
Humanoid Learns to Detect Its Own Hands

Jürgen Leitner∗, Simon Harding†, Mikhail Frank∗, Alexander Förster∗, Jürgen Schmidhuber∗

∗Dalle Molle Institute for Artificial Intelligence (IDSIA) / SUPSI
Faculty of Informatics, Università della Svizzera Italiana (USI)

CH-6928 Manno-Lugano, Switzerland
Email: juxi@idsia.ch

†Machine Intelligence Ltd
South Zeal, United Kingdom

Email: simon@machineintelligence.co.uk

Abstract—Robust object manipulation is still a hard problem
in robotics, even more so in high degree-of-freedom (DOF)
humanoid robots. To improve performance a closer integration
of visual and motor systems is needed. We herein present a novel
method for a robot to learn robust detection of its own hands
and fingers enabling sensorimotor coordination. It does so solely
using its own camera images and does not require any external
systems or markers. Our system based on Cartesian Genetic
Programming (CGP) allows to evolve programs to perform this
image segmentation task in real-time on the real hardware. We
show results for a Nao and an iCub humanoid each detecting its
own hands and fingers.

I. INTRODUCTION

Although robotics has seen advances over the last decades
robots are still not in wide-spread use outside industrial
applications. In general various scenarios are proposed for
future robotic helpers, these range from cleaning tasks, gro-
cery shopping to elderly care and helping in hospitals, etc.
Those would involve the robots working together, helping and
coexisting with humans in daily life. From this the need to
manipulate objects in unstructured environment arises. Yet
autonomous object manipulation is still a hard problem in
robotics. Humans, in contrast, are able to quickly and without
much thought, perform a variety of object manipulation tasks
on arbitrary objects. To achieve this, Visual Motor Integration
(or visuomotor integration, VMI), also referred to as eye-hand
coordination, is of importance. For example, if someone wants
to grab a certain object from the table, the brain takes in the
location of the object as perceived by the eyes, and uses this
visual information to guide the arm. To perform this guidance
both the object and the arm need to be detected visually.

In robotics traditionally a multi-step approach is used to
reach for an object. First the object’s position is determine in
operational space. If there are no active vision systems (RGB-
D cameras/Kinect) or external trackers/markers (Vicon) avail-
able, the most common approach is using a stereo camera pair.
After detecting the object in the image, projective geometry
is used to estimate the operational space coordinate [1]. This
is the desired position to be reached with the end-effector.
The joint configuration of the robot for reaching this position
is determined by applying inverse kinematics techniques [2].
The obvious problem in this chain of operations is that
errors are propagated and sometimes amplified through these

transformations. Visual servoing [3], [4] has been proposed
to overcome some of these problems. It is using the distance
between of the object and the arm in the visual plane as the
control signal.

It stands to reason that humanoids require a certain level of
visuomotor coordination to develop better manipulation skills.
This is similar to the development in studying of human visual
and motor processing, which have previously been investigated
separately, but more evidence emerged that those two systems
are very closely related [5]. Robust visual perception, such as,
e.g. precisely and quickly detecting the hands, is of importance
in approaches that aim to develop better robotic manipulation
skills. This is especially of interest in highly-complex robots
such as humanoids, as generally there is no precise knowledge
about the kinematic structure (body) of the robot available,
generating significant errors when transforming back and forth
into operational space.

In this paper we present a novel method for humanoid
robots to visually detect their own hands. Section II describes
previous work related to visually detecting hands on humanoid
robots. In Section III a machine learning technique called
Cartesian Genetic Programming (CGP) is described. CGP is
used to learn a robust method to filter out the hands and
fingers in the camera stream from an iCub and a Nao robot,
these experiments are detailed in Section IV. This is the first
time, to our knowledge, for a robot to learn how to detect its
own hands, from vision alone. Section V contains concluding
remarks and comments on how this opens up future research
into sensorimotor coordination on humanoid robot platforms.

II. RELATED WORK

The detection of hands in robotics has so far been mainly
focused on detecting human hands in camera images. For
example, Kölsch and Turk presented a method for robustly
classifying different hand postures in images [6]. These ap-
proaches usually use the quite uniform colour of the skin [7],
motion flow [8] and particle filtering [9].

Hand-eye coordination for robotics has previously been
investigated using extra sensors like LASERs or other helpers
mounted on the end-effector, such as, LEDs, bright coloured
symbols or markers, etc. Langdon and Nordin, already ex-
plored GP for evolving hand-eye coordination on a robot arm

with a LED on the end-effector [10]. Hülse et al. used machine
learning to grasp a ball with a robot arm, yet only the ball,
not the arm was visually detected [11]. Another approach to
detect the hand gesture directly, using a coloured glove and
machine learning was presented by Nagi et al. [12]. Another
often used option to track and detect the position of the
robots end-effector are external motion capturing and imaging
systems (e.g. [13], [14]). Recently, the German Aerospace
Agency (DLR) has investigated methods for better position
estimation for their humanoid robot. Using RGB-D (Kinect)
and a stereo camera approach both combined with a model-
based technique, their system was able to qualitatively decrease
the error from the pure kinematic solution [15].

Machine learning has been used in computer vision previ-
ously but has mainly focussed on techniques such as Support
Vector Machines (SVM), k-Nearest Neighbour (kNN) and
Artificial Neural Networks (ANN). Herein we use Genetic
Programming (GP) which is a search technique inspired by
concepts from Darwinian evolution [16]. It can be used in
many domains, but is most commonly used for symbolic
regression and classification tasks. GP has also been used
to solve problems in image processing, however previous
attempts typically use a small set of mathematical functions to
evolve kernels, or a small number of basic image processing
functions (such as erode and dilate). Previously Spina used
GP to evolve programs performing segmentation based on
features calculated from partially labeled instances separating
foreground and background [17].

Given the maturity of the field of image processing, it
should be possible to construct programs that use much more
complicated image operations and hence incorporate domain
knowledge. For example, Shirakawa evolved segmentation
programs that use many high-level operations such as mean,
maximum, Sobel, Laplacian and product [18].

III. CARTESIAN GENETIC PROGRAMMING
FOR IMAGE PROCESSING

Herein we are using Cartesian Genetic Programming
(CGP), in which programs are encoded in partially connected
feed forward graphs [19], [20]. The genotype, given by a list
of nodes, encodes the graph. For each node in the genome
there is a vertex, represented by a function, and a description
of the nodes from where the incoming edges are attached.

The basic algorithm works as follows: Initially, a popula-
tion of candidate solutions is composed of randomly generated
individuals. Each of these individuals, represented by its geno-
type, is tested to see how well it performs the given task. This
evaluation against the ‘fitness function’, is used to assign a
numeric score to each individual in the population. Generally,
the lower this error, the better the individual.

In the next step of the algorithm, a new population of
individuals is generated from the old population. This is done
by taking pairs of the best performing individuals and perform-
ing functions analogous to recombination and mutation. These
new individuals are then tested using the fitness function. The
process of test and generate is repeated until a solution is found
or until a certain number of individuals have been evaluated.

CGP offers some nice features, for instance, not all of
the nodes of a solution representation (the genotype) need to

be connected to the output node of the program. As a result
there are nodes in the representation that have no effect on
the output, a feature known in GP as ‘neutrality’. It has been
shown that this can be helpful in the evolutionary process [21].
Also, because the genotype encodes a graph, there can be
reuse of nodes, which makes the representation distinct from
a classically tree-based GP representation (Fig. 1).

Our implementation CGP for Image Processing (CGP-IP)
draws inspiration from much of the previous work in the field
(see e.g. [22]). It uses a mixture of primitive mathematical
and high level operations. It’s main difference to previous
implementation is that it encompasses domain knowledge, i.e.
it allows for the automatic generation of computer programs
using a large subset of the OpenCV image processing library
functionality [23]. With over 60 unique functions, the function
set is considerably larger than those typically used with GP.
This does not appear to hinder evolution (see the results
we obtained with this configuration in Section IV), and we
speculate that the increased number of functions provides
greater flexibility in how the evolved programs can operate.

Executing the genotype is a straightforward process. First,
the active nodes are identified. This is done recursively, starting
at the output node, and following the connections used to
provide the inputs for that node. In CGP-IP the final node
in the genotype is used as the output. Next, the phenotype can
be executed on an image. The input image (or images) are
used as inputs to the program, and then a forward parse of the
phenotype is performed to generate the output.

The efficacy of this approach was shown for several
different domains (including basic image processing, medical
imaging, terrain classification, object detection in robotics and
defect detection in industrial application) by Harding et al. [24]
and Leitner et al. [25].

A. Fitness Function

Depending on the application, different fitness functions
are available in CGP-IP. The thresholded output image of an
individual is compared to a target image using the Matthews
Correlation Coefficient (MCC) [26], [27], which has previ-
ously been observed to be useful for CGP approaches to
classification problems [28]. The MCC is calculated based
on the ‘confusion matrix’, which is the count of the true
positives (TP), false positives (FP), true negatives (TN), and

Fig. 1. Example illustration of a CGP-IP genotype. Internally each node
is represented by several parameters. In this example, the first three nodes
obtain the image components from the current test case (i.e. a grey scale
representation and the red and green channels). The fourth node adds the
green and red images together. This is then dilated by the fifth node. The
sixth node is not referenced by any node connected to the output (i.e. it is
neutral), and is therefore ignored. The final node takes the average of the fifth
node and the grey scale component from the current test case.

TABLE I. CURRENTLY IMPLEMENTED FUNCTIONS THAT MAKE USE OF
OPENCV AND CAN BE SELECTED BY CGP-IP.

absdiff add addc
avg canny dCTFwdReal
dCTInvReal dilate div
erode exp findCircles
findShapes gabor gauss
goodFeaturesToTrack grabCut laplace
localAvg localMax localMin
localNormalize log max
min mul mulc
nearestNeighbourImg normalize normalize2
normalizeImage opticFlow pow
pyrDown pyrUp reScale
resize resizeThenGabor runConvolutionKernel
sIFTa shift shiftDown
shiftLeft shiftRight shiftUp
smoothBilataral smoothBlur smoothMedian
sobel sobelx sobely
sqrt sub subc
threshold thresholdInv unsharpen
MorphologyBlackHat MorphologyClose MorphologyGradient
MorphologyOpen MorphologyTopHat

false negatives (FN). A coefficient of 0 indicates that the
classifier is working no better than chance. A score of 1 is
achieved by a perfect classifier, −1 indicates that the classifier
is perfect, but has inverted the output classes. Therefore, the
fitness of an individual

fitness = 1− |MCC| (1)

with values closer to 0 being more fit.

B. High Level Operations

Previous work on imaging processing with GP operates
on a convolutional approach. Here, a program is evolved
that operates as a kernel. For each pixel in an image, the
kernel operates on a neighbourhood and outputs a new pixel
value. This is also the typical approach when other machine
learning approaches are applied to imaging. In GP, the kernel is
typically an expression composed from primitive mathematical
operators such as +,−,× and ÷. For example, this approach
was used in [29], [30], [31] to evolve noise reduction filters. In
[32], many different image processing operations (e.g. dilate,
erode, edge detection) were reverse-engineered.

The function set not only contains high-level image pro-
cessing functions, but also primitive mathematical operations.
In CGP-IP a large number of commands from the OpenCV
library are available to GP. Additionally, higher level functions,
such as, Gabor filters are available. A list of functions is
shown in Table I. Most of these functions are based on their
OpenCV equivalents. The functions might include multiple
implementations to provide a variety of interfaces (e.g. add a
constant, or an image).

The primitive operators also work on entire images i.e.
addition will produce a new image adding the values of
corresponding pixels from two input images. However, this
method does not directly allow for kernel-style functionality
to be found. Instead, GP has to use a combination of shifts and
rotations and other existing kernel methods to get information
about a pixel’s neighbourhood. This is similar to the methods
proposed in [32] to allow for efficient parallel processing of
images on Graphics Processing Units (GPUs).

Using OpenCV we can also be confident about using
high quality, high speed software. In CGP-IP, individuals are

evaluated at the rate of 100s per second on a single core.
This makes it both efficient to evolve with, but also means
that the evolved filters will run quickly if deployed. Much
of the previous work on imaging with GP has focused on
the use of grey scale images. Often this is for performance
considerations. But also this is out of consideration for how
the images will be handled within the program. In CGP-IP,
all functions operate on single channel images. The default
treatment for colour images is to separate them into both RGB
(red, green and blue) and HSV (hue, saturation and value)
channels, and provide these as available inputs. A grey scale
version is also provided. Each available channel is presented
as an input to CGP-IP, and evolutions selects which inputs will
be used. While CGP-IP can process inputs from stereo camera
systems, herein we restrict ourselves to only input images from
one single camera.

Our implementation of CGP-IP generates human readable
C# or C++ code based on OpenCV functions. The code can
be compiled and directly be used with our robots within our
computer vision framework [33]. It is typically found that this
process reduces the number of used instructions, and hence
reduces the execution time of the evolved program.

C. CGP Parameters

A feature generally with CGP implementations is the low
number of parameters required for configuration. The same is
valid for CGP-IP. The main parameters are:

• Graph length (i.e. the number of nodes in the geno-
type), set to 50 here.

• Mutation rate, 10% of all genes in the graph are
mutated when an offspring is generated. The threshold
parameter is mutated with a probability of 1%.

• Size of mutations

• Number of islands, i.e. separate populations, allowing
for a distributed evolutionary process.1 We chose 8
islands (1 per CPU core).

• Number of individuals per island, which is set to 5,
keeping the typical 1+4 evolutionary strategy.

• Synchronisation interval between islands. Here each
island compares their best individual to the server’s
individual every 10 generations.

It is important to note that in the work presented here the
parameters have not been optimised other than by casual exper-
imentation. It may be possible to improve the performance of

1This has been shown to improve the overall performance of the evolution-
ary process [34].

TABLE II. PARAMETERS OF CGP-IP ENCODED AT EVERY NODE.

Parameter Type Range
Function Int # of functions
Connection 0 Int # of nodes and inputs
Connection 1 Int # of nodes and inputs
Parameter 0 Real no limitation
Parameter 1 Int [−16,+16]
Parameter 2 Int [−16,+16]
Gabor Filter Frequ. Int [0, 16]
Gabor Filter Orient. Int [−8,+8]

Fig. 2. The various stages of the supervised learning. On the left the
(grey-scaled) input image, followed by the hand-segmented ground truth
provided. The third column shows the image segmentation output of the
current individual using the specific input image, while the next column shows
this output after thresholding. The fitness values (MCC) are based on this
column. The overlay column allows for quick visual verification of the results.

CGP-IP by a more carefully selection. In particular, we expect
the mutation rate, genotype size and number of islands to be
the important parameters to adjust.

CGP-IP needs a number of additional parameters encoded
in each node, compared to classical CGP. They are listed
in Table II. These are needed because often the functions
used require additional parameters, with specific requirements
as to their type and range. Connection 0 and 1 contain the
relative address of the node used as first and second input. If
a relative address extends beyond the extent of the genome
it is connected to one of the inputs. Specialised functions are
provided to select the input (e.g. INP, SKIP), which manipulate
a pointer that indexes the available inputs and return the
currently indexed input. A full description can be found in
[35]. An illustrative example is shown in Fig. 1. In addition to
the graph representing the program, the genotype also includes
a value used for thresholding the output.

All parameters are kept constant throughout the experi-
ments presented below. It may be possible to improve per-
formance for a given problem by optimising these parameters.

D. Training

A handful of examples, in which the object of interest has
been correctly segmented, in our case the fingers and hands, are
used as a training set for CGP-IP. The selection of this training
set is of importance for the capabilities of the found solution. If
chosen correctly, the resulting programs are very robust filters.
In Fig. 2 the various stages are shown. The original image is
used to hand-label points of interest (in this case the finger
tips). This is then used as a training set for CGP-IP. The output
of the filter is shown in the third column and is used again,
just for visualisation, in the last column as an overlay on the
grey-scale input image.

An example of the human-readable output, in the form of a
C++ computer program, is shown in Listing 1. On a single core
of a modern desktop PC, the evolved programs run quickly and
as these are largely linear in form, the memory requirements
are low. Speed and simplicity of processing is important in
many embedded systems, making this approach suitable for
implementation in constrained computing environments.

Fig. 3. Our robotic platforms: the Nao (left) and the iCub (right).

IV. EXPERIMENTS

For testing our system we employed two humanoid robot
platforms. Both these systems are quite different both in their
appearance and the sensor systems available. Our first platform
is the Nao humanoid built by Aldebaran Robotics, our second
robot is the iCub humanoid, which was developed during the
European funded RoboCub project and is currently actively
used in a variety of projects both at European and international
level. In each of these robots we aim for the humanoid to learn
how to detect its own hand and fingers, while moving the arm
through the visible workspace.

A. Nao Hand Detection

Our first experiment is performed with the Nao humanoid
(see Fig. 3). The 53cm tall robot has 25 DOF (including
the actuated hands), an inertial measurement unit (with ac-
celerometer and gyrometer), four ultrasonic sensors, eight
force-sensing resistors and two bumpers. It also features four
microphones, two speakers, and two cameras — one looking
forward (forehead placement) and one looking down (chin
placement). The Nao has been been the robot of choice for
the RoboCup Standard Platform League (SPL) competitions
since 2008.

A dataset of pictures was collected from both of the
cameras (though the hand was more often visible in the lower
camera, due to its placement). Fig. 4 shows some of these
pictures. When collecting these the hand was randomly moved
through the field of view of the robot. We apply our CGP-
IP approach described above to detect the robots fingers and
hands. A hand-labeled training set was generated and used (as
described above; similar to Fig. 2).

A filter was found after short evolution. Fig. 5 shows the
result of one of the top-performing filters for this task. The
output of the filter is again used as an overlay on the grey-
scale images. From the 8 inputs one was selected as validation
image (highlighted by a golden frame). The performance of the
filter is rather good, with green indicating a correct detection.
Red shows areas that are, according to the provided input
labels, part of the hand, but not detected by our filter. The
hand was cleanly detected in each of the 8 images and with
very little (pixel-wise) error. The generated program to perform
this segmentation is shown in Listing 1.

icImage NaoFingers::runFilter() {
icImage node0 = InputImages[3].min(InputImages[4]);
icImage node1 = InputImages[1].unsharpen(11);
icImage node2 = node0.Max();
icImage node3 = node0.gauss(7, -7);
icImage node4 = node2.addc(6.71329411864281);
icImage node5 = InputImages[0].mul(node1);
icImage node6 = node3.dilate(6);
icImage node7 = node5.sobely(15);
icImage node9 = node4.absdiff(node6);
icImage node10 = InputImages[5];
icImage node13 = node10.unsharpen(15);
icImage node14 = node7.dilate(6);
icImage node17 = node9.gauss(11);
icImage node18 = node17.SmoothBlur(11);
icImage node19 = node13.min(node14);
icImage node27 = node19.SmoothBlur(11);
icImage node31 = node18.Exp();
icImage node32 = node31.erode(4);
icImage node37 = node27.mul(node32);
icImage node38 = node37.ShiftDown();
icImage node41 = node38.ShiftDown();
icImage node49 = node41.laplace(19);
return node49;

}

Listing 1. Generated C# code from CGP-IP for detecting the Nao’s fingers.
icImage is a wrapper class to allow portability within our framework [33].

This solution, the best out of 10 test runs, was found rather
quickly in a few thousand evaluations. This is probably because
of the simple and uniform visual appearance of the white
fingers and hand of the Nao robot.

Fig. 4. Some of the images in the dataset for the Nao robot. The hand
consisting of three, separate, uniformly white fingers can clearly be seen in
all images.

Fig. 5. One of the results, when learning to detect the hands of the Nao robot.
In green the areas that are correctly detected, red areas that were marked in
the supervised training set yet have not been detected by this individual, blue
colored areas are wrongly detected to be part of the robot’s hand.

B. iCub Finger and Hand Detection

The second set of experiments, are performed with the iCub
[36], an open-system robotic platform, providing a 41 degree-
of-freedom (DOF) upper-body, comprising two arms, a head
and a torso (see Fig. 3). The iCub is generally considered
an interesting experimental platform for cognitive and senso-
rimotor development and embodied Artificial Intelligence [37]
research, with a focus on object manipulation. To allow for
manipulation, the object of interest has to first be detected and
located using the available sensors. The robot has to rely, on a
visual system consisting of two cameras in the head, analogous
to human visual perception. The errors during this localisation,
as well as, in the kinematic model are significant. Therefore
we aim to use visual feedback to perform better reaching and
grasping. In comparison to the Nao’s hand, the iCub sports
a rather complex end-effector. The hand and fingers are both
mechanically complicated and visually hard to detect (Fig. 6).
There has been a previous effort to apply machine learning to
detect the iCub’s hands [38].

We again apply our CGP-IP approach to detect the iCub’s
fingers and hands, a necessity to learn hand-eye coordination.
As in the section above, we collect a dataset while the robot
was moving its arms around. A handful of pictures was hand-
labeled and used as a training set. The detection of the hand
is split into two separate problems: the identification of the
fingertips only, and, secondly of the full hand. This separation
allows us to create a finer level of control for tasks, such as,
grasping, that involve controlled motion of the fingers.

The fingertips are made out of a black rubber protecting
the touch sensors within. Fig. 7 shows the result of an evolved
filter detecting the fingertips of the iCub’s hands. To make
sure that the solution is not just identifying any black part
the images contain black objects in the background, such as,
chairs and computer cases. Due to the stochastic nature of the
evolutionary approach we ran multiple tests. The best solution
(out of 10 test runs) for filtering out the fingertips is found
rather quickly; after only a bit more than 8 minutes of evolution
(about 55k individual evaluations).

To detect the full hand is a more complicated task. Here
we used 10 images to train the filter and an additional four

Fig. 6. The iCub’s hands and fingers are quite complicated mechanically and
complex to detect visually.

Fig. 7. Results when visually locating the fingertips of the iCub.

to validate each solution against unseen data. For this more
complicated task the evolution of the best solution (out of
10 tests) took more than 5.7m evaluations (about a hundred
times more than for the fingers alone), taking about 12 hrs
on a desktop computer. In Fig. 8 the performance of the
learnt filter is shown. Generally a very good detection can
be seen, although there are some minor issues. For example, a
reduced level of detection can be seen around the edges of the
frame. As we will be gazing upon a specific object we want to
manipulate, the precise control will be of importance when the
hand reaches close to the centre of the image frame. Another
issue seems to be the stark difference in visual appearance
between the front and back side of the hand. This can be seen
in the second to the right image in the middle row of the figure.
Again in most of the planned scenarios for object manipulation
the back of the hand will be visible. Therefore we do not see
this as an important issue. Furthermore if a more thorough
detection, also of the front side, is required another separate
filter just for the front can be evolved. By combining the two
separate detectors, for the fingertips and the hand, we get a
very precise, almost full identification of the iCub’s hands.

The programs to perform this segmentation are generated
the same way as for the Nao and also provide C# code. The
complexity though is higher, providing an indication that the
detection of the iCub’s hands is a more complex task than
the Nao’s. The complexity of the filter can also be visualised
by plotting the operations and their connections of the found
CGP-IP solution (Fig. 9). Each box shows the output, and
the name, of the function at that node. The top node is the
final output of the filter, i.e. the segmentation. It shows the
thresholded image used by the classifier. Following through
the graph to the bottom, we see the inputs selected for this
filter by evolution.

V. CONCLUSION

We presented a novel approach for a robot to detect its own
hands and fingers using vision by applying Cartesian Genetic
Programming (CGP). Detecting hands in images has previ-
ously focused mainly on detecting human hands. Allowing the
robot to detect its own hands in real-time enables hand-eye
coordination, in tasks, such as, reaching for and picking-up
objects.

Our technique using CGP was tested with both the Nao
and iCub humanoid robot. In both cases very satisfying results
were achieved with a very limited number of training images
required. The resulting programs are quick enough to run in
real-time on the hardware platforms. In the case of the iCub we
were especially successful in generating different filters for the
hand and the finger tips respectively, allowing for a tracking
even in precise manipulation task solely using the fingers.

Fig. 9. The operations performed by the filter to detect the iCub’s hands.
The (binary) segmentation of the hands is the top-most image.

Whilst the results are hard to compare with other published
work, due to lack of suitable datasets, the results indicate that
CGP-IP is highly competitive. Further, we have seen that CGP-
IP can work with well-known image processing operations and
generate human readable programs. Another issue is that due
to the lack of precise ground truth, it is hard to quantify the
pixel errors of our solutions. Another reason why pixel error is
not a precise measure is the issue that this error will also vary
depending on the distance of the hand to the eye. We plan to
test this in the future with other methods, e.g. by measuring in
operational space the distance between an object and the hand
and the detection distance in the image frame.

In the future we are planning to extend this framework
to allow for a more autonomous and developmental learning
process, where no prior labelling is needed.

Fig. 8. Results when visually locating the fingertips of the iCub with an evolved filter. The images with golden borders are for validation. Green shows the
correct detection; red indicates parts that were not detected by our filter (false negative); blue indicates where the filter falsely detected the hand (false positive).

REFERENCES

[1] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision, 2nd ed. Cambridge University Press, 2000.

[2] R. P. Paul, Robot manipulators: mathematics, programming, and con-
trol. MIT press, 1981.

[3] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo
control,” IEEE Transactions on Robotics and Automation, vol. 12, no. 5,
pp. 651–670, 1996.

[4] F. Chaumette and S. Hutchinson, “Visual servo control, Part I: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82–90, 2006.

[5] M. Goodale, “Visuomotor control: Where does vision end and action
begin?” Current Biology, vol. 8, no. 14, p. 489, 1998.

[6] M. Kölsch and M. Turk, “Robust hand detection,” in Proc. of the Intl.
Conference on Automatic Face and Gesture Recognition, 2004, p. 614.

[7] X. Zhu, J. Yang, and A. Waibel, “Segmenting hands of arbitrary
color,” in Proc. of the Intl. Conference on Automatic Face and Gesture
Recognition, 2000, pp. 446–453.

[8] R. Cutler and M. Turk, “View-based interpretation of real-time optical
flow for gesture recognition,” in Proc. of the Intl. Conference on
Automatic Face and Gesture Recognition, 1998, pp. 416–421.

[9] M. Isard and A. Blake, “Condensationconditional density propagation
for visual tracking,” International journal of computer vision, vol. 29,
no. 1, pp. 5–28, 1998.

[10] W. B. Langdon and P. Nordin, “Evolving Hand-Eye Coordination for a
Humanoid Robot with Machine Code Genetic Programming,” in Proc.
of the European Conference on Genetic Programming (EuroGP), 2001.

[11] M. Hulse, S. McBrid, and M. Lee, “Robotic hand-eye coordination
without global reference: A biologically inspired learning scheme,” in
Proc. of the Intl. Conference on Developmental Robotics, 2009.

[12] J. Nagi, F. Ducatelle, G. A. D. Caro, D. Ciresan, U. Meier, A. Giusti,
F. Nagi, J. Schmidhuber, and L. M. Gambardella, “Max-pooling con-
volutional neural networks for vision-based hand gesture recognition,”

in Proc. of the Intl. Conference on Signal and Image Processing
Applications (ICSIPA), 2011, pp. 342–347.

[13] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficient model-based
3d tracking of hand articulations using kinect,” in Proc. of the British
Machine Vision Conference”, 2011.

[14] Y. Ehara, H. Fujimoto, S. Miyazaki, S. Tanaka, and S. Yamamoto,
“Comparison of the performance of 3d camera systems,” Gait &
Posture, vol. 3, no. 3, pp. 166–169, 1995.

[15] O. Porges, K. Hertkorn, M. Brucker, and M. A. Roa, “Robotic hand
pose estimation using vision,” Poster Session at the IEEE RAS Summer
School on “Robot Vision and Applications”, 2012.

[16] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[17] T. V. Spina, J. A. Montoya-Zegarra, A. X. Falcao, and P. A. V.
Miranda, “Fast interactive segmentation of natural images using the
image foresting transform,” in Proc. of the Intl. Conference on Digital
Signal Processing, 2009, pp. 1–8.

[18] S. Shirakawa and T. Nagao, “Feed forward genetic image network:
Toward efficient automatic construction of image processing algorithm,”
in Proc. of the Intl. Symposium on Visual Computing, ser. Lecture Notes
in Computer Science, vol. 4842. Springer, 2007, pp. 287–297.

[19] J. F. Miller, “An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach,” in Proc.
of the Genetic and Evolutionary Computation Conference, 1999, pp.
1135–1142.

[20] J. F. Miller, Ed., Cartesian Genetic Programming, ser. Natural Com-
puting Series. Springer, 2011.

[21] J. F. Miller and S. L. Smith, “Redundancy and computational efficiency
in cartesian genetic programming,” in IEEE Transactions on Evolua-
tionary Computation, vol. 10, 2006, pp. 167–174.

[22] L. Sekanina, S. L. Harding, W. Banzhaf, and T. Kowaliw, “Image
processing and CGP,” in Cartesian Genetic Programming, ser. Natural
Computing Series, J. F. Miller, Ed. Springer, 2011, ch. 6, pp. 181–215.

[23] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[24] S. Harding, J. Leitner, and J. Schmidhuber, “Cartesian genetic pro-
gramming for image processing,” in Genetic Programming Theory and
Practice X (in press). Springer, 2013.

[25] J. Leitner, S. Harding, A. Förster, and J. Schmidhuber, “Mars Terrain
Image Classification using Cartesian Genetic Programming.” in Proc.
of the Intl. Symposium on AI, Robotics and Automation in Space.

[26] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme.” Biochimica et Biophysica Acta, vol.
405, no. 2, pp. 442–451, 1975.

[27] Wikipedia, “Matthews correlation coefficient — wikipedia, the free
encyclopaedia,” 2012, [accessed 21-March-2012]. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Matthews
_correlation_coefficient&oldid=481532406

[28] S. Harding, V. Graziano, J. Leitner, and J. Schmidhuber, “Mt-cgp:
Mixed type cartesian genetic programming,” in Proc. of the Genetic
and Evolutionary Computation Conference, 2012.

[29] S. Harding and W. Banzhaf, “Genetic programming on GPUs for
image processing,” International Journal of High Performance Systems
Architecture, vol. 1, no. 4, pp. 231–240, 2008.

[30] S. L. Harding and W. Banzhaf, “Distributed genetic programming
on GPUs using CUDA,” in Workshop on Parallel Architectures and
Bioinspired Algorithms, 2009, pp. 1–10.

[31] T. Martı́nek and L. Sekanina, “An evolvable image filter: Experimental
evaluation of a complete hardware implementation in fpga,” in Proc.
of the Intl. Conference Evolvable Systems: From Biology to Hardware,
2005, pp. 76–85.

[32] S. Harding, “Evolution of image filters on graphics processor units using
cartesian genetic programming,” in Proc. of the World Congress on
Computational Intelligence, 2008, pp. 1921–1928.

[33] J. Leitner, S. Harding, M. Frank, A. Förster, and J. Schmidhuber, “An in-
tegrated, modular framework for computer vision and cognitive robotics
research (icvision),” in Biologically Inspired Cognitive Architectures
2012, A. Chella, R. Pirrone, R. Sorbello, and K. R. Jòhannsdòttir, Eds.
Springer, 2013, vol. 196, pp. 205–210.

[34] D. Izzo, M. Ruciński, and F. Biscani, “The generalized island model,”
Parallel Architectures and Bioinspired Algorithms, pp. 151–169, 2012.

[35] S. Harding, W. Banzhaf, and J. F. Miller, “A survey of self modifying
cartesian genetic programming,” in Genetic Programming Theory and
Practice VIII, R. Riolo, T. McConaghy, and E. Vladislavleva, Eds.
Springer, 2010, vol. 8, pp. 91–107.

[36] N. G. Tsagarakis et al., “iCub: the design and realization of an open
humanoid platform for cognitive and neuroscience research,” Advanced
Robotics, vol. 21, pp. 1151–1175, Jan. 2007.

[37] G. Metta et al., “The iCub humanoid robot: An open-systems platform
for research in cognitive development,” Neural Networks, vol. 23, no.
8-9, pp. 1125–1134, Oct. 2010.

[38] C. Ciliberto, F. Smeraldi, L. Natale, and G. Metta, “Online multiple
instance learning applied to hand detection in a humanoid robot,” in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on. IEEE, 2011, pp. 1526–1532.

