Next: About this document ...
Up: The Speed Prior: A
Previous: Conclusion
-
- 1
-
C. H. Bennett and D. P. DiVicenzo.
Quantum information and computation.
Nature, 404(6775):256-259, 2000.
- 2
-
H. J. Bremermann.
Minimum energy requirements of information transfer and computing.
International Journal of Theoretical Physics, 21:203-217,
1982.
- 3
-
B. Carter.
Large number coincidences and the anthropic principle in cosmology.
In M. S. Longair, editor, Proceedings of the IAU Symposium 63,
pages 291-298. Reidel, Dordrecht, 1974.
- 4
-
G.J. Chaitin.
On the length of programs for computing finite binary sequences:
statistical considerations.
Journal of the ACM, 16:145-159, 1969.
- 5
-
H. Everett III.
`Relative State' formulation of quantum mechanics.
Reviews of Modern Physics, 29:454-462, 1957.
- 6
-
P. Gács.
On the relation between descriptional complexity and algorithmic
probability.
Theoretical Computer Science, 22:71-93, 1983.
- 7
-
D. F. Galouye.
Simulacron 3.
Bantam, 1964.
- 8
-
M. Hutter.
Convergence and error bounds of universal prediction for general
alphabet.
Proceedings of the 12th European Conference on Machine Learning
(ECML-2001), (TR IDSIA-07-01, cs.AI/0103015), 2001.
- 9
-
M. Hutter.
General loss bounds for universal sequence prediction.
In C. E. Brodley and A. P. Danyluk, editors, Proceedings of the
International Conference on Machine Learning (ICML-2001), pages
210-217. Morgan Kaufmann, 2001.
TR IDSIA-03-01, IDSIA, Switzerland, Jan 2001, cs.AI/0101019.
- 10
-
M. Hutter.
Towards a universal theory of artificial intelligence based on
algorithmic probability and sequential decisions.
Proceedings of the 12
European Conference on Machine
Learning (ECML-2001), (TR IDSIA-14-00, cs.AI/0012011), 2001.
- 11
-
M. Hutter.
The fastest and shortest algorithm for all well-defined problems.
International Journal of Foundations of Computer Science, (TR
IDSIA-16-00, cs.CC/0102018), 2002.
In press.
- 12
-
A.N. Kolmogorov.
Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1:1-11, 1965.
- 13
-
L. G. Kraft.
A device for quantizing, grouping, and coding amplitude modulated
pulses. M.Sc. Thesis, Dept. of Electrical Engineering, MIT, Cambridge,
Mass., 1949.
- 14
-
L. A. Levin.
Universal sequential search problems.
Problems of Information Transmission, 9(3):265-266, 1973.
- 15
-
M. Li and P. M. B. Vitányi.
An Introduction to Kolmogorov Complexity and its Applications
(2nd edition).
Springer, 1997.
- 16
-
S. Lloyd.
Ultimate physical limits to computation.
Nature, 406:1047-1054, 2000.
- 17
-
J. Rissanen.
Stochastic complexity and modeling.
The Annals of Statistics, 14(3):1080-1100, 1986.
- 18
-
C. Schmidhuber.
Strings from logic.
Technical Report CERN-TH/2000-316, CERN, Theory Division, 2000.
http://xxx.lanl.gov/abs/hep-th/0011065.
- 19
-
J. Schmidhuber.
Discovering solutions with low Kolmogorov complexity and high
generalization capability.
In A. Prieditis and S. Russell, editors, Machine Learning:
Proceedings of the Twelfth International Conference, pages 488-496. Morgan
Kaufmann Publishers, San Francisco, CA, 1995.
- 20
-
J. Schmidhuber.
A computer scientist's view of life, the universe, and everything.
In C. Freksa, M. Jantzen, and R. Valk, editors, Foundations of
Computer Science: Potential - Theory - Cognition, volume 1337, pages
201-208. Lecture Notes in Computer Science, Springer, Berlin, 1997.
- 21
-
J. Schmidhuber.
Discovering neural nets with low Kolmogorov complexity and high
generalization capability.
Neural Networks, 10(5):857-873, 1997.
- 22
-
J. Schmidhuber.
Algorithmic theories of everything.
Technical Report IDSIA-20-00, quant-ph/0011122, IDSIA, Manno
(Lugano), Switzerland, 2000.
- 23
-
J. Schmidhuber.
Hierarchies of generalized Kolmogorov complexities and
nonenumerable universal measures computable in the limit.
International Journal of Foundations of Computer Science, 2002.
In press.
- 24
-
R.J. Solomonoff.
A formal theory of inductive inference. Part I.
Information and Control, 7:1-22, 1964.
- 25
-
R.J. Solomonoff.
Complexity-based induction systems.
IEEE Transactions on Information Theory, IT-24(5):422-432,
1978.
- 26
-
G. 't Hooft.
Quantum gravity as a dissipative deterministic system.
Technical Report SPIN-1999/07/gr-gc/9903084,
http://xxx.lanl.gov/abs/gr-qc/9903084, Institute for Theoretical Physics,
Univ. of Utrecht, and Spinoza Institute, Netherlands, 1999.
Also published in Classical and Quantum Gravity 16, 3263.
- 27
-
C. S. Wallace and D. M. Boulton.
An information theoretic measure for classification.
Computer Journal, 11(2):185-194, 1968.
- 28
-
K. Zuse.
Rechnender Raum.
Friedrich Vieweg & Sohn, Braunschweig, 1969.
- 29
-
A. K. Zvonkin and L. A. Levin.
The complexity of finite objects and the algorithmic concepts of
information and randomness.
Russian Math. Surveys, 25(6):83-124, 1970.
Juergen Schmidhuber
2003-02-25
Back to Speed Prior page