmed winner. Both modules tried to maximize their money
using a rather general RL algorithm designed for complex stochastic policies [88, 89]
(alternative RL algorithms could be plugged in as well). Thus both modules were
motivated to discover truly novel algorithmic regularity / compressibility, where the
subjective baseline for novelty was given by what the opponent already knew about the
world’s repetitive regularities.

The method can be viewed as system identification through co-evolution of com-
putable models and tests. In 2005 a similar co-evolutionary approach based on less
general models and tests was implemented by Bongard and Lipson [7].

3.5 Improving Real Reward Intake
Our references above demonstrated experimentally that the presence of intrinsic reward
or curiosity reward actually can speed up the collection of external reward.
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3.6 Other Implementations
Recently several researchers also implemented variants or approximations of the cu-
riosity framework. Singh and Barto and coworkers focused on implementations within
the option framework of RL [3, 94], directly using prediction errors as curiosity re-
wards [48, 49, 52] —they actually were the ones who coined the expressions intrinsic
reward and intrinsically motivated RL. Additional implementations were presented at
the 2005 AAAI Spring Symposium on Developmental Robotics [5]; compare the Con-
nection Science Special Issue [6].

4 Visual Examples of Subjective Beauty and its First
Derivative Interestingness

As mentioned above (Section 3.3), our theory was able to explain certain shifts of
human visual attention [26]. But we can also apply it to the complementary problem of
constructing images that contain quickly learnable regularities, arguing again that there
is no fundamental difference between the motivation of creative artists and passive
observers of visual art (Section 2.12). Both create action sequences yielding interesting
inputs, where interestingness is a measure of learning progress, for example, based on
the relative entropy between prior and posterior (Section 3.3), or the saved number of
bits needed to encode the data (Section 1), or something similar (Section 3).

Here we provide examples of subjective beauty tailored to human observers, and
illustrate the learning process leading from less to more subjective beauty. Due to
the nature of the present written medium, we have to use visual examples instead of
acoustic or tactile ones. Our examples are intended to support the hypothesis that unsu-
pervised attention and the creativity of artists, dancers, musicians, pure mathematicians
is just a by-product of our drive for compression progress.

4.1 A Pretty Simple Face with a Short Algorithmic Description
Figure 1 depicts the construction plan of a female face considered ‘beautiful’ by some
human observers. It also shows that the essential features of this face follow a very
simple geometrical pattern [60] to be specified by very few bits of information. That
is, the data stream generated by observing the image (say, through a sequence of eye
saccades) is more compressible than it would be in the absence of such regularities.
Although few people are able to immediately see how the drawing was made in ab-
sence of its superimposed grid-based explanation, most do notice that the facial features
somehow fit together and exhibit some sort of regularity. According to our postulate,
the observer’s reward is generated by the conscious or subconscious discovery of this
compressibility. The face remains interesting until its observation does not reveal any
additional previously unknown regularities. Then it becomes boring even in the eyes of
those who think it is beautiful—as has been pointed out repeatedly above, beauty and
interestingness are two different things.
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4.2 Another Drawing That Can Be Encoded By Very Few Bits
Figure 2 provides another example: a butterfly and a vase with a flower. It can be
specified by very few bits of information as it can be constructed through a very simple
procedure or algorithm based on fractal circle patterns [58]—see Figure 3. People who
understand this algorithm tend to appreciate the drawing more than those who do not.
They realize how simple it is. This is not an immediate, all-or-nothing, binary process
though. Since the typical human visual system has a lot of experience with circles, most
people quickly notice that the curves somehow fit together in a regular way. But few
are able to immediately state the precise geometric principles underlying the drawing
[73]. This pattern, however, is learnable from Figure 3. The conscious or subconscious
discovery process leading from a longer to a shorter description of the data, or from
less to more compression, or from less to more subjectively perceived beauty, yields
reward depending on the first derivative of subjective beauty, that is, the steepness of
the learning curve.

5 Conclusion & Outlook
We pointed out that a surprisingly simple algorithmic principle based on the notions
of data compression and data compression progress informally explains fundamental
aspects of attention, novelty, surprise, interestingness, curiosity, creativity, subjective
beauty, jokes, and science & art in general. The crucial ingredients of the corresponding
formal framework are (1) a continually improving predictor or compressor of the con-
tinually growing data history, (2) a computable measure of the compressor’s progress
(to calculate intrinsic rewards), (3) a reward optimizer or reinforcement learner trans-
lating rewards into action sequences expected to maximize future reward. To improve
our previous implementations of these ingredients (Section 3), we will (1) study bet-
ter adaptive compressors, in particular, recent, novel RNNs [85] and other general but
practically feasible methods for making predictions [67]; (2) investigate under which
conditions learning progress measures can be computed both accurately and efficiently,
without frequent expensive compressor performance evaluations on the entire history
so far; (3) study the applicability of recent improved RL techniques in the fields of pol-
icy gradients [99, 108, 107, 47, 91, 106], artificial evolution [36, 16, 17, 15, 18, 19, 14],
and others [62, 67].

Apart from building improved artificial curious agents, we can test the predictions
of our theory in psychological investigations of human behavior, extending previous
studies in this vein [26] and going beyond anecdotal evidence mentioned above. It
should be easy to devise controlled experiments where test subjects must anticipate
initially unknown but causally connected event sequences exhibiting more or less com-
plex, learnable patterns or regularities. The subjects will be asked to quantify their in-
trinsic rewards in response to their improved predictions. Is the reward indeed strongest
when the predictions are improving most rapidly? Does the intrinsic reward indeed
vanish as the predictions become perfect or do not improve any more?

Finally, how to test our predictions through studies in neuroscience? Currently
we hardly understand the human neural machinery. But it is well-known that certain
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neurons seem to predict others, and brain scans show how certain brain areas light
up in response to reward. Therefore the psychological experiments suggested above
should be accompanied by neurophysiological studies to localize the origins of intrinsic
rewards, possibly linking them to improvements of neural predictors.

Success in this endeavor would provide additional motivation to implement our
principle on robots.

A Appendix
This appendix is based in part on references [73, 80].

The world can be explained to a degree by compressing it. Discoveries correspond
to large data compression improvements (found by the given, application-dependent
compressor improvement algorithm). How to build an adaptive agent that not only
tries to achieve externally given rewards but also to discover, in an unsupervised and
experiment-based fashion, explainable and compressible data? (The explanations gained
through explorative behavior may eventually help to solve teacher-given tasks.)

Let us formally consider a learning agent whose single life consists of discrete
cycles or time steps t = 1, 2, . . . , T . Its complete lifetime T may or may not be
known in advance. In what follows, the value of any time-varying variable Q at time t
(1 ≤ t ≤ T ) will be denoted by Q(t), the ordered sequence of values Q(1), . . . , Q(t)
by Q(≤ t), and the (possibly empty) sequence Q(1), . . . , Q(t − 1) by Q(< t). At any
given t the agent receives a real-valued input x(t) from the environment and executes
a real-valued action y(t) which may affect future inputs. At times t < T its goal is to
maximize future success or utility

u(t) = Eµ

[

T
∑

τ=t+1

r(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

, (2)

where r(t) is an additional real-valued reward input at time t, h(t) the ordered triple
[x(t), y(t), r(t)] (hence h(≤ t) is the known history up to t), and Eµ(· | ·) denotes
the conditional expectation operator with respect to some possibly unknown distribu-
tion µ from a set M of possible distributions. Here M reflects whatever is known
about the possibly probabilistic reactions of the environment. For example, M may
contain all computable distributions [95, 96, 31, 23]. There is just one life, no need for
predefined repeatable trials, no restriction to Markovian interfaces between sensors and
environment, and the utility function implicitly takes into account the expected remain-
ing lifespan Eµ(T | h(≤ t)) and thus the possibility to extend it through appropriate
actions [66, 71, 74, 72].

Recent work has led to the first learning machines that are universal and optimal in
various very general senses [23, 71, 74]. As mentioned in the introduction, such ma-
chines can in principle find out by themselves whether curiosity and world model con-
struction are useful or useless in a given environment, and learn to behave accordingly.
The present appendix, however, will assume a priori that compression / explanation of
the history is good and should be done; here we shall not worry about the possibility
that curiosity can be harmful and “kill the cat.” Towards this end, in the spirit of our
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previous work since 1990 [48, 49, 52, 50, 51, 97, 59, 63, 68, 73, 80, 79, 81] we split the
reward signal r(t) into two scalar real-valued components: r(t) = g(rext(t), rint(t)),
where g maps pairs of real values to real values, e.g., g(a, b) = a + b. Here rext(t) de-
notes traditional external reward provided by the environment, such as negative reward
in response to bumping against a wall, or positive reward in response to reaching some
teacher-given goal state. But for the purposes of this paper we are especially interested
in rint(t), the internal or intrinsic or curiosity reward, which is provided whenever the
data compressor / internal world model of the agent improves in some sense. Our initial
focus will be on the case rext(t) = 0 for all valid t. The basic principle is essentially
the one we published before in various variants [48, 49, 52, 50, 51, 97, 59, 63, 68, 73,
80, 79]:

Principle 1 Generate curiosity reward for the controller in response to improvements
of the predictor or history compressor.

So we conceptually separate the goal (explaining / compressing the history) from the
means of achieving the goal. Once the goal is formally specified in terms of an algo-
rithm for computing curiosity rewards, let the controller’s reinforcement learning (RL)
mechanism figure out how to translate such rewards into action sequences that allow
the given compressor improvement algorithm to find and exploit previously unknown
types of compressibility.

A.1 Predictors vs Compressors
Much of our previous work on artificial curiosity was prediction-oriented, e. g., [48,
49, 52, 50, 51, 97, 59, 63, 68]. Prediction and compression are closely related though.
A predictor that correctly predicts many x(τ), given history h(< τ), for 1 ≤ τ ≤ t, can
be used to encode h(≤ t) compactly: Given the predictor, only the wrongly predicted
x(τ) plus information about the corresponding time steps τ are necessary to reconstruct
history h(≤ t), e.g., [54]. Similarly, a predictor that learns a probability distribution of
the possible next events, given previous events, can be used to efficiently encode obser-
vations with high (respectively low) predicted probability by few (respectively many)
bits [22, 86], thus achieving a compressed history representation. Generally speaking,
we may view the predictor as the essential part of a program p that re-computes h(≤ t).
If this program is short in comparison to the rad data h(≤ t), then h(≤ t) is regular or
non-random [95, 28, 31, 64], presumably reflecting essential environmental laws. Then
p may also be highly useful for predicting future, yet unseen x(τ) for τ > t.

It should be mentioned, however, that the compressor-oriented approach to predic-
tion based on the principle of Minimum Description Length (MDL) [28, 101, 102, 45,
31] does not necessarily converge to the correct predictions as quickly as Solomonoff’s
universal inductive inference [95, 96, 31], although both approaches converge in the
limit under general conditions [43].

A.2 Which Predictor or History Compressor?
The complexity of evaluating some compressor p on history h(≤ t) depends on both p
and its performance measure C. Let us first focus on the former. Given t, one of the
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simplest p will just use a linear mapping to predict x(t + 1) from x(t) and y(t + 1).
More complex p such as adaptive recurrent neural networks (RNN) [104, 109, 46,
53, 38, 20, 84, 69, 70] will use a nonlinear mapping and possibly the entire history
h(≤ t) as a basis for the predictions. In fact, the first work on artificial curiosity [52]
focused on online learning RNN of this type. A theoretically optimal predictor would
be Solomonoff’s above-mentioned universal induction scheme [95, 96, 31].

A.3 Compressor Performance Measures
At any time t (1 ≤ t < T ), given some compressor program p able to compress
history h(≤ t), let C(p, h(≤ t)) denote p’s compression performance on h(≤ t). An
appropriate performance measure would be

Cl(p, h(≤ t)) = l(p), (3)

where l(p) denotes the length of p, measured in number of bits: the shorter p, the
more algorithmic regularity and compressibility and predictability and lawfulness in
the observations so far. The ultimate limit for Cl(p, h(≤ t)) would be K∗(h(≤ t)),
a variant of the Kolmogorov complexity of h(≤ t), namely, the length of the shortest
program (for the given hardware) that computes an output starting with h(≤ t) [95, 28,
31, 64].

A.4 Compressor PerformanceMeasures Taking Time Into Account
Cl(p, h(≤ t)) does not take into account the time τ(p, h(≤ t)) spent by p on computing
h(≤ t). An alternative performance measure inspired by concepts of optimal universal
search [30, 67] is

Clτ (p, h(≤ t)) = l(p) + log τ(p, h(≤ t)). (4)

Here compression by one bit is worth as much as runtime reduction by a factor of 1
2

.
From an asymptotic optimality-oriented point of view this is one of the best ways of
trading off storage and computation time [30, 67].

A.5 Measures of Compressor Progress / Learning Progress
The previous sections only discussed measures of compressor performance, but not of
performance improvement, which is the essential issue in our curiosity-oriented con-
text. To repeat the point made above: The important thing are the improvements of
the compressor, not its compression performance per se. Our curiosity reward in re-
sponse to the compressor’s progress (due to some application-dependent compressor
improvement algorithm) between times t and t + 1 should be

rint(t + 1) = f [C(p(t + 1), h(≤ t + 1)), C(p(t), h(≤ t + 1))], (5)

where f maps pairs of real values to real values. Various alternative progress measures
are possible; most obvious is f(a, b) = a − b. This corresponds to a discrete time
version of maximizing the first derivative of subjective data compressibility.
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Note that both the old and the new compressor have to be tested on the same
data, namely, the history so far.

A.6 Asynchronous Framework for Creating Curiosity Reward
Let p(t) denote the agent’s current compressor program at time t, s(t) its current con-
troller, and do:

Controller: At any time t (1 ≤ t < T ) do:

1. Let s(t) use (parts of) history h(≤ t) to select and execute y(t + 1).

2. Observe x(t + 1).

3. Check if there is non-zero curiosity reward rint(t + 1) provided by the separate,
asynchronously running compressor improvement algorithm (see below). If not,
set rint(t + 1) = 0.

4. Let the controller’s reinforcement learning (RL) algorithm use h(≤ t + 1) in-
cluding rint(t + 1) (and possibly also the latest available compressed version of
the observed data—see below) to obtain a new controller s(t + 1), in line with
objective (2).

Compressor: Set pnew equal to the initial data compressor. Starting at time 1, repeat
forever until interrupted by death at time T :

1. Set pold = pnew; get current time step t and set hold = h(≤ t).

2. Evaluate pold on hold, to obtain C(pold, hold) (Section A.3). This may take many
time steps.

3. Let some (application-dependent) compressor improvement algorithm (such as
a learning algorithm for an adaptive neural network predictor) use hold to ob-
tain a hopefully better compressor pnew (such as a neural net with the same size
but improved prediction capability and therefore improved compression perfor-
mance [86]). Although this may take many time steps (and could be partially
performed during “sleep”), pnew may not be optimal, due to limitations of the
learning algorithm, e.g., local maxima.

4. Evaluate pnew on hold, to obtain C(pnew , hold). This may take many time steps.

5. Get current time step τ and generate curiosity reward

rint(τ) = f [C(pold, hold), C(pnew, hold)], (6)

e.g., f(a, b) = a − b; see Section A.5.

Obviously this asynchronuous scheme may cause long temporal delays between con-
troller actions and corresponding curiosity rewards. This may impose a heavy burden
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on the controller’s RL algorithm whose task is to assign credit to past actions (to in-
form the controller about beginnings of compressor evaluation processes etc., we may
augment its input by unique representations of such events). Nevertheless, there are
RL algorithms for this purpose which are theoretically optimal in various senses, to be
discussed next.

A.7 Optimal Curiosity & Creativity & Focus of Attention
Our chosen compressor class typically will have certain computational limitations. In
the absence of any external rewards, we may define optimal pure curiosity behavior
relative to these limitations: At time t this behavior would select the action that maxi-
mizes

u(t) = Eµ

[

T
∑

τ=t+1

rint(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

. (7)

Since the true, world-governing probability distribution µ is unknown, the resulting
task of the controller’s RL algorithm may be a formidable one. As the system is re-
visiting previously incompressible parts of the environment, some of those will tend to
become more compressible, that is, the corresponding curiosity rewards will decrease
over time. A good RL algorithm must somehow detect and then predict this decrease,
and act accordingly. Traditional RL algorithms [27], however, do not provide any the-
oretical guarantee of optimality for such situations. (This is not to say though that
sub-optimal RL methods may not lead to success in certain applications; experimental
studies might lead to interesting insights.)

Let us first make the natural assumption that the compressor is not super-complex
such as Kolmogorov’s, that is, its output and rint(t) are computable for all t. Is there
a best possible RL algorithm that comes as close as any other to maximizing objective
(7)? Indeed, there is. Its drawback, however, is that it is not computable in finite time.
Nevertheless, it serves as a reference point for defining what is achievable at best.

A.8 Optimal But Incomputable Action Selector
There is an optimal way of selecting actions which makes use of Solomonoff’s theo-
retically optimal universal predictors and their Bayesian learning algorithms [95, 96,
31, 23, 24]. The latter only assume that the reactions of the environment are sampled
from an unknown probability distribution µ contained in a set M of all enumerable
distributions—compare text after equation (2). More precisely, given an observation
sequence q(≤ t), we only assume there exists a computer program that can compute
the probability of the next possible q(t + 1), given q(≤ t). In general we do not know
this program, hence we predict using a mixture distribution

ξ(q(t + 1) | q(≤ t)) =
∑

i

wiµi(q(t + 1) | q(≤ t)), (8)

a weighted sum of all distributions µi ∈ M, i = 1, 2, . . ., where the sum of the con-
stant weights satisfies

∑

i wi ≤ 1. This is indeed the best one can possibly do, in a
very general sense [96, 23]. The drawback of the scheme is its incomputability, since
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M contains infinitely many distributions. We may increase the theoretical power of
the scheme by augmenting M by certain non-enumerable but limit-computable distri-
butions [64], or restrict it such that it becomes computable, e.g., by assuming the world
is computed by some unknown but deterministic computer program sampled from the
Speed Prior [65] which assigns low probability to environments that are hard to com-
pute by any method.

Once we have such an optimal predictor, we can extend it by formally including
the effects of executed actions to define an optimal action selector maximizing future
expected reward. At any time t, Hutter’s theoretically optimal (yet uncomputable) RL
algorithm AIXI [23] uses an extended version of Solomonoff’s prediction scheme to
select those action sequences that promise maximal future reward up to some horizon
T , given the current data h(≤ t). That is, in cycle t + 1, AIXI selects as its next action
the first action of an action sequence maximizing ξ-predicted reward up to the given
horizon, appropriately generalizing eq. (8). AIXI uses observations optimally [23]:
the Bayes-optimal policy pξ based on the mixture ξ is self-optimizing in the sense that
its average utility value converges asymptotically for all µ ∈ M to the optimal value
achieved by the Bayes-optimal policy pµ which knows µ in advance. The necessary
and sufficient condition is that M admits self-optimizing policies. The policy pξ is
also Pareto-optimal in the sense that there is no other policy yielding higher or equal
value in all environments ν ∈ M and a strictly higher value in at least one [23].

A.9 A Computable Selector of Provably Optimal Actions
AIXI above needs unlimited computation time. Its computable variant AIXI(t,l) [23]
has asymptotically optimal runtime but may suffer from a huge constant slowdown. To
take the consumed computation time into account in a general, optimal way, we may
use the recent Gödel machines [66, 71, 74, 72] instead. They represent the first class of
mathematically rigorous, fully self-referential, self-improving, general, optimally effi-
cient problem solvers. They are also applicable to the problem embodied by objective
(7).

The initial software S of such a Gödel machine contains an initial problem solver,
e.g., some typically sub-optimal method [27]. It also contains an asymptotically opti-
mal initial proof searcher based on an online variant of Levin’s Universal Search [30],
which is used to run and test proof techniques. Proof techniques are programs written
in a universal language implemented on the Gödel machine within S. They are in prin-
ciple able to compute proofs concerning the system’s own future performance, based
on an axiomatic system A encoded in S. A describes the formal utility function, in our
case eq. (7), the hardware properties, axioms of arithmetic and probability theory and
data manipulation etc, and S itself, which is possible without introducing circularity
[66].

Inspired by Kurt Gödel’s celebrated self-referential formulas (1931), the Gödel ma-
chine rewrites any part of its own code (including the proof searcher) through a self-
generated executable program as soon as itsUniversal Search variant has found a proof
that the rewrite is useful according to objective (7). According to the Global Optimal-
ity Theorem [66, 71, 74, 72], such a self-rewrite is globally optimal—no local maxima
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possible!—since the self-referential code first had to prove that it is not useful to con-
tinue the search for alternative self-rewrites.

If there is no provably useful optimal way of rewritingS at all, then humans will not
find one either. But if there is one, then S itself can find and exploit it. Unlike the previ-
ous non-self-referential methods based on hardwired proof searchers [23], Gödel ma-
chines not only boast an optimal order of complexity but can optimally reduce (through
self-changes) any slowdowns hidden by the O()-notation, provided the utility of such
speed-ups is provable. Compare [75, 78, 77].

A.10 Non-Universal But Still General and Practical RLAlgorithms
Recently there has been substantial progress in RL algorithms that are not quite as uni-
versal as those above, but nevertheless capable of learning very general, program-like
behavior. In particular, evolutionary methods [44, 90, 21] can be used for training Re-
current Neural Networks RNNs, which are general computers. Many approaches to
evolving RNNs have been proposed [34, 111, 110, 37, 33, 93, 35, 15]. One particularly
effective family of methods uses cooperative coevolution to search the space of net-
work components (neurons or individual synapses) instead of complete networks. The
components are coevolved by combining them into networks, and selecting those for re-
production that participated in the best performing networks [36, 16, 17, 15, 18, 19, 14].
It will be of interest to evaluate variants of such control learning algorithms within the
curiosity reward framework.
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Figure 1: Previously published construction plan [60, 80] of a female face (1998).
Some human observers report they feel this face is ‘beautiful.’ Although the drawing
has lots of noisy details (texture etc) without an obvious short description, positions
and shapes of the basic facial features are compactly encodable through a very sim-
ple geometrical scheme, simpler and much more precise than ancient facial proportion
studies by Leonardo da Vinci and Albrecht Dürer. Hence the image contains a highly
compressible algorithmic regularity or pattern describable by few bits of information.
An observer can perceive it through a sequence of attentive eye movements or sac-
cades, and consciously or subconsciously discover the compressibility of the incoming
data stream. How was the picture made? First the sides of a square were partitioned
into 24 equal intervals. Certain interval boundaries were connected to obtain three ro-
tated, superimposed grids based on lines with slopes ±1 or ±1/23 or ±23/1. Higher-
resolution details of the grids were obtained by iteratively selecting two previously
generated, neighboring, parallel lines and inserting a new one equidistant to both. Fi-
nally the grids were vertically compressed by a factor of 1 − 2−4. The resulting lines
and their intersections define essential boundaries and shapes of eyebrows, eyes, lid
shades, mouth, nose, and facial frame in a simple way that is obvious from the con-
struction plan. Although this plan is simple in hindsight, it was hard to find: hundreds
of my previous attempts at discovering such precise matches between simple geome-
tries and pretty faces failed.
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Figure 2: Image of a butterfly and a vase with a flower, reprinted from Leonardo
[58, 73]. An explanation of how the image was constructed and why it has a very short
description is given in Figure 3.
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Figure 3: Explanation of how Figure 2 was constructed through a very simple algo-
rithm exploiting fractal circles [58]. The frame is a circle; its leftmost point is the center
of another circle of the same size. Wherever two circles of equal size touch or intersect
are centers of two more circles with equal and half size, respectively. Each line of the
drawing is a segment of some circle, its endpoints are where circles touch or intersect.
There are few big circles and many small ones. In general, the smaller a circle, the
more bits are needed to specify it. The drawing is simple (compressible) as it is based
on few, rather large circles. Many human observers report that they derive a certain
amount of pleasure from discovering this simplicity. The observer’s learning process
causes a reduction of the subjective complexity of the data, yielding a temporarily high
derivative of subjective beauty: a temporarily steep learning curve. (Again I needed a
long time to discover a satisfactory and rewarding way of using fractal circles to create
a reasonable drawing.)
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