
Learning What to Ignore:
Memetic Climbing in Topology and Weight space

Julian Togelius, Faustino Gomez and Jürgen Schmidhuber
Dalle Molle Institute for Artificial Intelligence (IDSIA)

Galleria 2, 6298 Manno-Lugano
Switzerland

{julian, tino, juergen}@idsia.ch

Abstract—We present the memetic climber, a simple search
algorithm that learns topology and weights of neural networks
on different time scales. When applied to the problem of learn-
ing control for a simulated racing task with carefully selected
inputs to the neural network, the memetic climber outperforms
a standard hill-climber. When inputs to the network are less
carefully selected, the difference is drastic. We also present two
variations of the memetic climber and discuss the generalization
of the underlying principle to population-based neuroevolution
algorithms.
Keywords: neuroevolution, reinforcement learning, net-

work topology, memetic algorithms

I. INTRODUCTION

Neuroevolution, or the training of neural networks using
evolutionary algorithms, is conceptually simple, has very
broad applicability, and has been shown to outperform classi-
cal reinforcement learning algorithms on difficult benchmark
problems [1], [2]. Most neural networks can be defined by
their topology (the set of neurons and connections between
them) and connection weights, and the genetic crossover and
mutation operators can in principle be applied to both.

Although the majority of neuroevolutionary algorithms
stick to a fixed topology and evolve only the weights (see
e.g. references 26–112 in [1]) as they represent a relatively
smaller search space, a large body of work suggests that the
topology of a neural network interacts in a nontrivial way
with its evolvability, i.e. the ability of evolutionary algorithms
to find weight settings for networks that produce a desired
behavior or approximate a given function. It is not as easy as
getting the size of the network right: two networks with the
same number of neurons and connections can have drastically
different evolvability for a given problem. Specifically, a fully
connected network (e.g. a standard MLP) can often be made
more evolvable by simply removing a few key connections.

The simplest hypothesis that explains this phenomenon is
that the availability of certain information at certain points
in the network leads evolution into local optima. Calabretta
et al. call this effect neural interference. For those of us who
wish to use neuroevolution for learning control (e.g. for game
agents or robots) with minimal human domain knowledge,
this poses a problem. We would rather leave it to the learning
algorithm to decide which inputs to use and which to ignore.
Not knowing how to deal with this effect may explain, in part,

the lack of published successful results for evolving agents
that use high-dimensional input data, e.g. vision. Almost all
published papers in evolutionary robotics and game playing
use networks with few (on the order of 10 to 20) inputs (with
the notable exception of [3]).

Realizing the importance of topology, many researchers
have devised algorithms that evolve topology and weights of
networks in tandem. Some of the more well-known efforts
include those of Gruau (Cellular Encoding; [4]) and Stanley
(NEAT; [5]). These algorithms can create networks with
very unusual topologies that perform significantly better than
fully-connected topologies with evolved weights, at least on
specific tasks.

There is a problem with evolving the topology, though:
changing the topology of a network is almost always very
disruptive. Critical links can be disabled, and enabling pre-
viously inoperative links can be equally destructive. If the
network has a reasonably high fitness, it will often drop
immediately to near the level of a random network after
this kind of structural modification, so simply applying a
mutation operator that changes topology as well as weights
is unlikely to work very well.

In this paper, we explore a simple way of addressing
this issue by evolving the structure and weights of a neural
network at different time scales, where “global” search in
topology space is interleaved with “local” search in weight
space. In other words, after changing a topology, try to find
a good weight combination for a little while before deciding
whether to keep the new topology or revert to the old one.
The hope is that this scheme will yield a family of memetic
algorithms [6], that might initially learn more slowly than
methods that search for weights only, but ultimately reach
higher fitness by avoiding topology-induced local optima.
The authors are not aware of any previous applications of
memetic algorithms to evolving neural networks.

The next section, provides some additional background on
the interaction between evolvability and network topology.
In section III, we present five algorithms that are compared
experimentally in a race car control task in section IV.
Section V discusses our results and future directions, and
section VI summarizes our findings.

II. RELATED WORK

Several studies have demonstrated that often increasing
evolvability is simply matter of removing a single neural
connection (e.g. Nolfi was able to evolve better robot lo-
calization by applying such a minimal lesion to a recurrent
network [7]), or removing a certain input, as shown by
Lucas and Togelius’ work in evolving waypoint-following
behavior for a holonomic agent in simulation [8]. In that
study, the authors found that effective controllers would only
evolve when a specific input representing the angle between
the agent’s direction of movement and the direction to the
waypoint was absent.

Restricting network topology can also encourage modular-
ity to evolve for tasks where multiple, relatively orthogonal
functional competencies are required. Calabretta et al. at-
tempted to evolve networks to perform two different image
processing tasks, resembling the “what?” and “where?” tasks
in human neurobiology, simultaneously. They found that for
this to work, the two tasks needed to be performed by largely
separate networks, otherwise networks would evolve that
could solve only one of the tasks [9]. Similarly, De Nardi et
al. found that to evolve successful helicopter control it was
crucial to enforce some modularity—it was necessary to keep
the yaw stabilization module separate from the networks that
controlled other aspects of the helicopter’s flight [10]. If a
network with access to all inputs was able to control the yaw
of the helicopter, it quickly learned to keep hovering while
spinning, which is a local optimum as goal-directed flight
requires stable yaw. Keeping the yaw stabilization module
separate prevented evolution from taking the easy way out.

Of course is it not always possible to identify the best
connectivity experimentally, and searching topology space
can be problematic since mutations that affect the connec-
tivity of a network can often be very disruptive. There has
been some work addressing this problem, most notably the
NEAT algorithm [5], through a mechanism called innovation
protection. Whenever a network with a sufficiently different
new topology is created, it is assigned its own “species”,
and it or its offspring (with the same topology but different
weights) are allowed to stay in the population for a few
generations, even if its fitness is much below that of the
best networks in the population. If, at the end of this “grace
period”, weight settings have been found that give networks
of this topology a fitness among the best in the population, it
can stay on, otherwise the topology is removed. This feature
is similar to what we are proposing here, though NEAT is a
considerably more complex algorithm.

III. METHODS

This section describes the neural network representation,
the five search algorithms, and test domain used in the
experiments in section IV.

A. Masked neural networks
In all of the experiments, solutions are represented by a

Multi-Layered Perceptron (i.e. a feedforward network) with

Algorithm 1: Hill-Climber (n)
INITIALIZE (champion)1

fchamp ← EVALUATE (champion)2

for i=1 to n do3

contender ← champion4

WEIGHTMUTATE (contender)5

fcntder ← EVALUATE (contender)6

if fcntder >= fchamp then7

champion ← contender8

end9

end10

one hidden layer, where each neural connection has an as-
sociated boolean variable that determines whether it is on or
off. The network as a whole is thus defined by n real numbers
denoting connection weights and n booleans denoting which
connection weights are active (i.e. the ”mask”). When an
input vector is propagated through the network, only those
connections whose mask bit is set are used to compute the
network output. The search algorithms operate on the mask
networks via two mutation operators: weight mutation and
topology mutation. Weight mutation adds values drawn from
a Gaussian distribution with mean 0 and standard deviation
0.1 to all connection weights; this includes weights which
are currently marked as off. Topology mutation consists
in considering each bit in the mask, and flipping that bit
with probability 0.05. In the pseudocode for the algorithms
presented below, weight and topology mutation are invoked
by the WEIGHTMUTATE() and TOPOLOGYMUTATE() func-
tions, respectively.

In all experiments, all connection weights were initialized
to 0; the initialization of the mask varied for each experiment,
as described below.

B. Algorithms

Algorithm 1: Hill-Climber
This algorithm is equivalent to a (1+1) evolution strategy
which has a population of one individual (the champion),
and each update (generation), it evaluates the fitness of the
champion, generates a new individual (the contender) by
copying the champion and mutating the copy, and evaluates
the fitness of the contender. If the fitness of the contender is
higher than or equal to that of the champion, the champion
is replaced by the contender, otherwise the contender is
discarded and the champion remains.

Algorithm 2: Simultaneous Climber
This algorithm is the same as Algorithm 1, except that
on each iteration the topology is also mutated, not just
the weights. Arguably, this constitutes the simplest possible
topology-evolving algorithm. However, given that topology
mutations are typically destructive, this algorithm is not be
expected to work very well; the probability of a beneficial
weight mutation and a beneficial topology mutation co-

Algorithm 2: Simultaneous Hill-Climber (n)
INITIALIZE (champion)1

fchamp ← EVALUATE (champion)2

for i=1 to n do3

contender ← champion4

WEIGHTMUTATE (contender)5

TOPOLOGYMUTATE (contender)6

fcntder ← EVALUATE (contender)7

if fcntder >= fchamp then8

champion ← contender9

end10

end11

Algorithm 3: Memetic Climber (n,m)
INITIALIZE (champion)1

fchamp ← EVALUATE (champion)2

for i=1 to n do3

contender ← champion4

TOPOLOGYMUTATE (contender)5

for j=1 to m do6

fcntder ← EVALUATE (contender)7

subcontender ← contender8

WEIGHTMUTATE (subcontender)9

fsubcnt ← EVALUATE (subcontender)10

if fsubcnt >= fcntdr then11

contender ← subcontender12

end13

end14

fcntder ← EVALUATE (contender)15

if fcntder >= fchamp then16

champion ← contender17

end18

end19

occurring is simply too low.

Algorithm 3: Memetic Climber
This is the memetic version of the hill-climber. Each gener-
ation, a contender is generated by copying the champion and
applying topology mutation, which typically causes a large
drop in fitness. Algorithm 1 is then applied for m iterations
(lines 6–14) in order to find better weights for the mutated
topology.

Algorithm 4: Constrained Climber
Algorithm 3 puts no restrictions on topology mutation, and
thus on how many connections can be on at a particular point
in time. This means that the topologies are not searched
in any particular order, or with any bias for a particular
network size. However, there are at least two orthogonal
reasons for ordering solution candidates such that simple
ones are considered first: (1) testing simple candidates tends
to consume less computation, (2) Occam’s Razor suggests
that small networks tend to generalize better. The constrained

Algorithm 4: Constrained Memetic Climber (n,m,p, k)
INITIALIZE (champion)1

fchamp ← EVALUATE (champion)2

for i=1 to n do3

contender ← champion4

TOPOLOGYMUTATE (contender)5

PRUNECONNECTIONS (contender, p)6

for j=1 to m do7

fcntder ← EVALUATE (contender)8

subcontender ← contender9

WEIGHTMUTATE (subcontender)10

fsubcnt ← EVALUATE (subcontender)11

if fsubcnt >= fcntdr then12

contender ← subcontender13

end14

end15

fcntder ← EVALUATE (contender)16

if fcntder >= fchamp then17

champion ← contender18

end19

if i >k then20

p ← 2 ∗ p21

k ← 2 ∗ k22

end23

end24

climber uses a principled scheme for incrementally allocating
the total search time borrowed from universal program search
methods [11], [12]: spend twice the time on programs of size
2l that is spent on programs of size l. This algorithm starts
by searching for weights for a topologies of an initial “size”
specified by the parameter p: the probability that a connection
is active. After k generations both k and p are doubled
(lines 20–23) so that topologies with, on average, twice
the number of connections are searched for twice as many
generations. The network size limit is enforced after every
topology mutation by the PRUNECONNECTIONS() function
(line 6) which randomly switches connections off until only
as many connections as allowed are active.

Algorithm 5: Inverse Climber
This is the same as Algorithm 3 (memetic climber) except
that the two types of mutations are swapped. Each generation,
the algorithm makes one weight mutation and then searches
topology space for m steps, in order to find a good mask for
that particular configuration of weights.

C. The Race Car test domain
The five algorithms were tested in the “simplerace” simu-

lated car racing domain, previously used for the 2007 IEEE
CEC car racing competition1. A complete description can
be found in [13]; source code is available on the car racing
competition web page. The objective of this task is to drive a

1http://julian.togelius.com/cec2007competition

Algorithm 5: Inverse Memetic Climber (n,m)
INITIALIZE (champion)1

fchamp ← EVALUATE (champion)2

for i=1 to n do3

contender ← champion4

WEIGHTMUTATE (contender)5

for j=1 to n do6

fcntder ← EVALUATE (contender)7

subcontender ← contender8

TOPOLOGYMUTATE (subcontender)9

fsubcnt ← EVALUATE (subcontender)10

if fsubcnt >= fcntdr then11

contender ← subcontender12

end13

end14

fcntder ← EVALUATE (contender)15

if fcntder >= fchamp then16

champion ← contender17

end18

end19

car through as many waypoints as possible from a randomly
generated sequence in a continuous environment with simple
physics. Fitness is defined as the number of waypoints passed
in 500 time steps, averaged over several trials.

We use the “competition” version of the task, where a
car is evaluated using three different scenarios: (1) on its
own, (2) against an opponent employing a speed-limited
greedy strategy (going straight for the current way point),
and (3) against an opponent employing a more sophisticated
strategy that selects which way point to aim for based on
which car is closest to the current way point. When racing
against an opponent, the task gains a strategic component:
choosing the best next waypoint can require predicting which
one the opponent is heading for. The fitness of a controller
is calculated as the average number of way points passed
over ten trials in each of the three scenarios. This version of
the task was used for the initial ranking of competitors in
the CEC competition, meaning that there are plenty of good
controllers with which to compare our results.

Depending on the experiment, we use one of two different
sets of inputs: standard or extended. The standard set of
inputs is a vector of eight real values:

INPUT 1: constant bias term
INPUT 2: speed of the car
INPUT 3: angle to the current way point
INPUT 4: distance to the current way point
INPUT 5: angle and
INPUT 6: distance to the next waypoint
INPUT 7: angle and
INPUT 8: distance to the other vehicle (if present)

These inputs are chosen based on the authors’ considerable
familiarity with the domain, and provide sufficient informa-
tion for neural networks to solve the task competently. Note

that the standard inputs have a “first-person perspective”:
all of the values could be obtained from sensors actually
mounted on the car.

The extended set of inputs consists of the 17 real values;
the standard inputs plus:

INPUT 9: orientation of the car (in Cartesian space)
INPUT 10: angular velocity of the car
INPUT 11: speed of the other vehicle
INPUT 12: x-coordinate of car position
INPUT 13: y-coordinate of car position
INPUT 14: x-coordinate of opponent car position
INPUT 15: y-coordinate of opponent car position
INPUT 16: current way point in Cartesian coordinates
INPUT 17: orientation of the car (static reference frame)

These extra inputs provide valuable information about the
state of the system that complements the standard inputs, and
could potentially be used to construct a better performing
controller than would be possible using only the standard
inputs. However, because most of the extra information
cannot be easily gathered from sensors present on the actual
car (i.e. have a “third-person perspective”) more computation
would be needed to make effective use of this information.
Still, one would expect a competent learning algorithm to
disregard information it cannot handle, and start by using
those inputs that can easily be exploited.

The two outputs of the network are always interpreted
as the steering and driving command of the car; in both
configurations the network has a hidden layer of six neurons,
making for a total of 60 and 114 neural connections (and thus
the same number of bits in the mask) for the standard and
extended inputs, respectively.

IV. EXPERIMENTS

In this section, we describe a series of experiments per-
formed with the hill-climber and variations of the memetic
climber. Note that only single-search-point (i.e. ontogenetic)
search algorithms will be explored here; section V will
discuss extensions of the core technique to population-based
search, e.g. genetic algorithms.

In every experimental run, a total of 20000 networks
were evaluated. For the hill-climber (algorithm 1) and si-
multaneous hill-climber (algorithm 2), this means running
the algorithm for n = 20000 generations; for the memetic
climbers (algorithms 3, 4, and 5), the number of local search
steps m was set to 50, for a total of n = 20000/50 = 400

generations. For the constrained hill climber the initial size-
probability p was set to 0.05, and the number of generations
to search this initial size k was set to 4.

Each experiment was repeated 50 times, and the graphs
show the best fitness and standard deviation per generation
averaged over all 50 runs.

A. Hill-climbing in weight space
In order to investigate the effect of different levels of

connectivity in the network, the hill-climber was not only
run with fully connected networks, but also on networks with

random connectivity, i.e. where not all of the bits in the mask
are set. For the runs with less than full connectivity, a new
mask is randomly generated for each run, with a probability
p of each bit being set.

Evaluations x 50

Fi
tn

es
s

p = 0.25

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

p = 0.75

p = 1.0

p = 0.5

 0

Fig. 1. Hill-climber with standard inputs. Each curve shows the average
of 50 runs for a different proportion of connections in the network switched
on. Each tick on the x-axis represents 50 generations.

Figure 1 shows the performance of the simple hill-climber
for four different mask probabilities (1.0, 0.75, 0.5 and 0.25),
using the standard set of inputs. The simple hill-climber
performs well on this task when searching the space of
weights for fully connected networks using a hand-picked
set of inputs. The value at which the fitness levels off is
just below the lowest fitnesses in the league table for the
CEC car racing competition, and indicates well-tuned, though
probably not tactical, driving.

In general, the more connections are turned on in the mask,
the better solutions the algorithm is able to find. So simply
turning off random connections in the hope of improving
evolvability is, unsurprisingly, not a good idea.

Evaluations x 50

p =1.0

p = 0.75

p = 0.5

 p = 0.25

Fi
tn

es
s

 0
 100 150 200 250 300 350 400

 1.5

 0

 2.5

 2

 1

 0.5

 50

Fig. 2. Hill-climber with extended inputs. Each curve shows the average
of 50 runs for a different proportion of connections in the network switched
on. Each tick on the x-axis represents 50 generations.

In figure 2, the same four hill-climber configurations are
plotted working in the space of the larger networks that
make use of the extended inputs. Here, we see a radically

different picture. None of the configurations manage to find
good weights (a fitness of around 3.0 is only marginally
better than random driving; compare to fitness in figure 1),
though those with fewer connections (p = 0.25 and p = 0.5)
reached markedly higher fitness than those with most of the
connections switched on. Apparently, the extra inputs cause
the hill-climbers to get stuck in local optima very early on,
before any sensible behavior has evolved. Furthermore, the
final fitness of the runs with low p had a standard deviation
that was about as high as the fitness itself (3.2 and 2.3,
respectively), meaning that randomly removing connections
might in some cases lead to a topology that allows for
reasonably good fitness to evolve, but might just as well lead
to one where evolvability is virtually zero.

B. Simultaneous hill-climbing in weight and topology space
As expected, this algorithm does not perform well for

either version of the task. In fact, no significant fitness growth
was seen over many runs of this algorithm. We omit the
graph.

C. Memetic climbing in weight and topology space
Fi

tn
es

s

Evaluations x 50

p = 1.0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400

p = 0

 0

Fig. 3. Memetic climbers with standard inputs, starting with either
all connections switched on or all switched off. Each tick on the x-axis
represents one topology mutation and 50 steps of hill-climbing in weight
space. Each curve is the average of 50 runs.

Figure 3 shows the progress of the memetic climber for
networks with standard inputs. We tested two different ways
of initializing the runs: having all connections switched off
in the mask, and having all connections switched on. As is
apparent from the graphs, the memetic climber works well
under both conditions. The only significant difference is that
fitness grows more slowly when connections are initially
switched off.

In figure 4, we plot the performance of the memetic
climbers for networks with extended inputs, again activating
either all or none connections at the start of each run. It is im-
mediately clear that there is a qualitative difference between
the performance of the memetic climber and that of the hill-
climber with this larger set of inputs; the memetic climber
reaches an order of magnitude higher fitness. The ongoing
search in topology space helps to avoid local minima when

Evaluations x 50

Fi
tn

es
s p = 1.0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

 p= 0

 0

Fig. 4. Memetic climbers with extended input, starting with either all
connections on or all connections switched off. Each tick on the x-axis
represents one topology mutation and 50 steps of hill-climbing in weight
space. Each curve is the average of 50 runs.

searching in weight space. It is also clear that initializing
a run with all connections active results in slower learning
than initializing it with all connections off.

What the graphs do not show is the number of connections
active at the end of each run, or how these connections are
distributed. It turns out that regardless of the input set used
or the number of connections turned on initially, about half
of the connections are turned on at the end of a successful
run. So for the standard inputs with p = 0.0, on average
31.0 (s.d. 3.4) connections are turned on at the end of the
run, and for p = 1.0, 31.0 (3.71) connections are on, out of
a total of 60. Using extended inputs and networks with 114
connections, runs that start with p = 0.0 finish with 55.0
(5.6) connections on, and starting with p = 1.0 finish with
54.6 (5.0) active connections.

Looking at the distribution of connections switched on in
the masks of the evolved networks, it is hard to see a clear
pattern. The probability is 0.51 that any given outgoing con-
nection from any of the first 8 input neurons (corresponding
to the standard inputs) will be switched on. This probability
drops to 0.45 for the 9 input neurons that handle the extra
inputs for the extended input set, a smaller difference than
we expected. No individual input neuron has a much lower
probability of having outgoing connections than any other.
Therefore, it is not the case that evolution simply decides
to turn off certain inputs. It is however possible that certain
inputs are more unanimously turned off at earlier stages of
the search process, something we have not investigated.

D. Memetic climbing with constrained network growth
Figure 5 plots the performance of the constrained memetic

climber on networks with standard and extended inputs. The
algorithm works well in both cases; however, final fitness
is on average slightly higher for networks with standard
inputs than those with extended inputs. One notable differ-
ence compared to the standard memetic climber is that the
constrained memetic climber learns more slowly, i.e. takes
longer time to reach the same fitness. Another difference is

Evaluations x 50

Fi
tn

es
s

extended

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

standard

 0

Fig. 5. Constrained growth memetic climbers with both standard and
extended inputs. Each curve is the average of 50 runs.

that the constrained memetic climber learns sparser networks
than the memetic climber. With standard inputs, the networks
of the final generation had on average 22.3 (s.d. 1.1) active
connections, and the extended input networks average 44.4
(0.9) active connections. For networks with extended input,
the connections from the first 8 input neurons had probability
0.33 of being switched on, and the corresponding probability
for the 9 other input neurons is 0.28. Further study is needed
to determine whether these simpler networks yield better
generalization.

E. Inverse memetic climbing

Fi
tn

es
s

Evaluations x 50

extended

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

standard

 0

Fig. 6. Inverse memetic climbers with both standard and extended input.
Each curve is the average of 50 runs.

Figure 6 shows the performance of the inverse climber
on both standard and extended input networks. Just like the
other two memetic climbers, this algorithm manages to reach
high fitness in both conditions, and it reaches slightly higher
fitness using the standard inputs compared to the extended
inputs. The resulting networks are somewhat smaller than
those produced by the standard memetic climber, but some-
what larger than those produced by the constrained memetic
climber: 27.7 (4.2) for the standard inputs, and 50.8 (5.0)
for the extended inputs. For networks with extended inputs,

connections from the first 8 input neurons had probability
0.48 and from other inputs had probability 0.42.
F. Comparison of different climbers

inverse memetic

Evaluations x 50

hillclimber

memetic

constrained growth memetic

Fi
tn

es
s

 0

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400

 6

 4

 2

 8

Fig. 7. Algorithm comparison for standard inputs: hill-climber (p =

1.0), memetic climber (p = 1.0), inverse memetic climber (p = 0.0) and
constrained growth memetic climber (p = 0.0). Each curve is the average
of 50 runs.

In figure 7 we plot the fitness growth all the climbers
(except the simultaneous climber), using the best parameter
setting found (for the case where more than one param-
eter setting has been tested). All three memetic climbers
learn significantly better solutions than the hill-climber. The
differences in final fitness between the different types of
memetic climbers are very small (though the standard variety
seems marginally better); the differences in learning speed,
however, are quite large. Only the standard memetic climber
was able to match the hill-climber’s speed, with the inverse
climber being much slower, and the constrained climber
slower still. The standard variety reaches close to final fitness
after 50 topology mutations, whereas it is unclear whether
the constrained variety has leveled off after 400.

Evaluations x 50

Fi
tn

es
s

memetic

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

hillclimber

inverse memetic

constrained growth memetic

 0

Fig. 8. Algorithm comparison for extended inputs: hill-climber (p =

1.0), memetic climber (p = 0.0), inverse memetic climber (p = 0.0) and
constrained growth memetic climber (p = 0.0). Each curve is the average
of 50 runs.

In the same manner, all four types of climbers are com-
pared on networks with extended input sets in figure 7

(note that the memetic climber starts with p = 0.0 for
these networks). The most obvious effect here is that all
three memetic climbers vastly outperformed the standard
hill climber. The difference between the memetic climbers
was less pronounced in terms of learning rate, and more
pronounced in terms of final fitness, than is the case for
networks with standard inputs. The inverse memetic climber
came out slightly better than the other two memetic climbers
on both measures; additionally, the standard deviation in final
fitness for the inverse memetic climber was lower (2.1) than
for the standard (3.9) or constrained (4.0) varieties. The main
result, however, is that all three memetic climbers solved the
problem reliably, whereas the hill-climber never solved it.

V. DISCUSSION

As hypothesized the memetic climber outperforms the
standard hill-climber on both versions of the benchmark.
The modest performance advantage on the standard input
version of the problem may reflect that the score attained
by the hill-climber is already very close to optimal for a
reactive controller using this limited subset of inputs (those
controllers that scored above 15 in the 2007 CEC competition
accessed larger subsets of the game state, and often included
a simulation of the complete game environment within the
controller).

The magnitude of the performance increase for the
memetic climber compared to the standard hill-climber when
the using the extended inputs is somewhat surprising, how-
ever. Even more so is the good performance of the inverse
memetic climber, suggesting that the important factor for
success of this type of algorithm is that the two types of
search occur at different time scales, and that which type
happens at which of time scales is less important.
A. Parameter settings

Most of the parameter settings for the algorithms presented
above where selected based on intuition, without much search
for other settings. Most significantly, this includes the number
of local search steps, m, per global search step, n, (e.g.
number of weight mutations per topology mutation in the
standard memetic climber), and the rate of growth in the
constrained memetic climber.

The number of local search steps per global mutation
is probably the most important parameter of this class of
algorithms, and should be explored further, including a
self-adaptive variation where the ratio between local and
global search changes during the search. Another appealing
possibility is to not have a fixed number of steps to search,
but rather continue the local search until no progress has
been made for a specified number of steps.

The modest impact of constraining network size in the
memetic climber may very well be a result of poor settings
for the growth constraint parameters. For example, the ab-
sence of fitness growth at the very beginning of runs of the
constrained memetic climber point to increasing the initial
proportion of allowed connections. Again, this merits further
investigation.

B. Possible extensions to population-based search
While the memetic climber performed very well in the

race car task, it still searches topology space using a single
search point (structural hill climbing) and is therefore sus-
ceptible to local minima [14]. Applying the principle to a
population-based framework would have a clear advantage
in this respect. The simplest such approach would amount to
parallelizing the memetic climber, with successful networks
having a number of offspring and unsuccessful networks
being removed from the population. Introducing crossover
into such an algorithm, we could either choose to see each
network as composed of two “natural” building blocks (the
mask and the connection weights) and perform crossover
so that a mask from one network was combined with the
weights of another, or restrict crossover to networks with the
same or similar masks, in an effort to battle the competing
conventions problem. Alternatively, a single mask could be
used for the whole population, and population-based search
used for the weights only. A yet more interesting prospect is
to cooperatively coevolve masks and weights.

VI. CONCLUSIONS

This paper explored the very simple idea of evolving
topologies and weights of neural networks on different
time scales. The hypothesis being that by only keeping a
topology mutation if a subsequent hill-climb in weight space
yielded an improvement relative to the previous topology, the
destructive effects of topology mutation could be avoided.
At the same time, the search in topology space would find
topologies that avoided the sort of neural interference that
often causes local optima for weight space search. Three
variations of the this memetic climber were compared to
a standard hill-climber on two versions of an established
car racing benchmark. The memetic climbers were very
competitive when networks were fed low-dimensional sensor
input, and vastly outperformed the hill-climber when high-
dimensional input was used. The memetic climber is a
simple algorithm with broad applicability, and the core idea
can easily be combined with population-based evolutionary
algorithms.

VII. ACKNOWLEDGMENTS

This research was supported in part by the Swiss National
Science Foundation (SNF) grant number 200021-113364/1.

REFERENCES

[1] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[2] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Efficient non-
linear control through neuroevolution,” in Proceedings of the European
Conference on Machine Learning (ECML), 2006.

[3] D. B. D’Ambrosio and K. O. Stanley, “A novel generative encoding for
exploiting neural network sensor and output geometry,” in Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO
2007). New York, NY: ACM, 2007.

[4] F. Gruau, “Neural network synthesis using cellular encoding and the
genetic algorithm,” Ph.D. dissertation, Ecole Normale Superieure de
Lyon, 1994.

[5] K. O. Stanley, “Efficient evolution of neural networks through com-
plexification,” Ph.D. dissertation, Department of Computer Sciences,
University of Texas, Austin, TX, 2004.

[6] P. Moscato, “On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms,” Caltech Concurrent
Computation Program, Tech. Rep., 1989.

[7] S. Nolfi, “Evolving robots able to self-localize in the environment: the
importance of viewing cognition as the result of processes occuring at
different timescales,” Connection Science, vol. 14, no. 3, pp. 231–244,
2002.

[8] S. M. Lucas and J. Togelius, “Point-to-point car racing: an initial study
of evolution versus temporal difference learning,” in Proceedings of
the IEEE Symposium on Computational Intelligence and Games, 2007.

[9] R. Calabretta, A. Di Fernando, G. P. Wagner, and D. Parisi, “What
does it take to evolve behaviorally complex organisms?” BioSystems,
2002.

[10] R. De Nardi, J. Togelius, O. Holland, and S. M. Lucas, “Evolution
of neural networks for helicopter control: Why modularity matters,”
in Proceedings of the IEEE Congress on Evolutionary Computation,
2006.

[11] L. A. Levin, “Universal sequential search problems,” Problems of
Information Transmission, vol. 9, no. 3, pp. 265–266, 1973.

[12] J. Schmidhuber, “Optimal ordered problem solver,” Machine Learning,
vol. 54, pp. 211–254, 2004.

[13] J. Togelius, “Optimization, imitation and innovation: Computational
intelligence and games,” Ph.D. dissertation, Department of Computing
and Electronic Systems, University of Essex, Colchester, UK, 2007.

[14] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary al-
gorithm that constructs recurrent neural networks,” IEEE transactions
on Neural Networks, vol. 5, pp. 54–65, 1994.

