
A Scalable Neural Network Architecture for Board Games

Tom Schaul, Jürgen Schmidhuber

Abstract—This paper proposes to use Multi-dimensional
Recurrent Neural Networks (MDRNNs) as a way to overcome
one of the key problems in flexible-size board games: scalability.
We show why this architecture is well suited to the domain
and how it can be successfully trained to play those games,
even without any domain-specific knowledge. We find that
performance on small boards correlates well with performance
on large ones, and that this property holds for networks trained
by either evolution or coevolution.

I. INTRODUCTION

Games are a particularly interesting domain for studies of
machine learning techniques. They form a class of clean and
elegant environments, usually described by a small set of
formal rules, have very clear success criteria, and yet they
often involve highly complex strategies.
Board games generally exhibit these features to a high

degree, and so it’s not surprising that the field of machine
learning has devoted major efforts to their study, with the
result that in almost all popular board games, most notably
chess, computer programs can beat all human players.
Probably the most interesting exception is the ancient

game of Go, which can be solved for small boards [1] but is
very challenging for larger ones [2], [3]. Go has a very high
branching factor because at any moment there are about as
many legal moves as there are free positions on the board
(on average 200). This makes using traditional search-based
methods prohibitively expensive.
It would be highly desirable if one could train a player on

small boards, and then transfer that knowledge to bootstrap
learning on larger boards (where training is much more
expensive). Fortunately, the game’s high degree of symmetry
makes using patterns a viable strategy (which is heavily used
by human expert players). This has led researchers to use
tools that are good at pattern recognition, most of which
are connectionist in nature, on Go and similar games – with
varying degrees of success. So far, none of these methods
has been found to exhibit a large degree of scalability, in the
sense that it is directly usable on different board sizes and
leads to similar behavior across board sizes.
In this paper we propose a neural network architecture

that is scalable in this sense. Additionally, in order to keep
our approach general, we keep it free from any domain-
specific knowledge. We investigate the architecture’s proper-
ties, determine the playing performance that can be reached
by using standard evolutionary methods, and finally verify
that its performance scales well to larger board sizes.

Both authors are with IDSIA, Galleria 2, 6927 Manno-Lugano, Switzer-
land, {tom, juergen}@idsia.ch. Jüergen Schmidhuber is also with
TU-Munich, Boltzmannstr. 3, 85748 Garching, München, Germany

II. BACKGROUND

A. Flexible-size board games
There is a large variety of board games, many of which

either have flexible board dimensions, or have rules that can
be trivially adjusted to make them flexible.
The most prominent of them is the game of Go, research

on which has been considering board sizes between the min-
imum of 5x5 and the regular 19x19. The rules are simple[4],
but the strategies deriving from them are highly complex.
Players alternately place stones onto any of the intersections
of the board, with the goal of conquering maximal territory.
A player can capture a single stone or a connected group
of his opponent’s stones by completely surrounding them
with his own stones. A move is not legal if it leads to a
previously seen board position (to avoid cycling). The game
is over when both players pass.
Go exhibits a number of interesting symmetries. Apart

from the four straightforward axes of symmetry, it also has
an approximate translational invariance, which is clearer the
further away from the border one is.
Among the practical difficulties with conducting experi-

ments on Go are the need to distinguish dead groups from
alive and seki ones, keep track of the history of all board
configurations, and the difficulty of handling pass moves.
Many other machine learning approaches to Go simplify the
rules to prevent some or all of those problems.
A number of variations of Go, of varying degrees of simi-

larity, are played on the same board and share the symmetry
properties of Go. The most common ones are Irensei, Pente,
Renju, Tanbo, Connect, Atari-Go and Gomoku. In this paper
we will conduct experiments on the latter two.
Atari-Go, also known as Ponnuki-Go or ‘Capture Game’,

is a simplified version of Go that is widely used for teaching
the game of Go to new players, because it introduces many
of the key concepts without the full complexity [5]. The
rules are the same than for Go, except that passing is not
allowed, and the first player to capture a predetermined
number (usually one) of his opponent’s stones wins (see
figure 9 for an example).
Compared to Go, this variant makes playing independent

of history and makes it straightforward to determine the
winner, which in turn makes automated playing easier and
faster. It retains the concept of territory: as in the end no
player may pass, each one has to fill his own territory and
therefore the player with most territory wins. Other strategies
of Go, such as building eyes, or recognizing life-and-death
situations may be less important in Atari-Go, but are still
present.
We believe that all this is a good justification for using



Atari-Go as a test problem instead of Go, especially in early
stages, before high-level performance is reached on Go.
Gomoku, also known as ‘Five-in-a-row’, is played on the

same board as Go, but the rules are even simpler. Players
alternate putting stones onto any of the intersections on the
board. The first player to have 5 connected stones in a row,
column or diagonal, wins.
While trying to block off the opponent’s lines, a player

tries to keep its own lines unblocked, and potentially do
multiple attacks at the same time, not all of which can
be countered. These strategies, again, are heavily pattern-
based [6].

B. Scalable neural architectures
A large variety of neural network architectures have been

proposed for solving board games. Here, we will briefly
mention some of those that exhibit a certain degree of
scalability with respect to board size.
One approach is to use a limited focus size on the board,

use a form of preprocessing on it, and then reuse it in an
identical fashion across the rest of the board. The outputs
of that stage are then fed into some other architecture that
combines them (e.g. [7]).
A variant of this idea are convolutional networks [8],

which repeat this step on multiple levels, thus capturing more
than just local patterns. Still, they are limited to (manually)
fixed focus sizes at each level.
‘Roving-eye’-based architectures [9] contain one compo-

nent with a fixed focus size that can be aimed at any part of
the board. This is then combined with an active component
that can rove over the board until it feels ready to take a
decision.
Other architectures have been proposed [10], [6] which

make use of weight-sharing to capture domain-specific sym-
metries, but these are limited to a particular game, and also
restricted in what kind of strategies they can learn.
Simultaneous Recurrent Networks [11] are structured like

cellular automata. They successfully incorporate the whole
context and make use of symmetries, but are not very
efficient.
Graves [12] has developed a more general architec-

ture, called Multidimensional Recurrent Neural Networks
(MDRNNs), which is a special case of the DAG-RNNs
proposed by Baldi [13]. While successfully used for vision
tasks [14], they have been largely neglected in the domain
of games, with the notable exception of Wu et al. [15], who
applied them to supervised learning of expert moves for Go.
MDRNNs are efficient, and we believe that they have

precisely the qualities of scalability that we are looking for,
while remaining general enough to be used on many different
games.

III. PROPOSED ARCHITECTURE

In this section we will provide a brief description of
MDRNNs in general and give the details of the specific form
used here.

Standard recurrent neural networks (RNNs) are inherently
one-dimensional, they are effective for handling sequences
with a single (time-) dimension. MDRNNs are a generaliza-
tion of RNNs that overcome this limitation and handle multi-
dimensional inputs. In our case the single time dimension is
replaced by the two space dimensions of the board [12].
Intuitively, imagine a unit u↘ that swipes diagonally over

the the board from top-left to bottom-right. At each board
position (i, j), it receives as an input the information from
that board position ini,j plus its own output from when it
was one step to the left u↘(i−1,j), and from when it was one
step up u↘(i,j−1). It processes those inputs and produces an
output u↘(i,j). See also figure 1 for an illustration.

h(i,j)

h(i-1, j)

h(i, j-1)

in(i,j)

out(i,j)

Fig. 1. MDRNN structure diagram.

Because of the recurrency, the unit has indirect access
to board information from the whole rectangle between
(0, 0) and (i, j). It would be even more desirable to have
such access to the whole board, which can be achieved by
using 4 swiping units, one for each of the diagonal swiping
directions in D = {↘,↗,↙,↖} (this is a generalization
of bidirectional RNNs). The output layer then, for every
position, combines the outputs of the 4 units to a single
value outi,j (which is potentially derived from the whole
board information). The exact formulas are:

u↘(i,j) = tanh[wi ∗ ini,j + wh ∗ u↘(i−1,j)

+wh ∗ u↘(i,j−1)]

(and analogous for the other directions)

outi,j =
∑

♦∈D

wo ∗ u♦(i,j)



On the boundaries, where u♦ is not defined, we replace it
by a fixed value wb (for all borders). In order to enforce
symmetry, we use the same connection weights for all
swiping units. Altogether, this then gives us 4 groups of
weights in the network: wi, wh, wo and wb. The total number
of weights is therefore 2k + k2 + k + k = 4k + k2 where
k is the number of hidden neurons in each swiping unit. In
most of our experiments we use k = 10, and thus need to
train only 140 weights, which is very little compared to other
approaches.
At each position, the network takes two inputs which

indicate the presence of a stone at this position. The first
one is 1 if a stone of the networks own color is present and
0 otherwise, the second input encodes the presence of an
opponent’s stone in the same way. A black/white symmetric
encoding, as used in other approaches (e.g. [10]) is not
applicable here, because the output is not symmetrical: the
best move for both players might be the same.
The output value at each position expresses the network’s

preference for playing there. A move is chosen by the
network, by drawing a position from the Gibb’s distribution
(with adjustable temperature) of the output values. The
choice is limited to legal moves, as provided by the game
rules, so in practice the network outputs corresponding to
illegal moves are ignored. If the temperature is set to zero,
moves are selected greedily (randomly breaking ties).
For our implementation, we unfold the MDRNN along

both dimensions and end up with a large but simple feed-
forward network with a lot of weight-sharing. This makes
evaluations efficient: on a normal desktop computer, the
network needs about 2ms to choose a move on a 5x5 board,
and 20ms on a 9x9 board.
Figure 2 illustrates how the network processes board

inputs. In this example the network had 2 hidden neurons,
and random weights. It is worth noting that in the space
without any stones nearby the activations are symmetrical
with respect to the border, but not around the stones.

Fig. 2. Left: the board given as an input. Right: the output of the network
(of the perspective of the white player), with brighter points corresponding
to higher numbers.

IV. METHODOLOGY

A. Evolutionary methods
With a similar reasoning than for wanting to keep the

architecture free from domain knowledge, we also want to

use very common and general algorithms for training it. This
makes sure that our results are more significant, as they are
not an artifact of a particular algorithm, and can be easily
reproduced.
We chose the well-established Evolution Strategies [16]

for training the network weights directly. The fitness is
determined by playing against a fixed opponent.
However, as training against a fixed opponent both biases

the direction of evolution and limits performance to that
of the opponent, we decided to also perform experiments
with coevolution. For that, we use population-based compet-
itive coevolution, based on the host-parasite paradigm (as
described in [17]). In order to preserve diversity, we use
the following standard enhancements (from [18]): a) shared
fitness b) shared sampling c) hall of fame.

B. Experimental Setup
The two opponent players we are using throughout the

experiments are:
• the random player, which randomly chooses any of the
legal moves,

• the naive player, which does a one-ply search. If possi-
ble, it always picks a move that makes it win the game
immediately, and never picks a move that would make it
lose the game immediately. In all other cases (the large
majority), it randomly picks a legal move.

As fitness we use the average score over 100 games against
an opponent, alternating which player starts. In order to make
it more informative than a pure win/lose score, we compute
the score for a single game as follows:

score =







1 − p M−Mmin

Mmax−Mmin
if game won

−1 + p M−Mmin

Mmax−Mmin
if game lost

with p = 0.2, M the number of moves done before the game
is over, Mmin the length of the shortest game and Mmax the
length of the longest game possible.
If not explicitly stated otherwise, we use the following

settings:
• k = 10 hidden nodes (140 weights)
• greedy play (temperature = 0)
• random weights are drawn from the normal distribution

N(0, 1)
• the default opponent is the naive player.

V. EXPERIMENTS
This section provides the empirical results coming out of

our study of applying our architecture to the two problem
domains (Atari-Go and Gomoku).
We start by comparing the performance of our architecture

with untrained weights to standard multi-layer perceptrons
(MLP), also untrained. Next, we study its scalability by
varying the board size. Then we train the architecture,
using on the one hand simple evolution with as fitness the
network’s performance against the naive player, and on the



other hand competitive coevolution. Finally, we investigate
whether the performance on those trained networks scales to
larger board sizes.

A. Random weight performance
As a first experiment, we determine whether our architec-

ture is suitable for the chosen problem domains. We therefore
compare the untrained performance of our architecture with
the performance of an untrained, standard MLP. We sample
networks with a fixed architecture and random weights, and
then evaluate their average performance over 100 games
against one of the fixed opponents, and on different board
sizes.
Here, the MLP are of the following standard form: input

and output layers are the same than for the MDRNNs. There
is a single fully connected hidden layer of sigmoid units. We
experimented with different sizes for the hidden layer, and
found the results not to be very sensitive to that choice. The
presented results were produced with a hidden layer of 100
neurons.

0.0 0.2 0.4 0.6 0.8 1.0
percentile

-1.0

-0.5

0.0

0.5

1.0

p
e
rf

o
rm

a
n
ce

naive-5
naive-9
naive-19
rand-5
rand-9
rand-19

0.0 0.2 0.4 0.6 0.8 1.0
percentile

-1.0

-0.5

0.0

0.5

1.0

p
e
rf

o
rm

a
n
ce

naive-5
naive-9
rand-5
rand-9

Fig. 3. Performance percentiles on Atari-Go, on board sizes 5x5 and 9x9
and against both the naive and the random opponent. Performance is the
averaged score over 100 games. Above: MDRNN, below: MLP.

Figures 3 and 4 show the distribution of performance of
networks with randomly guessed weights on both Atari-Go
and Gomoku. The results are based on at least 200 samples
per scenario. The results show clearly that it is much easier
to get good or reasonable performance with random weights
using an MDRNN compared to using a standard MLP with

0.0 0.2 0.4 0.6 0.8 1.0
percentile

-1.0

-0.5

0.0

0.5

1.0

p
e
rf

o
rm

a
n
ce

naive-5
naive-9
naive-19
rand-5
rand-9
rand-19

0.0 0.2 0.4 0.6 0.8 1.0
percentile

-1.0

-0.5

0.0

0.5

1.0

p
e
rf

o
rm

a
n
ce

naive-5
naive-9
rand-5
rand-9

Fig. 4. Performance percentiles on Gomoku, on board sizes 5x5 and 9x9
and against both the naive and the random opponent. Performance is the
averaged score over 100 games. Above: MDRNN, below: MLP.

the same number of hidden nodes. This is especially true
on larger boards – in fact where the performance of MLPs
goes down with increasing board size, it actually goes up for
MDRNNs.
Interesting to note is also the performance distribution for

Gomoku on board size 5x5: almost all networks of both
kinds have a score close to zero, which means that the large
majority of games ends in a draw. This is not surprising, as
on such a small board even a random player easily disrupts
the building of rows of five stones.

B. Scalability for untrained networks

The next experiment aims to determine the degree of scala-
bility of our architecture. For that, we sample MDRNNs with
random weights, and then measure their average performance
(over 100 games) against one of the fixed opponents, on
different board sizes. We then determine the linear correlation
(Pearson coefficient), and also the proportion p of samples
for which the score is higher on the larger board than on the
smaller one.
Figure 5 plots the performance of random MDRNNs on

5x5 versus 9x9 against the random opponent. It provides a
good visual intuition about the high correlation of perfor-
mance between different board sizes.
Table I shows that this result holds for a broad range of

scenarios. The results for all scenarios are based on at least



-1.0 -0.5 0.0 0.5 1.0
performance on 5x5

-1.0

-0.5

0.0

0.5

1.0

p
e
rf

o
rm

a
n
ce

 o
n
 9

x
9

Fig. 5. Performance of the same random networks on different board sizes.

TABLE I
CORRELATION OF PLAY PERFORMANCE AGAINST A FIXED OPPONENT.

Game Opponent Sizes Correlation p

Atari-Go Random 5x5 vs. 9x9 0.81 0.71
Atari-Go Naive 5x5 vs. 9x9 0.70 0.49
Atari-Go Random 7x7 vs. 11x11 0.78 0.73
Atari-Go Naive 7x7 vs. 11x11 0.72 0.56
Atari-Go Random 9x9 vs. 19x19 0.71 0.76
Atari-Go Naive 9x9 vs. 19x19 0.66 0.61
Gomoku Random 5x5 vs. 9x9 0.12 0.79
Gomoku Naive 5x5 vs. 9x9 0.07 0.42
Gomoku Random 7x7 vs. 11x11 0.60 0.78
Gomoku Naive 7x7 vs. 11x11 0.64 0.58
Gomoku Random 9x9 vs. 19x19 0.63 0.77
Gomoku Naive 9x9 vs. 19x19 0.62 0.67

200 samples.
We find that the correlations are always positive. They

are high in all scenarios, with the exception of Gomoku on
size 5x5. We suspect that this is due to the large number
of games ending in a draw (see section V-A) on that size.
Another interesting observation is that in almost all cases p
is significantly larger than the expected 0.5, which is another
indication of the good scalability of the architecture.
In section V-E we will use the same methodology to

determine the scalability for networks with trained weights.

C. Training against a fixed opponent
In order to determine whether our architecture can be

trained to reach the level of play of a given fixed opponent,
we use a simple evolution strategy.
Experimenting with many different parameters, we did

not find their exact choice to be very sensitive, as long
as the population size is large enough (simple hill-climbing
performed much worse). We use the following settings:

• population size of 15, with an elitist selection of 1
2 , i.e.

a (10+10) evolution strategy.
• no crossover or self-adaptation
• for mutation, each weight is changed by a number drawn
from N(0, 0.1)

• the fitness evaluation is the one described in section IV-
B, with respect to naive player.

All those settings are identical for both Atari-Go and
Gomoku.
Figure 6 shows the performance during evolution. The

results are the average values over 10 independent runs.
As the fitness evaluation is noisy, we reevaluate it at every
generation. This is also the reason that the performance of
the best network per generation is not strictly increasing.

0 200 400 600 800 1000
evaluations

-1.0

-0.5

0.0

0.5

1.0

fi
tn

e
ss

best
avg

0 200 400 600 800 1000
evaluations

-1.0

-0.5

0.0

0.5

1.0
fi
tn

e
ss

best
avg

Fig. 6. Average and best population fitness during evolution. Above: Atari-
Go, below: Gomoku.

The performance looks a bit better for Gomoku than for
Atari-Go, but we can conclude that evolution easily finds
weights that beat the naive player on most games, although
is seems hard to reach really high performance.

D. Competitive Coevolution
To make our results independent of the biased fitness

measure provided by a fixed opponent, we also train our
architecture using coevolution.
Coevolution implies that there is no external fitness mea-

sure (as in section V-C), only a relative fitness. We compute
the relative fitness of two players as the average score of
an equal number of games with each player starting. In case
both players are greedy, it is sufficient to play out two games
per evaluation, otherwise we need to average over more,
depending on the temperature of the Gibb’s distribution.
We use a population size of two times 15, with an elitist

selection of 1
3 based on shared fitness. At every generation,



TABLE II
DOMINANCE NUMBERS FOR A NUMBER OF SCENARIOS

(400 GENERATIONS, AVERAGED OVER 5 RUNS).

Game Parameters Dominance number
Atari-Go Non-elitist 14.8 ± 3

Atari-Go Elitist 27.6 ± 14

Gomoku Non-elitist 11.0 ± 5

Gomoku Elitist 15.6 ± 11

every host is evaluated against 15 opponents, 5 of them
parasites (according to shared sampling), and 10 players out
of the hall of fame (which contains the player with the
best relative fitness of each generation). Both populations
exchange roles at each generation. We tried varying those
settings, and did not find the exact parameters values to be
very sensitive, as long as the population size is not too small
and enough relative evaluations are done each generation.
We also tried different temperatures for the move selection,
but ended up falling back onto greedy play, as the results
were not qualitatively different but much more expensive to
compute due to the need for averaging.
There are a number of ways to track progress of coevolu-

tionary runs. We will use three of them here: analyzing the
absolute fitness of the evolved networks, CIAO plots ([19],
see below) and dominance tournaments [20].
In a dominance tournament, we build a list of dominant

individuals. The first one is the first generation champion.
Then, while successively going through all other generation
champions, we add it to the list if it can beat all previous
dominant individuals. The length of that list then gives us
the dominance number, and it is reasonable to consider that
the higher that number is, the more progress has been made.
Table II shows average dominance numbers for a number of
different training scenarios.
Figure 7 shows a typical coevolution run. The performance

plotted is the one measured against the naive player (which
is inaccessible during evolution). It is interesting to note
that this performance is not strictly increasing, and that
even the champions of the dominance tournament do not
always correspond to high absolute performance. As the high
dominance numbers show progress nonetheless, this indicates
that evolution based on relative fitness is coming up with
different kinds of strategies than evolution based on absolute
fitness.
To visualize the relative progress of the two populations

during a coevolutionary run, we make CIAO plots, which
show the performance of all generation champions of one
population playing against all of those of the other. If
coevolution is successful, we expect later generations to be
better against earlier ones, thus to see brighter areas in the
lower left and upper right. Figure 8 shows a typical CIAO
plot which exhibits that property to a small degree. However,
we can make two other, unpredicted, observations:

• the score values themselves are more extreme (i.e. the
games are shorter) with players of earlier generations

0 50 100 150 200
generation

-1.0

-0.5

0.0

0.5

1.0

fi
tn

e
ss

pop1
dom1
pop2
dom2

Fig. 7. A typical coevolutionary run. Plotted is the performance of the
generation champions of both populations against the naive player. The
circles mark the dominant individuals (i.e. that beat all previous dominant
ones).

Fig. 8. Typical CIAO plot (same run than figure 7). Bright points
correspond to a high score, dark ones to a low one.

and more balanced in later generations (more grayish
colors). This means that coevolution tends to lead to
more careful players, which lose late if they do, but at
the cost of not being able to win quickly against each
other.

• carefully looking at individual lines in the plot, we
find that often, if one player that is winning against
one group of opponents and another player is losing
to that group, then there is another group of opponents
where those relations are exactly opposite. This seems
to indicate a kind of rock-paper-scissors situation, which
could be the reason why the absolute level of play does
not progress as much as expected during coevolution.

Even with few weights, the MDRNN is capable of a
wide variety of behaviors. When inspecting the generation
champions of a coevolutionary run, we find a large diversity
of those behaviors. Due to space constraints we can show
only a few: figure 9 shows a few games, with the same



TABLE III
CORRELATION OF PERFORMANCE OF TRAINED NETWORKS.

Game Method Train Test Correlation p

size size
Atari-Go Coevolution 5 9 0.45 0.92
Atari-Go Evolution 5 9 0.05 0.61
Atari-Go Evolution 7 11 0.07 0.98
Gomoku Coevolution 5 9 -0.11 0.70
Gomoku Evolution 5 9 0.22 0.73
Gomoku Evolution 7 11 0.43 0.85

players (generation champions of a typical coevolutionary
run) on board sizes 5x5 and 9x9. Naturally the behavioral
patterns look different on a small board and on a large one,
but they share common features.

Fig. 9. Illustrative games of some champions: here black is always the
same network, but the white players in the two rows are different.

E. Scalability for trained networks
The game-play on the 5x5 board is quite different from

the one on 9x9, so there is a clear risk of evolution exploiting
the training size and making the resulting networks not scale
up anymore. Thus, as the final experiment, we attempt to
determine the scalability of our architecture after training.
For that, make use of the networks trained in sections V-C
and V-D, and apply the same methodology than in section V-
B.
Figure 10 shows how the performance (against the naive

player) of networks trained on the 5x5 board scales to a
board size of 9x9. Table III then gives the detailed results
for all scenarios. The numbers are based on a minimum
of 200 trained networks per scenario which are always
generation champions (ignoring the champions of the first
50 generations).
Comparing the correlations and the proportions p to the

values we found for untrained networks in section V-B,

-1.0 -0.5 0.0 0.5 1.0
performance on 5x5

-1.0

-0.5

0.0

0.5

1.0

p
e
rf

o
rm

a
n
ce

 o
n
 9

x
9

-1.0 -0.5 0.0 0.5 1.0
performance on 5x5

-1.0

-0.5

0.0

0.5

1.0

p
e
rf

o
rm

a
n
ce

 o
n
 9

x
9

Fig. 10. Performance of the same networks on different board sizes. All
networks are generation champions of coevolutionary runs. Above: Atari-
Go, below: Gomoku.

we find that generally the correlations are much lower, but
p is much higher. This means that, for trained networks,
the performance on a small board is less predictive of the
performance on the large board, but it is almost always
significantly higher on the large board.

VI. DISCUSSION AND FUTURE WORK

Revisiting the goals we set ourselves in the introduction,
we can now draw some conclusions. By construction, our
architecture is directly usable on different board sizes, even
on different games. Apart from incorporating the board
symmetries, it is free from domain-specific knowledge, just
as the training methodology does not rely on any domain-
specific heuristics: the naive player that is used for most
purposes is only using the game rules.
The variety of empirical results provide a solid con-

firmation of our main hypothesis, that the architecture is
scalable. We could show that training on a small board size
transfers well onto larger ones. A very promising result is
that the performance of the large majority of trained networks
actually increases when they are tested on networks larger
than the ones they were trained on.
A possible objection to the claim that our architecture is

scalable is that part of the observed effect might be due to
the weak opponent, which might scale very weakly. Further
investigations, e.g. using a heuristic opponent, should be able
to easily confirm or refute this interpretation.



The architecture appears to be appropriate for the domain,
at least at low levels of play. To open up possibilities for
higher levels of performance, we propose to address the
following two weaknesses:

• to allow the network to make better use of long-distance
dependencies (which are especially common in a game
like Go), we suggest to replace the hidden units by
LSTM cells [21].

• to allow for more complex strategies to evolve, we
suggest to stack two (or more) MDRNNs on top of each
other, so that the outputs of the swiping units of one
form the set of inputs to the (independently) swiping
units of the next one.

Preliminary experiments suggest that those enhancements
may be worth it.
The fitness measure we used was sufficient for the pur-

poses of this paper, but we believe that, in order to reach more
ambitious performance goals, a multi-objective approach may
be superior. Objectives could include: chance of winning with
black, with white, number of moves until losing or winning,
performance against different static opponents, and all those
objectives used on multiple board sizes.
Our approach has been to strictly avoid domain knowl-

edge, but it it clearly possible, even desirable, to incorporate
some in order to reach competitive performance. Most of
the standard ways for doing so can be directly applied to
our architecture as well. For example, we could feed the
network a number of domain-specific features [15] instead
of the raw board. On the other hand we could easily adjust
the output to generate a value function instead of moves, and
then use that in a standard search-based framework, possibly
with heuristic pruning of the search tree.

VII. CONCLUSION

We have developed and thoroughly investigated the prop-
erties of a scalable neural network architecture based on
MDRNNs for board games. We could show that it is scalable,
suitable for the domain, can be trained easily and the results
of training scale well to larger boards.
As our aim was not to reach the highest performance,

we avoided using any domain knowledge, which made it
possible to use the same setup for two different games, and
reach similar results. We therefore believe that it can be used
on many similar problems as well, most notably on Go.
Naturally, our next goal will be to use the present results

as a foundation for the more ambitions project of reach-
ing state-of-the-art performance, by adding domain-specific
knowledge on top of it.

ACKNOWLEDGMENTS

This research was funded by the SNF grant 200021-
113364/1. We especially thank Julian Togelius for the in-
sightful discussions that guided the research and Faustino
Gomez for the constructive advice.

REFERENCES
[1] E. C. D. van der Werf, H. J. V. D. Herik, and J. W. H. M. Uiter-

wijk, “Solving go on small boards,” International Computer Games
Association Journal, vol. 26, pp. 10–7, 2003.

[2] T. P. Runarsson and S. M. Lucas, “Co-evolution versus self-play
temporal difference learning for acquiring position evaluation in small-
board go,” IEEE Transactions on Evolutionary Computation, pp. 628–
640, 2005.

[3] N. Richards, D. E. Moriarty, and R. Miikkulainen, “Evolving neural
networks to play go,” Applied Intelligence, vol. 8, pp. 85–96, 1997.

[4] K. Iwamoto, Go for beginners. Tokyo, Japan: Ishi Press, 1972.
[5] G. Konidaris, D. Shell, and N. Oren, “Evolving neural networks

for the capture game,” in Proceedings of the SAICSIT Postgraduate
Symposium, 2002.

[6] B. Freisleben and H. Luttermann, “Learning to Play the Game of Go-
Moku: A Neural Network Approach,” Australian Journal of Intelligent
Information Processing Systems, Vol. 3, No. 2, pp. 52 – 60, 1996.

[7] D. Silver, R. S. Sutton, and M. M. 0003, “Reinforcement learning of
local shape in the game of go,” in IJCAI, 2007, pp. 1053–1058.

[8] Y. Lecun and Y. Bengio, Convolutional Networks for Images, Speech
and Time Series. The MIT Press, 1995, pp. 255–258.

[9] K. O. Stanley and R. Miikkulainen, “Evolving a roving eye for go,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), 2004.

[10] N. N. Schraudolph, P. Dayan, and T. J. Sejnowski, “Temporal differ-
ence learning of position evaluation in the game of go,” in Advances
in Neural Information Processing Systems, J. D. Cowan, G. Tesauro,
and J. Alspector, Eds., vol. 6. Morgan Kaufmann, San Francisco,
1994, pp. 817–824.

[11] X. Pang and P. J. Werbos, “Neural network design for j function
approximation,” in in Dynamic Programming, Math. Modelling and
Scientific Computing (a Principia Scientia journal, 1996.

[12] A. Graves, “Supervised sequence labelling with recurrent neural net-
works,” Ph.D. in Informatics, Fakultat für Informatik – Technische
Universität München, Boltzmannstrasse 3, D - 85748, Garching bei
München, Germany, 2008.

[13] P. Baldi and G. Pollastri, “The principled design of large-scale recur-
sive neural network architectures dag-rnns and the protein structure
prediction problem,” Journal of Machine Learning Research, vol. 4,
pp. 575–602, 2003.

[14] A. Graves, S. Fernández, and J. Schmidhuber, “Multidimensional
recurrent neural networks,” in Proceedings of the 2007 International
Conference on Artificial Neural Networks, Porto, Portugal, September
2007.

[15] L. Wu and P. Baldi, “A scalable machine learning approach to go,” in
Advances in Neural Information Processing Systems 19, B. Schölkopf,
J. Platt, and T. Hoffman, Eds. Cambridge, MA: MIT Press, 2007,
pp. 1521–1528.

[16] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution
strategies,” in Proc. Fourth Int’l Conf. Genetic Algorithms (ICGA’91),
San Diego CA, R. K. Belew and L. B. Booker, Eds. San Mateo CA:
Morgan Kaufmann, 1991, pp. 2–9.

[17] A. Lubberts and R. Miikkulainen, “Co-evolving a go-playing neural
network,” in Genetic and Evolutionary Computation Conference Work-
shop Program. Morgan Kaufmann, 2001, pp. 14–19.

[18] C. D. Rosin and R. K. Belew, “Methods for com-
petitive co-evolution: Finding opponents worth beating,” in
Proceedings of the Sixth International Conference on Genetic
Algorithms, L. J. Eshelman, Ed. San Francisco, CA:
Morgan Kaufmann, 1995. [Online]. Available: http://www.mpi-
sb.mpg.de/services/library/proceedings/contents/icga95.html

[19] D. Cliff and G. F. Miller, “Tracking the red queen: Measurements
of adaptive progress in co-evolutionary simulations,” in Advances In
Artificial Life. Springer Verlag, 1995, pp. 200–218.

[20] K. O. Stanley and R. Miikkulainen, “Competitive coevolution through
evolutionary complexification,” Journal of Artificial Intelligence Re-
search, vol. 21, pp. 63–100, 2004.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 9, pp. 1735–1780, 1997.


