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Abstract
Unsplittable flow on a path (UFP) is an important and well-studied problem. We are given a
path with capacities on its edges, and a set of tasks where for each task we are given a demand,
a subpath, and a weight. The goal is to select the set of tasks of maximum total weight whose
total demands do not exceed the capacity on any edge. UFP admits an (1 + ϵ)-approximation with
a running time of nOϵ(poly(log n)), i.e., a QPTAS [Bansal et al., STOC 2006; Batra et al., SODA
2015] and it is considered an important open problem to construct a PTAS. To this end, in a series
of papers polynomial time approximation algorithms have been developed, which culminated in a
(5/3 + ϵ)-approximation [Grandoni et al., STOC 2018] and very recently an approximation ratio of
(1 + 1

e+1 + ε) < 1.269 [Grandoni et al., 2020]. In this paper, we address the search for a PTAS from
a different angle: we present a faster (1 + ϵ)-approximation with a running time of only nOϵ(log log n).
We first give such a result in the relaxed setting of resource augmentation and then transform it to
an algorithm without resource augmentation. For this, we present a framework which transforms
algorithms for (a slight generalization of) UFP under resource augmentation in a black-box manner
into algorithms for UFP without resource augmentation, with only negligible loss.
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1 Introduction

The unsplittable flow on a path problem (UFP) is a natural packing problem which has
received a lot of attention, e.g., [3, 17, 15, 6, 7, 4, 8, 9]. We are given a path G = (V, E)
with a capacity u(e) ∈ N0 for each edge e ∈ E and a set of tasks T . For each task i ∈ T

we are given a sub-path P (i) of E, a demand d(i) ∈ N0, and a weight (or profit) w(i) ∈ N0.
For any set of tasks T ′ ⊆ T , we define d(T ′) :=

∑
i∈T ′ d(i) and w(T ′) :=

∑
i∈T ′ w(i) and for

each e ∈ E we define Te ⊆ T to be the set of all tasks i ∈ T using e, i.e., such that e ∈ P (i).
Similarly we sometimes say that i is contained, contains, or intersects a subpath P if P (i)
does. The goal is to select a set of tasks T ′ ⊆ T of maximum total weight w(T ′) such that
T ′ obeys the edge capacities, i.e., d(T ′ ∩ Te) ≤ u(e) for each edge e ∈ E. We denote by n the
size of the input, and hence in particular |T | ≤ n and |E| ≤ n.

UFP is a generalization of Knapsack (i.e., if |E| = 1) and it is motivated by various
applications. For example, the path G can represent a network with a chain of communication
links in which we seek to select the most profitable set of possible transmissions that obey
the given edge capacities. Also, the edges in E can correspond to discrete time slots, each
task models a job that we might want to execute, and the edge capacities model the available
amount of a resource shared by the jobs like energy or machines. Also, there is a connection
between UFP and general caching, i.e., where pages can have different (possible non-unit)
sizes and different costs for being evicted [12].

There is a (1 + ϵ)-approximation algorithm known for UFP with running time of
nOϵ(log n) [7], i.e., a QPTAS (improving an earlier QPTAS in [5]), and it has been a
long-standing open problem to construct a PTAS. Towards this goal, polynomial time
approximation algorithms for UFP have been developed and the best known approximation
ratio has been gradually improved from O(log n) [6] to 7 + ϵ [8], 2 + ϵ [3], and 5/3 + ϵ [17],
while the currently best known ratio ratio is 1 + 1

1+e + ϵ < 1.269 [15].

1.1 Our Contribution
In this paper, we contribute to the search for a PTAS for UFP from a different angle:
we improve the running time of the known QPTAS for UFP [7] and present a (1 + ϵ)-
approximation with a running time of only nOϵ(log log n). Hence, our result is in the same
spirit as similar improvements for the Maximum Independent Set of Rectangles problem
in [13] and precedence constrained scheduling for unit-size jobs in [18].

We first present our result for the case of resource augmentation, i.e., when we allow
ourselves to increase the edge capacities by a factor of 1 + δ for some constant δ > 0 while the
compared optimal solution OPT does not have this privilege. Let umin and umax denote the
minimum and maximum edge capacities, respectively. In that setting, it is easy to show that
we can assume that the edge capacities are in a constant range, namely umax = Oε,δ(umin).
We classify each task i ∈ T to be small or large, depending on whether i uses a relatively
small or a relatively large fraction of the available capacity on the edges of P (i). Since we
have a constant range of edge capacities, one can show easily that each edge e can be used
by only a constant number of large tasks in OPT .

The high level strategy in the known QPTASs [5, 7] is to take the middle edge e∗, guess
the large tasks using e∗, split the small tasks using e∗ into O(log n) or (log n)O(1) groups,
and guess an under-estimating capacity profile for each group with Oϵ(1) uniform steps. In
more detail, in the latter step one guesses for each edge e ∈ E approximately how much
capacity from u(e) is used in OPT by the tasks crossing e∗ in each group. For each group
one argues that one loses only a factor of 1 + ϵ in the profit by underestimating the true
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capacity. Then one recurses on the subpaths of E on the left of e∗ and on the right of e∗

which yields a recursion depth of O(log n).
Instead, when we consider the small tasks using e∗, we use only one over-estimating

profile with non-uniform step size for all tasks together with only Oε,δ(log log n) steps. Each
step is a power of 1+δ in [ δ

log n umin, umax]. This yields Oε,δ(log log n) steps since the profile is
monotone on the left and on the right of e∗ and umax = Oε,δ(umin). Also, our justification for
the error is very different. On some edges e the error is at most δ

log n umin which accumulates
to at most O(δ)umin ≤ O(δ)u(e) during the recursion. On the other edges e the error is at
most a δ-fraction of the total demand used on e by tasks crossing e∗; over the recursion this
can add up to at most δu(e) since in OPT edge e is used by tasks with a total demand of at
most u(e).

When we recurse we employ another novelty: we consider the tasks crossing at least one
of two specially defined edges e∗

1, e∗
2, and recurse in three subpaths induced by them: e∗

1 is
like before the middle edge of current subpath. The other edge e∗

2 is chosen such that half of
previously guessed steps are on the left and the other half on the right (like in the QPTAS
in [7]). This ensures that at the same time the recursion depth is O(log n) and each recursive
call is described by a subpath of E and only Oε,δ(log log n) steps from previously guessed
profiles. Thus, we can embed this recursion into a dynamic program (DP) with DP-table of
size nOε,δ (log log n).

Then, we present a new framework using which one can transform algorithms for UFP
under resource augmentation (like ours) in a black-box manner into algorithms for UFP
without resource augmentation, while losing only a factor of 1 + ϵ in the approximation
ratio. To this end, we define a slight generalization of UFP that we denote by Bonus-UFP.
The key difference to UFP is that in addition to profit from normal tasks, one receives a
bonus for subpaths which do not completely contain the path of any selected task. Also,
its instances are required to have a simpler structure than general UFP instances, yielding
similar properties as obtained via resource augmentation. For example, on each edge one is
allowed to select only a constant number of large tasks (independently of the actual edge
capacities!), so they can be easily guessed in time nOϵ(1) for each edge. Also, the capacity
allocated for small tasks in OPT is intuitively in a constant range (similarly as above) and
the notion of resource augmentation is defined such that this capacity for the small tasks is
increased by a factor 1 + δ.

Our framework directly transforms any algorithm for Bonus-UFP under resource aug-
mentation to an algorithm for UFP without resource augmentation, while increasing the
approximation ratio only by a factor 1 + ϵ. The transformation uses the slack-lemma [16]
which was employed in previous algorithms for UFP [16, 15, 17] in order to gain free capacity
on the edges within quite complicated dynamic programs. With our framework one does not
need to apply the slack-lemma and construct this technical machinery “by hand” anymore,
but it is sufficient to design an algorithm for Bonus-UFP under resource augmentation and
then the framework does the transformation automatically.

▶ Theorem 1 (informal). Given an α-approximation algorithm for Bonus-UFP under resource
augmentation with a running time of T (n), we can construct a (1 + ϵ)α-approximation
algorithm for UFP (without resource augmentation) with a running time of T (n)nOϵ(1).

We hope that this facilitates future research on UFP for (eventually) finding a PTAS.
In particular, we believe that if one constructs an algorithms for UFP under resource
augmentation then it is very likely that it can be adjusted to an algorithm for Bonus-UFP
under resource augmentation. For example, we demonstrate that this can be easily done
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with our algorithm for UFP under resource augmentation above, which yields the following
theorem.

▶ Theorem 2. For any ϵ > 0 there is a (1 + ϵ)-approximation algorithm for UFP with a
running time of nOϵ(log log n).

1.2 Other related work
There are some special cases of UFP for which PTASs are known, for example when there are
O(1) edges such that each input task uses one of them [16], each input task can be selected
an unbounded number of times [16], or when the profit of each task is proportional to its
demand [7]. Also, there is an FPT-(1 + ϵ)-algorithm known for the unweighted case of UFP
where the fixed parameter is the cardinality of the optimal solution [19].

Variations of UFP have been studied like bagUFP where the input tasks are partitioned
into bags, and we are allowed to select at most one task from each bag [14]. Also, since
the natural LP-formulation of UFP suffers from an integrality gap of Ω(n) [9], stronger
LP-formulations have been investigated [10, 2]. Furthermore, unsplittable flow has been
studied on trees, where the best known results are a O(log2 n)-approximation [10]. This was
generalized to a O(k · log n)-approximation [1] for submodular objectives where k denotes
the pathwidth of the given tree (bounded by O(log n)).

2 Faster approximation scheme for UFP with resource augmentation

We first provide a (1+ϵ)-approximation algorithm for UFP with a running time of nOϵ,δ(log log n)

for the simplified setting of δ-resource augmentation where we permit the algorithm to com-
pute a solution S where for each edge e ∈ E we have that

∑
i∈S∩Te

d(i) ≤ (1 + δ)u(e)
and we require the optimal solution OPT to respect the original capacities u(·), i.e.,∑

i∈OPT∩Te
d(i) ≤ u(e) for each e ∈ E. For a UFP instance with a path G = (V, E)

and edge capacities u(·), we define umin := mine∈E u(e) and umax := maxe∈E u(e). First, we
use the resource augmentation to reduce the general case to the setting of a constant range
of (polynomially bounded) edge capacities where umax ≤ umin/δ(2/ϵ).

▶ Lemma 3. Assume that for any constants ϵ > 0, δ > 0, there is an α-approximation
algorithm under δ-resource augmentation for UFP with a running time of T (n) for instances
such that umin = n/δ and umax ≤ umin/δ2/ϵ. Then there is an (α+ϵ)-approximation algorithm
for UFP under 4δ-resource augmentation with a running time of T (n)(n log umax)Oϵ,δ(1).

Due to Lemma 3, in the following we assume that we are given an instance of UFP such
that n/δ ≤ u(e) ≤ n/(ηδ) for each e ∈ E and some ϵ, δ > 0, with η := δ2/ϵ, and that we
are in the setting of δ-resource augmentation. By contracting edges suitably we can assume
w.l.o.g. that each edge e ∈ E is the first or the last edge of the path P (i) of some input task
i ∈ T .

2.1 Recursive Algorithm
We describe our algorithm first as a recursive algorithm and then embed it into a dynamic
program which will have a running time of nOϵ,δ(log log n).

Let e∗ ∈ E be an edge in the middle of E, i.e., such that at most ⌊|E|/2⌋ edges are on the
left of e∗ and at most ⌊|E|/2⌋ edges are on the right of e∗. We would like to guess the tasks in
OPT ∩ Te∗ . Since there are too many possibilities for this, we first guess approximately how
much capacity the tasks in OPT ∩ Te∗ use on each edge e ∈ E. For any set of tasks S ⊆ T ,



F. Grandoni, T. Mömke, and A. Wiese 50:5

Figure 1 Overestimating profile mp(uTe∗ ∩OPT) (the red line). The edge e′ halves the number of
steps and e′′ the length of the path on the left-hand side of e∗.

we define uS(e) :=
∑

i∈S∩Te
d(i) for each e ∈ E. Observe that uTe∗ ∩OPT is non-decreasing

on the left of e∗ and non-increasing on the right of e∗, since all tasks in Te∗ ∩ OPT use e∗.
We will guess an over-estimating profile mpTe∗ ∩OPT : E → N of uTe∗ ∩OPT(e) defined below,
with the properties that

for each edge e it holds that mpTe∗ ∩OPT(e) ≥ uTe∗ ∩OPT(e),
mpTe∗ ∩OPT is a step-function with only Oϵ,δ(log log n) steps (i.e., E can be partitioned
into Oϵ,δ(log log n) subpaths and mpTe∗ ∩OPT is constant on each subpath), and
mpTe∗ ∩OPT(e) and uTe∗ ∩OPT(e) do not differ too much on each edge e ∈ E.

Formally, let D := log n; our overall algorithm will intuitively be a recursion with D

levels. For any set of tasks S ⊆ T we define the minimal profile mpS : E → N of S as follows.
Let θ := ⌊umin · δ/D⌋. If for an edge e ∈ E it holds that d(S ∩ Te) = 0 then we define
mpS(e) := 0. Otherwise, we define mpS(e) := ⌊θ(1 + δ)ke⌋ where ke is the smallest integers
such that θ(1 + δ)ke ≥ d(S ∩ Te) (see Figure 1). It turns out that mpS(·) is a step-function
with only Oδ,ϵ(log log n) steps, assuming that there is an edge ē that is used by all tasks in S

(like the edge e∗ above).

▶ Lemma 4. There is a value Γ = Oδ,ϵ(log D) = Oδ,ϵ(log log n) such that for every edge
ē ∈ E and every set S ⊆ Tē with d(S ∩ Te) ≤ u(e) for each e ∈ E, we have that mpS(·) is a
step-function with at most Γ steps.

Proof. Recall that by Lemma 3 umin = n/δ and umax ≤ n/(δη). We therefore search for an
upper bound on the smallest value k such that ⌊θ(1 + δ)k⌋ ≥ n/(δη). We have that

k ∈ O(log1+δ

( n

δηθ

)
) = O

(
log1+δ

( nD

ηδ2umin

))
= O

(
log1+δ

( D

ηδ2

))
= Oδ,ϵ(log D) = Oδ,ϵ(log log n).

The second claim follows due to monotonicity of the profile formed by the tasks OPTS∩Te. ◀

For any set S, the profile mpS(·) overestimates the true demand of the tasks S on each
edge e. Therefore, we define the error of this estimation by err(mpS , e) := mpS(e) − uS(e)
for each edge e ∈ E. Intuitively, in our algorithm we will guess profiles mpS in each of the
D = log n recursion levels, such that at the end each edge e is in the support of at most
2D of these profiles. A key insight is the following lemma which implies that for each edge
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e, the sum of the errors of these 2D profiles is bounded by the extra space of δu(e) due
to the resource augmentation. Intuitively, if mpS(e) = θ on some edge e, then the error
is at most θ = umin · δ/D and for 2D profiles the errors of this type can accumulate to at
most 2D · θ ≤ 2δumin ≤ 2δu(e). On the other hand, if mpS(e) > θ then the error is at most
δ · d(S ∩ Te), and this can accumulate to at most δ · u(e) for all profiles together if these
profiles correspond to disjoint sets of tasks S1, S2, . . . , SD′ that use at most u(e) units of
capacity on e altogether, for any D′.

▶ Lemma 5. Let S1, S2, . . . , SD′ ⊆ T be disjoint sets of tasks with D′ ∈ O(D). If
∑

j d(Sj ∩
Te) ≤ u(e) for an edge e, then

∑D′

j=1 err(mpSj∩Te
, e) ≤ O(δ) · u(e).

Proof. For each index j and edge e such that mpSj∩Te
(e) = ⌊θ(1+δ)kj ⌋ for some kj , the error

err(mpSj∩Te
, e) is bounded from above by ⌊θ⌋ if kj = 0 and by ⌊θ·(1+δ)kj ⌋−⌈θ·(1+δ)kj−1⌉ ≤

θ(1 + δ)kj−1 · δ ≤ δd(Sj) if kj > 0. (Observe that the rounding is valid because the demands
are integers.) Thus err(mpSj∩Te

, e) ≤ max{θ, δd(Sj)}. Summing up over all errors we obtain∑D′

j=1err(mpSj∩Te
, e) ≤ D′ · θ +

∑
jδd(Sj ∩ Te) ≤ D′uminδ

D + δu(e) ∈ O(δ)u(e).

◀

As mentioned above, we guess mpTe∗ ∩OPT, which can be done in time nOδ,ϵ(log log n) due to
Lemma 4. Then, we compute the essentially most profitable set of tasks T ′ ⊆ Te∗ that fits
into mpTe∗ ∩OPT, i.e., such that d(T ′ ∩ Te) ≤ mpTe∗ ∩OPT(e) on each edge e ∈ E. This can be
done using a PTAS in [16] for rooted UFP instances in which all input tasks share a common
edge (like the edge e∗ in our case).

▶ Theorem 6 ([16]). There is a PTAS for instances of UFP in which there is an edge that
is used by every input task (rooted UFP). The same holds if there exist O(1) edges such that
each task uses at least one of them.

We recurse on the subpaths on the left and on the right of e∗. Let us consider the left
subpath, i.e., let EL denote the path from the left-most edge of E up to e∗, not including
e∗. (The recursion to the right is analogous.) We subdivide EL into three parts determined
by two edges e′, e′′ in EL (or two parts if these edges coincide). We choose the first edge
e′ ∈ EL on the left of e∗ such that the number of steps in the profile ū := mpOPT∩Te∗ within
EL is halved (a similar trick was used in [7]). Formally, let Γ = Oδ,ϵ(log log n) such that
mpOPT∩Te∗ is a step-function with Γ steps. We choose e′ such that mpOPT∩Te∗ restricted to
the subpath of EL on the left of e′ is a step-function with at most ⌈Γ/2⌉ steps, and the same
is true for mpOPT∩Te∗ restricted to the subpath of EL on the right of e′. The second edge e′′

lies in the middle of EL such that on the left of e′′ there are at most ⌊|EL| /2⌋ edges of EL

and the same is true on the right of e′′. We may assume without loss of generality that e′

lies on the left of e′′.
We guess the profiles ū′ := mp(OPT∩Te′ )\Te∗

and ū′′ := mp(OPT∩Te′′ )\(Te∗ ∪Te′ ) and apply
Theorem 6 to compute essentially the most profitable subset of tasks that fit into ū′ (and
ū′′), among the input tasks i ∈ Te′ with P (i) ⊆ EL (among the input tasks i ∈ Te′′ \ Te′ with
P (i) ⊆ EL). Then we recurse on each of the up to three components of EL \ {e′, e′′}, where
the parameter is the respective subpath and the profile ū + ū′ + ū′′ restricted to that subpath.
Due to the choice of e′′, the depth of our recursion is bounded by D = log n. In particular,
at the end each edge e is in the support of at most O(D) guessed profiles. By Lemma 5,
the total error of these profiles is at most O(δ)u(e) which is compensated by the resource
augmentation. Due to the choice of e′, one can show that in each recursive call the profile
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of the parameter is a step function with only 4Γ = Oδ,ϵ(log log n) steps: each recursive call
“inherits” only half of the steps that were given to its parent subproblem, and additionally
up to 2Γ new steps due to the guessed profiles in the parent subproblem. This allows us
to embed this recursion into a dynamic program (DP) with only nOδ,ϵ(log log n) DP-cells as
follows, and hence we obtain an overall running time of nOδ,ϵ(log log n).

2.2 Dynamic program
We define the mentioned DP formally. In our DP table, we have a cell (P, û) for each subpath
P ⊆ E and each function û : P → N0 such that 0 ≤ û(f) ≤ n/(δη) for each edge f ∈ P and û

is a step-function with at most 4Γ steps, i.e., one can partition P into 4Γ subpaths such that
û is constant on each one of them. The intuitive meaning of û is that for each edge e ∈ P ,
û(e) units of capacity have already been assigned to some tasks. The goal is to compute a
set of tasks with maximum total weight and with P (i) ⊆ P for each selected task i, such
that on each edge e ∈ P the selected tasks use a total capacity of at most u(e) − û(e).

▶ Lemma 7. There are at most nOδ,ϵ(log log n) many different DP cells.

Proof. There are O(n2) possible choices for P . To determine the number of possible profiles û,
recall that û has at most 4Γ = Oδ,ϵ(log log n) many steps. There are

(
O(n)

Oδ,ϵ(log log n)
)

∈
nOδ,ϵ(log log n) possibilities to partition P into at most Oδ,ϵ(log log n) subpaths. For each
subpath, there are at most n/(δη) possibilities for the value of û on this subpath, i.e.,
(n/(δη))Oδ(log log n) possible combinations overall. Recall that η = δ2/ε. Multiplying these
two numbers gives the total number of profiles. ◀

Given a DP cell DP(P, û). We identify two edges e′, e′′ ∈ P similarly as above, i.e., we select
e′ ∈ P such that if we restrict û to the edges of P on the left of e′ or on the right of e′, then û

is a step-function with at most 2Γ steps. Also, we select e′′ such that at most ⌊|P |/2⌋ edges
of P lie on the left of e′′, and at most ⌊|P |/2⌋ edges of P lie on the right of e′′. Let P1, P2, P3
denote the subpaths of P induced by e′ and e′′, i.e., the components of P \ {e′, e′′}.

Let T be the set of all pairs (û′, û′′) such that û′ : P → N0 and û′′ : P → N0 are step-
functions with at most Γ steps each, and on each edge f ∈ P they use at most (1 + δ)u(f)
units of capacity, i.e., û(f) + û′(f) + û′′(f) ≤ (1 + δ)u(f). We apply the algorithm due to
Theorem 6 to the instance whose input tasks contain all tasks in i ∈ Te′ with P (i) ⊆ P

and with edge capacities given by û′. Similarly, we apply this algorithm to the instance
whose input tasks contain all tasks in i ∈ Te′′ \ Te′ with P (i) ⊆ P and with edge capacities
given by û′′. Denote by alg(û′) and alg(û′′) the respective solutions. With the pair (û′, û′′)
we associate the solution given by alg(û′) ∪ alg(û′′) and the solutions stored in the cells
DP (Pj , (û + û′ + û′′)|Pj

) for j ∈ {1, 2, 3}. We store in DP(P, û) the weight of the most
profitable solution for all pairs (û′, û′′) ∈ T , i.e.,

DP(P, û) := max
t=(û′,û′′)∈T

((alg(û′)) + w(alg(û′′)) +
∑3

j=1DP(Pj , (û + û′ + û′′)|Pj
)).

Observe that (û + û′ + û′′)|Pj
has at most 4Γ steps as required for valid DP cells: the profile

û restricted to Pj has at most 2Γ steps due to the halving and both û′ and û′′ introduce at
most Γ new steps each.

At the end we output DP(E, u0) where u0 is the profile with u0(e) = 0 for all e ∈ E. By
standard memoization we can also output the solution associated with DP(E, u0).

We need to show that the DP computes a near-optimal solution. It is clear that we output
a feasible solution since in the computation for each cell, the set T contains only pairs (û′, û′′)
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such that û(f) + û′(f) + û′′(f) ≤ (1 + δ)u(f) for each edge f ∈ P . Intuitively, Lemma 5
allows us to argue that in each step we can guess for û′ and û′′ the profiles mpOPT′∩Te′

and mp(OPT′∩Te′′ )\Te′ , respectively, where OPT′ denotes the tasks i ∈ OPT with P (i) ⊆ P ,
without violating the capacities of the edges.

▶ Lemma 8. The dynamic program computes a solution ALG which is feasible with O(δ)-
resource augmentation and w(ALG) ≥ (1 − ϵ)w(OPT).

Proof. Consider a DP-cell (P, û) for which the DP defined the edges e′, e′′ when calculating its
solution. Consider the profiles mpOPT∩{i∈Te′ |P (i)⊆P } and mpOPT∩{i∈Te′′ \Te′ |P (i)⊆P }. Observe
that all tasks {i ∈ OPT∩(Te′ ∪Te′′) | P (i) ⊆ P} fit into the combined profile and all remaining
tasks from OPT within P will be considered in subproblems. If the two profiles are a feasible
choice, then the DP obtains a profit of at least (1 − ϵ)w({i ∈ OPT ∩ (Te′ ∪ Te′′) | P (i) ⊆ P})
from the tasks in Te′ ∪ Te′′ when choosing these profiles. Therefore, it suffices to proof the
claim that if in each recursive call up to some recursion level ℓ the DP chooses exactly these
profiles, then in each subsequent recursive call of level ℓ + 1 the corresponding profiles will
be a feasible choice again. Inductively, we can conclude then that the DP obtains a profit of
at least (1 − ϵ)opt.

To prove the mentioned claim, intuitively, due to the halving of the paths, the recursion
depth is bounded from above by O(log n) and therefore the total error does not exceed
the available amount of resource augmentation. Formally, we inductively maintain the
invariant that for a DP cell (P, û), if the profile û is composed of 2k profiles (from previous
DP cells), then the length of P is bounded from above by 2n/2k. Recall that we assumed
that |E| ≤ O(n). For each edge, we therefore have that at most O(log n) profiles overlap
and by Lemma 5, the total error of is at most O(δ)u(e) for each edge e, i.e., O(δ)-resource
augmentation is sufficient. ◀

Together with Lemma 3 we conclude that we obtain a (1 + ϵ)-approximation algorithm
for UFP with δ-resource augmentation.

3 Bonus-UFP

In this section we define formally the Bonus-UFP problem (BUFP) and formalize how an
algorithm with resource augmentation for Bonus-UFP yields an algorithm for (ordinary)
UFP without resource augmentation.

3.1 Problem definition
Like in (ordinary) UFP, in the Bonus-UFP problem we are given as input a path G = (V, E)
and a set of tasks T where each task i ∈ T has a demand d(i) ∈ N, a sub-path P (i) of E, and
a weight w(i) ∈ N0. The profit of a computed solution with task set T ′ ⊆ T stems as usual
from w(T ′) and, additionally, from some bonus profit that we obtain from subpaths E′ ⊆ E

(i.e., E′ forms the edges of the respective subpath) such that no task i ∈ T ′ satisfies that
P (i) ⊆ E′ (but it might be that P (i) ∩ E′ ̸= ∅). The amount of bonus of such a subpath
E′ depends on the tasks i ∈ T ′ with P (i) ∩ E′ ̸= ∅. The reader may imagine that we get
more bonus from E′ if fewer tasks from T ′ intersect E′. In particular, the computed solution
consists of T ′ and of the subpaths E′ from which the respective bonus profit is collected.
Additionally, the input tasks are divided into large and small tasks, and on any edge we
are allowed to select only O(1) large tasks (in particular, for each edge e the large tasks
in OPT ∩ Te can be guessed easily in time nO(1)). Also, for technical reasons, the selected



F. Grandoni, T. Mömke, and A. Wiese 50:9

Figure 2 A Bonus-UFP instance with two bonus intervals E′ and E′′. The hatched task within
E′′ is not allowed. The bonus depends on the intervals and the tasks depicted in dark gray – the
large tasks that intersect with an interval.

small tasks are allowed to use at most 2b units of capacity of each edge e ∈ E for some given
value b (see Figure 2).

Formally, in the input we are given a constant τ ∈ N and values µ ∈ (0, 1), b > 0 which
partition the tasks T into a set of large tasks TL = {i ∈ T : d(i) > µb} and small tasks
TS = {i ∈ T : d(i) ≤ µb}. For each pair of a subpath E′ ⊆ E and a set L′

int ⊆ TL such that
the path of each task i ∈ L′

int uses the leftmost or the rightmost edge of E′ and
|L′

int ∩ Te| ≤ τ for each edge e ∈ E′

we are given a possible bonus bn(E′, L′
int) ≥ 0. As described above, we obtain the bonus

bn(E′, L′
int) if no selected task (large or small) is contained in E′ and the tasks in L′

int are
exactly the selected large tasks that use some edge of E′ (the amount of bonus does not
depend on the selected small tasks i with P (i) ∩ E′ ̸= ∅). A feasible solution to an instance
of BUFP consists of a set of tasks R ⊆ TL ∪ TS and a collection of node-disjoint subpaths
E1, . . . Eq of G such that the following holds:

1. R is a feasible UFP solution, i.e., for every e ∈ E it holds that d(R ∩ Te) ≤ u(e),
2. the small tasks in R use at most a capacity of 2b on each edge e ∈ E, i.e., d(R∩TS ∩Te) ≤

2b,
3. each edge e ∈ E is used by at most τ tasks in R ∩ TL, i.e., |R ∩ TL ∩ Te| ≤ τ , and
4. for no i ∈ R the path P (i) is contained in any Ej (but possibly P (i) ∩ Ej ̸= ∅).
The profit of the solution is w(R) plus the bonus for each subpath Ej , where the latter
depends on the large tasks in R that use Ej , i.e., the total profit is w(R)+

∑q
j=1 bn(Ej , Lint,j)

where Lint,j = {i ∈ R ∩ TL|P (i) ∩ Ej ̸= ∅}.
We say that a solution to the above problem is feasible under δ-resource augmentation if

we relax the first two conditions to
1.’ for every e ∈ E it holds that d(R ∩ Te) ≤ u(e) + δb,
2.’ for every e ∈ E it holds that d(R ∩ TS ∩ Te) ≤ 2b + δb.
So intuitively this increases the capacity for the small tasks by at least a factor 1 + O(δ).
Also, note that Property 3 ensures that each edge e is used by at most τ = O(1) large tasks,
and hence we can guess the large tasks for each edge in time nO(τ) = nO(1).

For non-negative values α, β, γ ≤ 1 we say that a tri-criteria (α, β, γ)-approximation
algorithm for BUFP with δ-resource augmentation is an algorithm that computes a solution
that is feasible under δ-resource augmentation of profit at least αoptS + βoptL + γoptB,
assuming that there exists an (optimal) solution R∗ with bonuses

{
bn(E∗

j , L∗
int,j)

}
j

such that
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optS = w(R∗ ∩ TS), optL = w(R∗ ∩ TL), and optB =
∑q

j=1 bn(E∗
j , L∗

int,j). Then our main
result states that if γ = 1 we can translate such an algorithm to an algorithm for normal
UFP whose approximation ratio is 1/ min{α, β}. We will prove the following theorem in
Section 3.2.

▶ Theorem 9 (Black-box reduction). Assume that there is a (α, β, 1)-approximation algorithm
for BUFP with δ-resource augmentation with a running time of Tτ,δ(n, umax). Then there is
a 1+ϵ

min{α,β} -approximation algorithm for UFP (without resource augmentation) with a running
time of TOϵ(1),Oϵ(1)(n, umax) · (n · log umax)Oϵ(1).

3.2 Black-box reduction
In this section we explain the key ideas for the black-box reduction due to Theorem 9
(omitting details due to space constraints). We start with a lemma indicating that there
are near-optimal solutions in which each edge has a certain amount of slack. This slack is a
constant fraction of the capacity used by small tasks according to a suitable definition of
small and large tasks. To avoid confusion, we refer to large and small tasks as in definition
of BUFP as bonus-large and bonus-small, respectively.

In the lemma, we assign a level ℓ(e) to each edge e. We say that a task i is of level ℓ if
P (i) includes an edge e with ℓ(e) = ℓ and no edge e′ with ℓ(e′) < ℓ; let T (ℓ) ⊆ T denote all
tasks of level ℓ. Intuitively, each edge e of level ℓ has an amount of slack ε4a(ℓ) for some
value a(ℓ) corresponding to level ℓ. We define small and large tasks such that on each edge e

of level ℓ, the small tasks of level ℓ use a total capacity of at most 2b(ℓ) with b(ℓ) = Oϵ(a(ℓ))
and each edge e of level ℓ is used by at most τ = Oϵ(1) large tasks i with d(i) = Ω(a(ℓ)).
Formally, for an offset h′ ∈ {0, ..., 1/ϵ − 1} and a value h = Θ(1

ε ln 7
ε2 ) defined in the next

lemma, we set a(ℓ) := (1 + ε)h′+ℓh·(1+ 1
ε )− h

ε and b(ℓ) = a(ℓ) · (1 + ε) h
ε . Let opt denote the

weight of the optimal solution to the given instance.

▶ Lemma 10 (Slack Lemma). Let ϵ > 0. There are two constants µ1, µ2 ∈ (0, ε4) with
µ1 < µ2/(1 + ε)1/ε3 , values h = Θ( 1

ε ln 7
ε2 ) and τ = Oε(1), an offset h′ contained in a set

of size Oϵ(1) that can be computed in polynomial time, a near-optimal solution OPT with
w(OPT) ≥ (1 − O(ϵ))opt, and a level ℓ(e) for each edge e ∈ E with the following properties.
We define

TL := {i ∈ T : d(i) ≥ µ2 · a(ℓ(e)) for some edge e ∈ P (i)} (large tasks)
TS := {i ∈ T : d(i) < µ1 · b(ℓ(e)) for every edge e ∈ P (i)} (small tasks)
OPTL = OPT ∩ TL and OPT

(ℓ)
S := OPT ∩ TS ∩ T (ℓ) for each ℓ.

Then, for each edge e of level ℓ(e) = ℓ, it holds that:
d(Te ∩ OPTL) + d(Te ∩ OPT

(ℓ)
S ) ≤ u(e) − ε4a(ℓ),

d(Te ∩ OPT
(ℓ)
S ) ≤ 2b(ℓ),

e is used by at most τ tasks i ∈ OPTL ∩ T (ℓ) with d(i) ≥ µ2 · a(ℓ).

Our goal is to define an algorithm BB that solves UFP given an oracle OR for BUFP
with δ-resource augmentation. We will use the notation GB, T B , T B

S , T B
L , uB , τB for the

input path, input tasks, edge capacities, and threshold τ of the constructed instances of
BUFP, while we use G, T, u to denote the corresponding values of the given instance of UFP.

Intuitively, BB solves a subproblem of BUFP for each maximally long path GB in which
each edge is of level at least ℓ for some given value ℓ ∈ {0, . . . , ℓmax} (where ℓmax denotes
the maximum level due to Lemma 10), and the bonus subpaths Ej selected in an optimal
solution will correspond to maximal subpaths of GB consisting of edges of level at least ℓ + 1.
With this interpretation, the amount of received bonus on such a subpath Ej is calculated
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via subproblems of BUFP defined on this subpath Ej , level ℓ + 1, and any possible set
of Oϵ(1) selected large tasks of level ℓ that use at least one edge of Ej but which are not
contained in Ej . The parameters of the calls to OR for this a subproblem (i.e., path GB

and level ℓ) will be intuitively as follows. We set b = b(ℓ), µ = µ1, and a = a(ℓ). We place
in T B the tasks in T contained in GB whose demand is at most µ1b(ℓ) or at least µ2a(ℓ).
This yields that T B

L = {i ∈ T B |d(i) ≥ µ2a(ℓ)} and T B
S = {i ∈ T B |d(i) ≤ µ1b(ℓ)} according

to the definition of BUFP. We remark that either µ2a(ℓ) > µ1b(ℓ) or µ1b(ℓ) < 1 (in which
case T B

L = ∅); hence T B
L and T B

S are distinct. This way we will enforce that T B
L ⊆ TL and

T B
S ⊆ TS for the sets TL, TS due to Lemma 10. We will set τB to be the respective value τ

due to Lemma 10.
Note that in this recursive call there are Oϵ(1) (previously selected) large tasks that use

some but possibly not all edges of Ej . However, in the definition of Bonus-UFP, we have a
global upper bound of τB for the number of allowed large tasks using an edge. To this end,
we guess some further large tasks whose paths are contained in Ej , profiles for some of the
small tasks, and a partition of Ej into Oϵ(1) subpaths, such that we split this problem into
subproblems in which each edge can be used by the same number τB ≤ τ of large tasks, so
that we can call OR on the resulting subproblem. We denote by optS and optL the profit
due to small and large tasks, resp., in the solution OPT from Lemma 10.

▶ Theorem 11. Given a Tτ,δ(n, umax) time (α, β, 1)-approximation algorithm OR for BUFP
with δ-resource augmentation, for every given constant δ > 0. Then, for every constant
ε > 0, there exists a TOϵ(1),Oϵ(1)(n, umax) · (n log umax)Oϵ(1) time algorithm BB for UFP
that computes a solution of profit at least (1 − ϵ)αoptS + (1 − ϵ)βoptL.

Theorem 9 then follows from Lemma 10 and Theorem 11, where we set α = 1 − ε and β = 1.
The reader might wonder why we proved the above theorem for general α and β. The

reason is that it turns out that tasks i ∈ OPTS = OPT ∩ TS from Lemma 10 satisfy
d(i) ≤ ϵ2u(e) for each e ∈ P (i). Therefore, we can use LP-rounding techniques as in [11]
to compute an alternative UFP solution with profit at least (1 − O(ϵ))optS . Hence any
algorithm for BUFP as in Theorem 11 implies a ( 1+β−α

β + O(ε))-approximation for UFP.
Recent work showed how to obtain (α, β)-approximation algorithms for UFP in the above
sense with β = 1 and α equal to 1

3 [17]. This result becomes substantially easier to prove
with resource augmentation in the BUFP setting. So we hope that Theorem 11 as stated
can be a handy tool for future work along the same line.

4 Algorithm for Bonus-UFP under resource augmentation

We describe now how to adjust our algorithm for ordinary UFP with resource augmentation
from Section 2 to an algorithm for Bonus-UFP with resource augmentation. Intuitively, there
are two extra issues than one needs to address. First, the edges e′ and e′′ that partition the
considered subpath P might happen to fall within the interval of some bonus. This has to be
taken into account in the definition of the subproblems which are solved recursively. Second,
we need to keep track of the large tasks that use each edge so that the threshold τ is not
exceeded. Therefore it is convenient to guess them explicitly, and use the over-estimated
profiles for the small tasks only.

▶ Theorem 12. There is a (1 − ϵ, 1, 1)-approximation algorithm for Bonus-UFP with δ-
resource augmentation with a running time of nOε,δ(log log n).

Theorems 9 and 12 together yield Theorem 2. It remains a challenging open problem to
construct a PTAS for (Bonus-)UFP. One key bottleneck in our approach is that already in
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the first iteration we need to guess a profile with up to Ω(log log n) many steps, and it is not
clear how to do this in polynomial time.

In the remaining section, we prove Theorem 12. Again, we start with normalizing the
instance. Since we have an additive resource augmentation of δb, we can use half of it in
order to ensure umin ≥ δb/2. Thus 2b ≤ 4umin/δ, i.e., uOPTS

(e) together with half of the
resource augmentation has a constant capacity profile. Furthermore, analogous to Lemma 3,
we can assume that each task i ∈ T has an integer demand d(i) ∈ N and b ∈ Oδ(n). Unlike
before, we do not lose a profit of ϵw(OPTL).

▶ Lemma 13. For arbitrary δ > 0, suppose there is an (α, β, γ)-approximation algorithm for
BUFP instances I with (1 + δ) resource augmentation such that umin = δb, b ∈ Oδ(n), and
d(i) ∈ N for all i ∈ T . Then there is an ((1 − ϵ)α, β, γ)-approximation algorithm for BUFP
with (1 + 4δ) resource augmentation.

Due to Lemma 13, in the following we assume that we are given an instance of BUFP
with (1 + δ) resource augmentation such that umin = δb, 2b = n/η for some η ∈ Oδ(1), and
d(i) ∈ N for all i ∈ T .

We adapt the strategy used for UFP with resource augmentation and we use the same
notation. Again we overestimate profiles based on the value θ := ⌊umin · δ/D⌋, now with
umin = δb and D = log n. Lemma 4 is still valid for BUFP, if we restrict the set S to small
tasks.

▶ Lemma 14. There is a value Γ = Oδ,ϵ(log D) = Oδ,ϵ(log log n) such that for every edge
ē ∈ E and every set S ⊆ TS ∩ Tē with d(S ∩ Te) ≤ 2b for each e ∈ E, we have that mpS(·) is
a step-function with at most Γ steps.

Proof. Since the demand d(S) is bounded from above by 2b, it is sufficient to consider the
profile that for each edge e ∈ E has the capacity min{2b, u(e)}. With the modification, we
can apply Lemma 4. ◀

Furthermore, Lemma 5 does not change for BUFP, if we restrict it to small tasks, i.e.,
Sj ⊆ TS for all j.

For ease of notation, we assume that for each edge f and each set L ⊆ TL ∩ Te with
d(L) ≤ u(f), the BUFP instance to be solved has is a (dummy) bonus interval ({f}, L). If
the bonus interval is not part of the original instance, it has zero bonus, i.e., bn({f}, L) = 0.
By duplicating edges, we can assume without loss of generality that there is no task i with
P (i) = f .

4.1 Dynamic program for BUFP
In our DP table, we have a cell (P, û, L) for each subpath P ⊆ E, each function û : P → N0,
and each set of large tasks L ⊆ TL with the following properties. We require 0 ≤ û(f) ≤ n/η

for each edge f ∈ P and û is a step-function with at most 8Γ steps, i.e., one can partition P

into 8Γ subpaths such that û is constant on each of them. A set L is valid, if each task in L

uses the leftmost or the rightmost edge of P . Note that |L| ≤ 2τ since there can only be at
most τ large tasks crossing each of the two boundaries of P .

The intuitive meaning of û and L is that for each edge e ∈ P , û(e) units of capacity have
already been assigned to some small tasks and the tasks L have already been selected. For a
set of tasks T ′, we define uT ′ : E → N0 to be the profile with uT (e) = d(T ′ ∩ Te) for each
e ∈ E. The goal is to compute a set of tasks with maximum total weight and with P (i) ⊆ P

for each selected task i, such that on each edge e ∈ P the selected tasks use a total capacity
of at most u(e) − û(e) − uL(e).
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▶ Lemma 15. There are at most nOδ,ϵ,τ (log log n) many different DP cells.

Proof. There are O(n2) possible choices for P . To determine the number of possible profiles
û, recall that û has at most 8Γ = Oδ,ϵ(log log n) many steps and L has a size of at most 2τ .

There are
(

O(n)
Oδ,ϵ,τ (log log n)

)
∈ nOδ,ϵ,τ (log log n) possibilities to partition P into at most

Oδ,ϵ,τ (log log n) subpaths. For each subpath, there are at most n/η possibilities for the value
of û on this subpath and

(
n
2τ

)
≤ n2τ possibilities for selecting L, i.e., (n/η)Oδ,ϵ(log log n) · n2τ

possible combinations overall. Multiplying these two numbers gives the total number of
profiles. ◀

Suppose that we are given a DP cell DP(P, û, L). We identify two edges e′, e′′ ∈ P . We
select e′ ∈ P such that if we restrict û to the edges of P on the left of e′ or on the right of
e′, then û is a step-function with at most 4Γ steps. Also, we select e′′ such that at most
⌊|P |/2⌋ edges of P lie on the left of e′′, and at most ⌊|P |/2⌋ edges of P lie on the right of
e′′. Let P1, P2, P3 denote the subpaths of P induced by Ej′ and Ej′′ , i.e., the components of
P \ (Ej′ ∪ Ej′′).

Let T be the set of all tuples (p1, p2, û′, û′′) with p1 := (Ej′ , Lint,j′) and p2 := (Ej′′ , Lint,j′′)
specified as follows. The pair (Ej′ , Lint,j′) is a bonus interval with e′ ∈ Ej′ and (Ej′′ , Lint,j′′)
is a bonus interval with e′′ ∈ Ej′′ such that Ej′ ∩Ej′′ = ∅ or p1 = p2. A task i which overlaps
with both Ej′ and Ej′′ (i.e., P (i) ∩ Ej′ ̸= ∅ and P (i) ∩ Ej′′ ̸= ∅) is either in both Lint,j′ and
Lint,j′′ or in none.

Each of the remaining two entries of the tuple û′ : P → N0 and û′′ : P → N0 is composed of
two step-functions with at most Γ steps each, and on each edge f ∈ P , û′(f)+û′′(f) ≤ (2+δ)b.
Furthermore, the capacity of all step-functions use at most u(f) + δb units of capacity, i.e.,
û(f) + û′(f) + û′′(f) + uL(f) + uLint,j′ (f) + uLint,j′′ (f) ≤ u(f) + δb. Let e′

ℓ, e′
r, e′′

ℓ , e′′
r be

the left-most and right-most edge of Ej′ and Ej′′ , respectively. We apply the algorithm
due to Theorem 6 to the instance whose input tasks contain all tasks in i ∈ Te′

ℓ
∪ Te′

r

with P (i) ⊆ P and P (i) ⊈ Ej′ , with edge capacities given by û′. Similarly, we apply this
algorithm to the instance whose input tasks contain all tasks in i ∈ Te′′

ℓ
∪Te′′

r
\(Te′

ℓ
∪Te′

r
) with

P (i) ⊆ P and P (i) ⊈ Ej′′ , with edge capacities given by û′′. Denote by alg(û′) and alg(û′′)
the respective solutions. With the tuple (p1, p2, û′, û′′) we associate the solution given by
alg(û′)∪alg(û′′), the bonuses bn(p1), bn(p2), the profit from large tasks w(Lint,j′ ∪Lint,j′′ \L),
and the solutions stored in the cells DP (Pj , (û + û′ + û′′)|Pj

, L′) for j ∈ {1, 2, 3} and L′ the
tasks from L ∪ Lint,j′ ∪ Lint,j′′ crossing Pj . We store in DP(P, û, L) the weight of the most
profitable solution for all tuples (p1, p2, û′, û′′) ∈ T , i.e.,

DP(P, û, L) := max
t=(p1,p2,û′

S
,û′′

S
)∈T

(
w(alg(û′)) + w(alg(û′′))

+
∑

p∈{p1,p2}

bn(p) + w(Lint,j′ ∪ Lint,j′′ \ L) +
3∑

j=1
DP(Pj , (û + û′ + û′′)|Pj

)
)
,

where û′ and û′′ are derived from t as described before. Observe that if p1 = p2, we collect
only one bonus. We have to ensure that û(j) := (û + û′ + û′′)|Pj

is a valid profile. Due to the
halving, restricted to Pj the profile û has at most 4τ steps and each of the other two profiles
has at most 2Γ steps from small tasks, which results in 8Γ steps in total. Independently, we
always have a total number of at most 4τ steps from large tasks

At the end we output DP(E, u0) where u0 is the profile with u0(e) = 0 for all e ∈ E. By
standard memoization we can also output the solution associated with DP(E, u0).

We need to show that the DP computes a near-optimal solution. It is clear that we
always output a feasible solution since in the computation for each cell, the set T contains
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only tuples (û′
S , û′′

S , p1, p2) such that û(f) + û′(f) + û′′(f) + uL∪Lint,j′ ∪Lint,j′′ ≤ u(f) + δb for
each edge f ∈ P . Intuitively, Lemma 5 allows us to argue that in each step we can guess for
û′ and û′′, the pairs p1 and p2, the profiles mpOPT′∩Te′ and mp(OPT′∩Te′′ )\Te′ , respectively,
where OPT′ denotes the tasks i ∈ OPT with P (i) ⊆ P , without violating the capacities of
the edges. Let OPTB be the set of bonus pairs of an optimal solution and w(OPTB) the
sum of bonuses.

▶ Lemma 16. The dynamic program computes a solution ALG which is feasible with O(δ)-
resource augmentation and w(ALG) ≥ (1 − ϵ)w(OPTS) + w(OPTL) + w(OPTB).

Proof. Initially, the DP chooses the middle edge e (i.e., e = e′ = e′′) and a bonus interval
containing e. One of the choices is the bonus pair p = (Ej , Lint,j) such that p ∈ OPTB

and e ∈ Ej . Since OPT is feasible, it has no tasks contained in Ej . Let eℓ and er be the
left-most and right-most edge of Ej . Then one of the options for the profile is to choose
û := mpOPT∩Teℓ

+ mpOPT∩Ter
.

All tasks OPT ∩ (Teℓ
∪ Ter ) fit into the profile û. Since the DP approximates the profit

from these tasks, the value of the DP cell without the values from the subproblems is at least
(1− ϵ)w(OPTS ∩Te)+w(OPTL ∩ (Teℓ

∪Ter
))+bn(p). The instance is split into the left hand

side of Ej and the right hand side of Ej . Let (P, û, L) be a sub-problem reached (recursively)
by the described choice of profile. Each edge e′ chosen subsequently within P has the property
that the DP can choose the bonus pair p1 := (Ej′ , Lint,j′) (where as before we assume that e′

ℓ

and e′
r are the leftmost and rightmost edges of Ej′ , respectively) from OPTB containing e′ and

a feasible choice of û′ is mpOPTS∩{i∈Te′
ℓ

∪Te′
r

|P (i)⊆P }. Each edge e′′ chosen subsequently within
P has the property that the DP can choose the bonus pair p2 := (Ej′′ , Lint,j′′) (where as before
we assume that e′′

ℓ and e′′
r are the leftmost and rightmost edges of Ej′′ , respectively) from

OPTB containing e′′ and a feasible choice of û′ is mpOPTS∩{i∈Te′′
ℓ

∪Te′′
r

\(Te′
ℓ

∪Te′
r

) | P (i) ⊆ P}.
Observe that all tasks {i ∈ OPTS ∩ (Te′

ℓ
∪ Te′

r
∪ Te′′

ℓ
∪ Te′′

r
) | P (i) ⊂ P} fit into the combined

profiles, we select all tasks specified in p1 and p2, and all remaining tasks from OPT within
P will be available in sub-problems. The DP collects a profit of at least (1 − ϵ)w({i ∈
OPTS ∩ (Te′

ℓ
∪ Te′′

r
∪ Te′′

ℓ
∪ Te′′

r
) | P (i) ⊆ P}) + w({i ∈ OPTL ∩ (Te′

ℓ
∪ Te′′

r
∪ Te′′

ℓ
∪ Te′′

r
) \ L |

P (i) ⊆ P}) + bn(p1) + bn(p2). We inductively conclude that if all choices as described above
are feasible, the DP obtains a profit of at least (1 − ϵ)w(OPTS) + w(OPTL) + w(OPTB).

To show feasibility, we have to argue that none of the described choices exceeds the
overall capacity of u(f) + δb for an edge f ∈ E. The argument is analogous to the proof of
Lemma 8. ◀

Together with Lemma 13 we conclude that we obtain a (1 − ϵ, 1, 1)-approximation
algorithm for BUFP with δ-resource augmentation.
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