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Abstract In the Strip Packing problem, we are given a vertical half-strip [0,W ]×
[0,+∞) and a collection of open rectangles of width at most W . Our goal is to
find an axis-aligned (non-overlapping) packing of such rectangles into the strip such
that the maximum height OPT spanned by the packing is as small as possible. It
is NP-hard to approximate this problem within a factor (3/2− ε) for any constant
ε > 0 by a simple reduction from the Partition problem, while the current best
approximation factor for it is (5/3 + ε).

It seems plausible that Strip Packing admits a (3/2 + ε)-approximation. We
make progress in that direction by achieving such tight approximation guarantees
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for a special family of instances, which we call skewed instances. As standard in the
area, for a given constant parameter δ > 0, we call large the rectangles with width
at least δW and height at least δOPT , and skewed the remaining rectangles. If
all the rectangles in the input are large, then one can easily compute the optimal
packing in polynomial time (since the input can contain only a constant number
of rectangles). We consider the complementary case where all the rectangles are
skewed. This second case retains a large part of the complexity of the original
problem; in particular, it is NP-hard to approximate within a factor (3/2− ε) and
we provide an (almost) tight (3/2 + ε)-approximation algorithm.

Keywords Strip Packing · Rectangle Packing · Approximation Algorithms

1 Introduction

In this paper, we consider the Strip Packing problem, a well-studied classical rect-
angle packing problem (see Section 2 for a formal definition). An instance consists
of a vertical half-strip of (integral) width W plus a collection R of rectangles of
width at most W , and our objective is to find an axis-aligned packing of R (where
rectangles do not overlap) such that the maximum height spanned by the packing
is as small as possible.

Strip Packing generalizes several well-studied key problems in combinatorial
optimization. For example, it generalizes Makespan Minimization on identical ma-
chines [11] when all the rectangle widths are 1 (here W would be the number of
processors), and also generalizes Bin Packing [12] when all the rectangle heights
are 1 (here the height OPT of the optimal solution would be the optimal num-
ber of bins). Strip Packing has several natural applications. For example, there
are many manufacturing settings where rectangular pieces have to be cut out of
some roll of raw material while using a rectangular piece of that roll of minimum
length. Another application is the minimization of the peak energy consumption in
smart-grids [29,41]: here heights and widths model the energy consumption and
duration, respectively, of a given set of jobs. For analogous reasons, it captures
scenarios where a given set of jobs needs to be allocated a consecutive amount of
a given resource (memory locations, frequencies, etc.) for a given amount of time.

Strip Packing is strongly NP-hard [15], and hence it is reasonable to consider
approximation algorithms for it. A simple reduction from the Partition problem
shows that it is not possible to obtain a (3

2 − ε)-approximation algorithm (with
polynomial running time) for any ε > 0 unless P=NP (more details on this re-
duction are given later). The first non-trivial approximation algorithm for Strip
Packing, with approximation ratio 3, was given by Baker, Coffman, and Rivest
[4]. The First-Fit-Decreasing-Height algorithm (FFDH) by Coffman et al. [13]
gives a 2.7-approximation. Sleator [39] gave an algorithm that generates a packing
of height 2OPT + hmax

2 , where hmax is the maximum height of a rectangle in
the instance, hence achieving a 2.5-approximation. Afterwards, Steinberg [40] and
Schiermeyer [38] independently improved the approximation ratio to 2. Harren
and van Stee [21] first broke the barrier of 2 with their 1.9396-approximation. The
present best (5

3 + ε)-approximation is due to Harren et al. [20].

The Strip Packing problem has also been studied in the pseudopolynomial
setting, i.e., when W = nO(1). After a series of recent improvements [37,1,18,22,
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25], Jansen and Rau [24] have given a pseudopolynomial time algorithm with an
almost tight (5

4 + ε)-approximation ratio.
In terms of asymptotic approximations, the barrier of 3

2 can also be beaten.
The best results in these terms are an AFPTAS presented by Kenyon and Rémila
[30] which produces a solution of height (1 + ε)OPT +O

(
hmax
ε2

)
, and an APTAS

which generates a solution of height (1 + ε)OPT + hmax by Jansen and Solis-Oba
[26]. For the variant of Strip Packing with Rotations, where the rectangles are
allowed to be rotated by 90 degrees, Jansen and van Stee [27] provided an APTAS
(see also [14,36] for related results).

1.1 Related Work

Strip Packing has rich connections with many other important geometric packing
problems such as Two-dimensional Bin Packing (2BP) and Two-dimensional Ge-
ometric Knapsack (2GK). In 2BP, we are given a set of rectangles and unit square
bins, and the goal is to pack all the rectangles into minimum number of bins. The
problem is known to be APX-hard [6] and the present best approximation ratio is
1.405 [7] (these results hold in the asymptotic regime). In 2GK, we are given a set
of rectangles (with associated profits) and a unit square knapsack, and the goal is
to pack a subset of rectangles into the knapsack maximizing the total profit. This
problem is strongly NP-hard even when all items are squares with unit profits [34].
The present-best approximation ratio is 1.89 due to Gálvez et al. [16] (see also [3,
28,19,32]).

Strip Packing has also been well studied for higher dimensions. The present best
asymptotic approximation for 3-D Strip Packing is due to Jansen and Prädel [23]
who presented a 1.5-approximation extending techniques from 2BP.

Another related problem is the Independent Set of Rectangles problem: here
we are given a collection of axis-parallel rectangles embedded in the plane, and we
need to find a maximum cardinality/weight subset of non-overlapping rectangles
[2,8,9,33,35].

We refer the readers to [10,31] for surveys on geometric packing problems.

1.2 Our Contribution

In this paper, we study a special case of Strip Packing, where all rectangles are
skewed. In more detail, we say that a rectangle R is δ-large if, for some fixed
constant δ > 0, its width is at least a δ fraction of the width W of the strip and its
height is at least a δ fraction of the height OPT of the optimal packing; otherwise,
the rectangle is δ-skewed. We just say that a rectangle is large or skewed when
δ is clear from the context. An instance of Strip Packing is δ-skewed if all the
rectangles in the input are such.

This special case is non-trivial: in particular, the mentioned 3/2−ε hardness of
approximation holds also for this special case with minor adaptations (see Section
5). We also believe that this special case is practically relevant: e.g., it captures
scenarios where no job can consume a significant amount of the global resource
(energy, memory space, etc.) for a significant amount of time. Our main result is
as follows (see Sections 3-4).
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Theorem 1 For any given constant ε′ > 0 and a small enough positive constant

δ ≤ (ε′)(1/ε
′)O(1)

, there exists a polynomial-time
(
3
2 + ε′

)
-approximation algorithm

for δ-skewed Strip Packing.

We remark that our algorithm does not need to recognize first if the instance
is δ-skewed: It always returns a feasible solution, but only if the instance satisfies
the requirements, its approximation ratio is guaranteed.

Our result suggests that, in order to obtain a better approximation guarantee
for the general case of Strip Packing (possibly 3/2 + ε), one of the main obstacles
is the interaction between large and skewed rectangles.

1.2.1 Organization.

In Section 2, we introduce some useful notation and preliminary results. In Sec-
tion 3, we prove the existence of a good enough solution with certain structural
properties. The mentioned structure is exploited to derive an algorithm with the
claimed approximation guarantee in Section 4. Section 5 contains our hardness of
approximation result.

2 Preliminaries

A Strip Packing instance consists of a vertical strip of integral width W in the
two-dimensional plane, i.e. [0,W ] × R≥0, and a set R of open rectangles, where
each rectangle R ∈ R is characterized by its integral height h(R) and integral
width w(R). An embedding of R is given by specifying a bottom-left position
(x(R), y(R)) for each R ∈ R. The interpretation is that R is embedded in the
plane in the region

(
x(R), x(R)+w(R)

)
×
(
y(R), y(R)+h(R)

)
. An embedding is a

feasible packing into the strip if the following two conditions hold: (1) each R ∈ R
is embedded inside the strip, namely 0 ≤ x(R) ≤ W − w(R) and y(R) ≥ 0 and

(2) rectangles do not overlap, namely, for any two R1, R2 ∈ R,
((
x(R1), x(R1) +

w(R1)
)
×
(
y(R1), y(R1)+h(R1)

))
∩
(

(x(R2), x(R2)+w(R2))×
(
y(R2), y(R−2)+

h(R2)
))

= ∅. The height of a feasible packing is the maximum height spanned by

any embedded rectangle, namely the maximum value of y(R) + h(R) among the
rectangles R ∈ R. The goal of Strip Packing is to compute a feasible packing of
minimum height OPT . Without loss of generality, we can restrict our attention to
packings where the coordinates (x(R), y(R)) are integral as any feasible packing
can be transformed into a feasible packing satisfying this property (intuitively, by
pushing rectangles to the bottom-left as much as possible while keeping feasibility).

Given a subset of rectangles S ⊆ R, we denote by w(S) :=
∑
R∈S w(R),

h(S) :=
∑
R∈S h(R), and a(S) :=

∑
R∈S h(R)w(R) the total width, height, and

area of S, respectively. The operation of changing the bottom-left corner of a
rectangle R in a given packing from (x(R), y(R)) to (x(R), y(R)+a) will be denoted
by shifting R vertically by a. Analogously, changing the bottom-left coordinate
from (x(R), y(R)) to (x(R) + a, y(R)) will be denoted by shifting R horizontally
by a. These operations are only allowed if the resulting packing is feasible.

A box of size w × h denotes a rectangular region of width w and height h.
We sometimes embed boxes into the strip analogously to the way we embed
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rectangles. A monotone polygonal chain is a curve specified by a sequence of
points (A1, A2, . . . , An) called its vertices. The curve itself consists of the line seg-
ments connecting the consecutive vertices, and we require that the x-coordinates
of points Ai are non-decreasing and the segments are horizontal or vertical. We
say that a rectangle R in the packing lies above (resp. below) one such P if for
any x1 ∈ (x(R), x(R) + w(R)) we have that y(R) (resp. y(R) + h(R)) is not
smaller (resp. not larger) than the largest (resp., smallest) y-coordinate of P at
x-coordinate x1.

We can assume w.l.o.g. thatW is lower bounded by a sufficiently large constant,
in particular W ≥ 1/ε. If it is not the case, one easily obtains a PTAS for δ-skewed
instances1.

2.1 Next Fit Decreasing Height

One of the most recurring tools, used as a subroutine in countless results on
geometric packing problems, is the Next Fit Decreasing Height (NFDH) algo-
rithm [13]. We will use a variant of this algorithm to pack rectangles inside a
rectangular box and analyze its properties. We provide a full proof for the sake of
completeness.

Suppose we are given a box C of size w × h, and a set of rectangles R′, each
one fitting inside the box. NFDH computes in polynomial time a packing of a
set R′′ ⊆ R′ as follows. It sorts the rectangles R ∈ R′ in non-increasing order
of height, and considers rectangles in that order R1, . . . , Rn. Then the algorithm
works in rounds j ≥ 1. At the beginning of round j it is given an index n(j)
and a horizontal segment L(j) going from the left to the right side of C (initially
n(1) = 1 and L(1) is the bottom side of C). In round j the algorithm packs a
maximal set of rectangles Rn(j), . . . , Rn(j+1)−1, with bottom side touching L(j)
one next to the other from left to right (a shelf ). The segment L(j + 1) is the
horizontal segment containing the top side of Rn(j) and ranging from the left to
the right side of C. The process halts at round r when either all rectangles have
being packed or Rn(r+1) does not fit above Rn(r).

The following lemma states the guarantees one can get with respect to the
dimensions of the rectangles packed in the box.

Lemma 1 [13] Let C be a given box of size w × h and R be a set of rectangles.
Assume that, for some given parameter ε′ ∈ (0, 1), for each R ∈ R one has
w(R) ≤ ε′w and h(R) ≤ ε′h. Then NFDH is able to pack in C a subset R′ ⊆ R of
area at least a(R′) ≥ min{a(R), (1−2ε′)w·h}. In particular, if a(R) ≤ (1−2ε′)w·h,
all rectangles in R are packed.

Proof The claim trivially holds if all rectangles are packed. Thus suppose that
this is not the case. Observe that

∑r+1
j=1 h(Rn(j)) > h, otherwise rectangle Rn(r+1)

would fit in the next shelf above Rn(r); hence
∑r+1
j=2 h(Rn(j)) > h − h(Rn(1)) ≥

(1− ε′)h. Observe also that the total width of rectangles packed in each round j
is at least w − ε′w = (1− ε′)w, since Rn(j+1), of width at most ε′w, does not fit

1 Choosing δ such that δW < 1 enforces each rectangle to have height at most δOPT
(otherwise it would be large). A PTAS for this case follows, e.g., from [26].
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to the right of Rn(j+1)−1. It follows that the total area of the rectangles packed
in round j is at least (w − ε′w)h(Rn(j+1)−1), and thus

a(R′) ≥
r∑
j=1

(1− ε′)w · h(Rn(j+1)−1) ≥ (1− ε′)w
r+1∑
j=2

h(Rn(j))

≥ (1− ε′)2w · h ≥ (1− 2ε′)w · h.

2.2 Container Packings

Similar to recent work on related problems (e.g., [16,5]), we will exploit a container-
based packing approach. The idea is to partition the solution into a constant
number of axis-aligned rectangular regions (containers). The sizes (and therefore
positions) of these containers can be guessed in polynomial time, and subsequently,
rectangles are packed inside the containers in a simple way: either one next to the
other from left to right (vertical container), or one on top of the other from bottom
to top (horizontal container), or by means of NFDH (area container). We further
require that the rectangles R packed into an area container of size w × h satisfy
w(R) ≤ ε′w and h(R) ≤ ε′h for a constant ε′ > 0 to be fixed later. We call this
an ε′-area container.

We will make use of the following standard PTAS to pack rectangles into a
constant number of containers. The basic idea is to reduce the problem to an
instance of the Maximum Generalized Assignment Problem (GAP) with one bin
per container, and then use a PTAS for the latter problem plus NFDH to repack
rectangles in area containers. We recall that in GAP, we are given a collection of n
items and a set of k (one-dimensional) bins, each one characterized by a positive
size. Each item has a profit2 and a positive size per bin (possibly different for
different bins). Our goal is to compute a maximum profit subset of items and an
assignment of them into the bins so that the total size of items packed in each bin
is at most the size of the bin. GAP admits a PTAS for constant k (see e.g. Section
E.2 in [17]) and the following lemma shows how to use it to pack the rectangles
into a given set of containers.

Lemma 2 For any constant ε′ > 0, given a set of rectangles R that can be packed
into a given set of k containers (each container being either vertical, horizontal
or ε′-area), k constant, there is an algorithm to pack R′ ⊆ R with a(R′) ≥ (1 −
3ε′)a(R) into the mentioned containers.

Proof We let w(Cj) × h(Cj) be the size of the j-th container Cj . We build an
instance of GAP as follows. We define an item R per rectangle R ∈ R, with profit
a(R). For each horizontal container Cj , we create a knapsack j of size Sj := h(Cj).
Furthermore, we define the size s(R, j) of rectangle R w.r.t. knapsack j as h(R) if
h(R) ≤ h(Cj) and w(R) ≤ w(Cj). Otherwise s(R, j) = +∞ (meaning that R does
not fit in Cj). The construction for vertical containers is symmetric. For each area
container Cj we create a knapsack j of size Sj = a(Cj) and define the size s(R, j)
of rectangle R w.r.t. knapsack j as a(R) if h(R) ≤ ε′h(Cj) and w(R) ≤ ε′w(Cj),

2 The same item might have different profit on different knapsacks; however, we do not need
this extension here.
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setting b(R, j) = +∞ otherwise (meaning that the rectangle is not small enough
with respect to the dimensions of the container).

We next apply the mentioned PTAS for GAP to this instance, so as to obtain
a solution R′′ to GAP of profit at least a(R′′) ≥ (1− ε′)a(R). We build a feasible
packing of R′ ⊆ R′′ into the containers as follows. Let Rj be the items packed into
knapsack j. If Cj is vertical, we pack rectanglesRj into this container bottom-most
and from left to right one next to the other in any order. By definition all rectangles
Rj will fit. A symmetric construction works if Cj is horizontal. If Cj is area, we
pack a subsetR′j ofRj into it using NFDH. By Lemma 1, we either haveR′j = Rj ,
or it must be the case that a(R′j) ≥ (1−2ε′)w(Cj)h(Cj) = (1−2ε′)a(Cj). Consider
the second case. LetR′′j = Rj\R′j be the rectangles which are not packed. Observe
that a(Rj) ≤ a(Cj) by the feasibility of the GAP solution, hence

a(R′′j )

a(Rj)
= 1−

a(R′j)
a(Rj)

≤ 1− (1− 2ε′)a(Cj)

a(Rj)
≤ 2ε′.

Thus altogether a(R′) ≥ a(R′′)(1− 2ε′) ≥ a(R)(1− 2ε′)(1− ε′) ≥ a(R)(1− 3ε′).

Notice that the containers may have considerable free space inside, but the lemma
just claims that the total area of the rectangles that the algorithm is not packing is
negligible. Whenever this lemma is applied, we will pack the remaining rectangles
into an extra rectangular box of small area and carefully argue where to place it.

2.3 Classification of Rectangles

From now on, we will assume that instance (R,W ) is δ-skewed for some δ > 0
to be fixed later. By OPT , we denote both the optimal height and an optimal
packing: the meaning will be clear from the context. We can assume that OPT is
even (otherwise, we can multiply heights by a factor 2).

We will assume that our algorithm is given in the input a value OPT ′ such
that OPT ≤ OPT ′ ≤ (1 + ε)OPT . This assumption can be removed as follows.
We compute, say, a 2-approximate solution APX for the instance by means of
Steinberg’s algorithm [40] and then run our algorithm for all the (constantly many)
values OPT ′ = (1 + ε)j APX2(1+ε) which fit in the range [ APX2(1+ε) , APX(1 + ε)]. One of
these values will satisfy the claim. In order to keep the notation light, we simply
use OPT to denote this value OPT ′. Therefore, all the approximation factors
should be scaled by a factor (1 + ε) in order to consider the true value of OPT .

Along this work we will assume ε to be a positive constant and also for sim-
plicity that 1

ε ∈ N. We will classify the rectangles according to their heights as
follows:

– The set of tall rectangles T = {R ∈ R : h(R) > 1
2OPT};

– The set of vertical rectangles V = {R ∈ R : h(R) ∈ (δOPT, 12OPT ]};
– The set of short rectangles S = {R ∈ R : h(R) ≤ δOPT};

2.4 Linear Grouping

We need the following lemma whose proof is based on linear grouping, a standard
technique in the area of packing problems. Given a subset S of rectangles, let
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Shslice be the set of rectangles obtained by taking each R ∈ S and replacing it
with h(R) rectangles of height 1 and width w(R) (horizontal slices). We define
symmetrically the set Svslice of vertical slices. Notice that any embedding of S
naturally induces an embedding of Shslice and Svslice.

Lemma 3 Let ε′ > 0 be a given constant, P be a rectangular region of size W ×H
and H be a subset or rectangles of height at most δ · H each for some constant
δ ∈ (0, 1]. Suppose that Hhslice can be packed into a set B of K = Oε′(1) boxes

contained in P. Then, for δ ≤ (ε′/K)(K/ε
′)O(1)

, there exists a partition of H into
two sets Hcont and Hdisc such that:

1. Hcont can be packed into a set of at most K′ = Oε′(1) horizontal and ε′-area
containers, where each container is fully contained in some box in B.

2. Hdisc can be packed into one horizontal container of size maxR∈H{w(R)} ×
(ε′)2H and one ε′-area container of size ε′W × ε′H.

3. The sizes of the above containers belong to a set that can be computed in poly-
nomial time.

A symmetric claim holds for a subset of rectangles V ′ of width at most δ ·W such
that V ′vslice can be packed into the corresponding boxes.

Proof We prove the claim for H, the case of V ′ being symmetric. For a proper
parameter α > 0 to be fixed later, we define a rectangle R (and its horizontal
slices) to be narrow if w(R) ≤ α2W and wide otherwise. We temporarily remove
narrow rectangles, and start by computing a packing for the wide rectangles.

The first step in our construction is to round up the widths of the wide slices,
while discarding a subset of them of small area. Let β > 0 be a parameter to be
fixed later. Let us sort the wide slices Hwidehslice in non-increasing order of width,
and let us partition the obtained sequence into subsequences H1, . . . ,H1/β of total

height βh(Hwidehslice) each (excluding possibly the last group that can have smaller
height). For a group i, we define wmini as the minimum width in Hi. For each
i = 1, . . . , 1/β − 1, we define an injection between Hi+1 and Hi. Next, we delete
slices H1. Let Hwdisc1 denote the rectangles of which we removed at least one
slice. Notice that all rectangles having some slice in H1 have all their slices in H1

excluding possibly one rectangle (which has part of its slices in H2). Observe that
h(Hwidehslice) ≤ H

α since otherwise a(Hwidehslice) ≥ αW ·h(H), which would be too large

to fit into the region of size W × H. Hence h(H1) = βh(H) ≤ β
αH. It follows

that h(Hwdisc1) ≤ (βα + δ)H. For any fixed α, this quantity is at most (ε′)2

2 H if

β ≤ α(ε′)2/4 and δ ≤ (ε′)2/4.
For i = 1, . . . , 1/β − 1, we temporarily increase the width of each H ∈ Hi+1

to wmini , hence getting an enlarged slice H. Then, we move each such H into the
region that was occupied by the slice H ′ ∈ Hi associated with H according to
the above injection. Notice that this is possible since we removed H1 and since
w(H) = wmini ≤ w(H ′). Let H be the final set of enlarged slices. Observe that the
number of possible distinct widths in H is 1/β − 1.

Let us focus on a specific box B ∈ B of size w(B) × h(B), and let H′hslice
be the slices contained in B. Next, we partition B into unit height stripes. We
shift slices in each stripe as left as possible, and permute them so that slices in
H appear to the left of each stripe. We call a configuration C of a stripe the
sequence of (enlarged) widths (w1, . . . , wq) of its slices in H from left to right.
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Notice that there are 1/β−1 possible enlarged widths, and each stripe can contain
at most 1/α2 wide slices. Hence the number of possible configurations is at most

nconf =
∑1/α2

i=0 (1/β − 1)i ≤ 2(1/β − 1)1/α
2

≤ (1/β)1/α
2

.

We reorder the stripes in H′hslice vertically so that equal configurations appear
consecutively from top to bottom, and stripes without narrow rectangles appear
at the bottom. Suppose that the number of stripes in B with a given configuration
C = (w1, . . . , wq) is h(C), and A(C) is the corresponding region. We initially
cover A(C) by creating q consecutive horizontal containers of height h(C) and
width w1, . . . , wq respectively. These containers altogether cover all the wide slices
in B. The width of each container belongs to a set that can be computed in
polynomial time (it is the width of some input rectangle). In order to enforce the
same property for their heights, we round down the height of each such container
to the largest multiple h′(C) of δ

γH not larger than h(C), for some parameter
γ > 0 to be fixed later. The number of these containers is nwcont ≤ Knconf .

We next use the obtained horizontal containers to place most of the wide
rectangles. We consider the containers in non-increasing order of width and the
slices of wide rectangles in the same order, breaking ties so that slices of the
same rectangle appear consecutively. We also create a dummy final container of
sufficient width and of height large enough to accommodate the total height of the
wide slices minus the total height of the containers. Now, we place back the slices
into the containers following the previous order. Notice that all slices will fit. We
discard each wide rectangle whose slices are contained in two containers (three is
not possible) and all the wide rectangles whose slices are contained in the dummy
final container. Let Hwdisc2 be the set of discarded rectangles. Their total height
is

h(Hwdisc2) ≤ nwcontδH + nwcont
δ

γ
H.

The above quantity is at most (ε′)2

2 H for any choice of ε′, α, β, and γ, provided

that δ ≤ (ε′)2γ
4nwcont

≤ (ε′)2γ

4K(1/β)(1/α2)
.

So we packed all the wide rectangles into horizontal containers except for the
set Hwdisc = Hwdisc1∪Hwdisc2. The latter set has, by the above discussion, height
at most (ε′)2H, hence we can pack it into a container of size maxR∈Hwide{w(R)}×
(ε′)2H.

It remains to pack the narrow rectangles. Consider again a given box B. For
each configuration C, there is some free region F (C) to the right of the containers
built for C whose height is h′(C) (in particular, a multiple of δ

γH) and of some

width w(F (C)). We build an area container of the same height and having width
equal to the largest multiple w′(F (C)) of αγW not larger than w(F (C)). We apply
a similar construction to the free rectangular region F in B below all the previ-
ous containers, if any; in particular, we create an area container whose width is
the largest multiple of α

γW not larger than w(F ) = w and whose height is the

largest multiple of δγH not larger than h(F ). The total number of constructed area
containers is nncont ≤ K · nconf .

Next, we start packing the narrow rectangles in non-increasing order of height
into the area containers using NFDH. Observe that these rectangles satisfy the
claim of Lemma 1 with parameter γ. If all narrow rectangles are packed this way,
we are done. Otherwise, let Hncont and Hndisc be the subset of narrow rectangles
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that are packed and not packed in the area containers, respectively. By Lemma 1,
a(Hncont) ≥ (1− 2γ)Aacont, where Aacont is the total area of the area containers.
Let afree be the total area in the boxes not occupied by horizontal containers.
Clearly afree ≥ a(Hnarrow) since all narrow slices did fit in a region of area not
smaller than afree. Due to the rounding involved in the construction, in each box
there is some area which is not used by area containers nor by horizontal ones.
The latter area is at most W · δγH +H · αγW per container, hence being at most

∆ ≤ K · ( δ+αγ )WH in total. We can conclude that

a(Hncont) ≥ (1− 2γ)Aacont = (1− 2γ)(afree −∆)

≥ (1− 2γ)(a(Hnarrow)−K · (δ + α

γ
)WH).

Thus

a(Hndisc) ≤ 2γ · a(Hnarrow) +K · (δ + α

γ
)WH) ≤ (2γ +K · (δ + α

γ
))WH.

If we choose γ ≤ (ε′)2/6, δ ≤ (ε′)2γ
6K and α ≤ (ε′)2γ

6K , then the latter quantity is

at most (ε′)2

2 WH. Next, we create a new area container Cdarea of size ε′W × ε′H,
and use NFDH to pack Hndisc in it. It is not difficult to verify that, for such values
of δ and α, rectangles in Hndisc satisfy the conditions of Lemma 1 with parameter
ε′. Thus we have

a(Hndisc) ≤
1

2
(ε′)2WH =

1

2
a(Cdarea) ≤ (1− 2ε′)a(Cdarea),

implying that all the rectangles in Hndisc are indeed packed into Cdarea.
It is possible to choose constant parameters α, β and γ such that the above

conditions are all satisfied (for δ small enough) and the total number of con-
tainers is Oε′(1). More precisely, this is true if γ = (ε′)2/6, α = (ε′)4/(36 · K),

β = (ε′)6/(144 ·K) and δ = (ε′)2γ

4K(1/β)(1/α2)
∈ (ε′/K)(K/ε

′)O(1)

, leading to at most

(K/ε′)(K/ε
′)O(1)

containers. By the above construction, the sizes of the containers
belong to a set that can be computed in polynomial time.

3 Existence of a Structured Solution

In this section, we will prove our main structural result.

Theorem 2 For any given constant ε > 0 and any given instance of δ-skewed
Strip Packing (R,W ) with δ = Ωε(1) small enough, there exists a feasible container
packing such that the following holds:

1. The total height of the packing is
(
3
2 +O(ε)

)
OPT .

2. The number of containers is Oε(1) and their possible sizes belong to a set that
can be computed in polynomial time.

3. Given any fixed ordering of T in non-increasing order of height, T can be
partitioned into subsequences each one fitting in precisely one vertical container.

4. It is possible to pack an extra rectangle (free box) of size ε2W × 1
2OPT into

the strip without increasing its final height.
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To achieve the above result, we proceed in three steps:

1. We describe a packing of T ∪ Shslice with height at most (3/2 + O(ε))OPT
(see Section 3.1) into Oε(1) boxes. This packing leaves a free space of at least
(1/2 +Ω(ε))OPT + a(V).

2. We describe how to pack Vvslice within the free space of the previous packing
using Oε(1) extra boxes (see Section 3.2). Furthermore, we guarantee that there
is a free box (not containing any rectangle) of size at least Ω(ε)W × 1

2OPT .
Guaranteeing the latter property is critical, and it is the main technical novelty
in our approach.

3. Finally, we convert the above packing into a feasible container packing (via
Lemma 3) inside the above boxes (see Section 3.3). The residual containers
that do not fit into the boxes can be placed inside the free box (still leaving
enough space) plus a new box of size W × O(ε2)OPT that can be placed on
top of the previous packing.

The reason for leaving a free box will be clearer in Section 4, where we will describe
our final algorithm.

3.1 Packing of T ∪ Shslice

In this section, we describe a packing of T ∪ Shslice. The proof of the following
Lemma is illustrated in Figure 1.

Lemma 4 For any given constant ε ∈ (0, 1/4] with 1/ε integral and δ = Ωε(1)
sufficiently small, it is possible to pack T ∪ Shslice into the region P = [0,W ] ×
[0, (3

2 + 15ε)OPT ] in such a way that:

1. Rectangles in T are packed into at most 1/ε vertical boxes, slices in Shslice are
packed into at most 1/ε+ 1 horizontal boxes, and the remaining area is parti-
tioned into at most 2/ε free boxes. Furthermore, given any fixed ordering of T
in non-increasing order of height, it is possible to partition T into subsequences
such that each subsequence fits into precisely one vertical box.

2. The sizes of the boxes belong to a set that can be computed in polynomial time.
3. The total area of the free boxes is at least (1

2 + 9ε)OPT ·W + a(V).

Proof Consider the embedding of T ∪ Shslice induced by the optimal solution.
Let us draw the horizontal line y = 1

2OPT and partition Shslice into two sets

Stophslice and Sbottomhslice corresponding to the rectangles in Shslice which are packed
above and below the line y = 1

2OPT respectively (notice that this line does not
intersect any rectangle in Shslice as OPT is even by assumption). If we shift
up rectangles in Sbottomhslice by OPT , we obtain a feasible packing (since the region
[0,W ]× [OPT, 32OPT ] was empty) with final height at most 3

2OPT . Notice that
every rectangle in T intersects the horizontal segment [0,W ]×

{
1
2

}
.

Now, let us shift down each rectangle R in T so that its bottom coordinate
becomes zero (again, the packing remains feasible). Next, we shift rectangles so
that the ones in T appear one next to the other in the bottom left part of the
packing, in non-increasing order of height. To this end, we proceed recursively as
follows. Let T1, . . . , Tq be the considered ordering of T in non-increasing order
of height. At the beginning of iteration i ≥ 1, we are given a feasible packing
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1
2
OPT

OPT

0

0 W

Sbottomhslice

Stophslice

1
2
OPT

OPT

3
2
OPT

0

0 W

Sbottomhslice

Stophslice

1
2
OPT

(
3
2

+O(ε)
)
OPT

0

0 W

Cdw

Cup

Fig. 1 Depiction of the proof of Lemma 4. Left: Packing of T ∪Shslice in the optimal solution.
Light gray rectangles correspond to Shslice, dark gray rectangles correspond to T . Center:
By shifting Sbottomhslice to the top we can shift down the rectangles in T . Right: We can shift
now horizontally rectangles in T and sort stripes. Finally one obtains Cup and Cdw.

where T1, . . . , Ti−1 are packed from left to right one next to the other as left as
possible (and with bottom coordinate 0). We consider the region Ai := [wi−1,W ]×
[0, h(Ti)], where wi−1 =

∑
j≤i−1 w(Tj). Let Li be the portion of Ai to the left

of (the current embedding of) Ti. Note that every rectangle is either completely
contained in or disjoint from Li since Ti is the tallest rectangle contained in Ai
and Ti−1 is taller than Ti. We move Ti so that its left coordinate is wi−1, and shift
Li to the right by w(Ti), moving consistently all rectangles in Li. Obviously the
new packing satisfies the invariant for the next iteration. At the end of iteration q
the packing satisfies the claim.

In the next step, we partition the area not occupied by T into unit-height
stripes. Notice that each rectangle in Shslice is fully contained in some stripe. We
need (for a reason that will be clearer later) to temporarily discard, meaning that
we remove them from the packing, some slices as follows. Let us say that a slice is
wide if its width is at least εW , and narrow otherwise. Consider the slices S′hslice
in a given horizontal stripe. This set contains at most 1/ε wide slices. Let w′ be the
total width of the remaining narrow slices and let w′′ ≤ w′ be the largest multiple
of εW . We discard a minimal subset of narrow slices so that the remaining ones
have width at most w′′. We let Sdischslice be the set of discarded slices, and Sselhslice

be the remaining (selected) slices.

Next, we push slices Sselhslice as right as possible. Afterward, we permute the
y-coordinates of slices in pairs of stripes so that stripes are sorted from top to
bottom in non-increasing order of the total width of the slices contained in them.
Observe that this cannot create any conflict with T (hence the packing remains
feasible).

We proceed as follows. We shift up Sselhslice by 11ε · OPT and construct a
polygonal chain Cup with the following procedure. The chain starts at coordinate
pup0 = (0, (3

2 + 11ε)OPT ). We extend the chain to the right (possibly by a zero

amount) until the chain hits some rectangle in Sselhslice. We denote this point by
(x1, (

3
2 + 11ε)OPT ) and extend the chain down by εOPT , hence reaching some

point pup1 = (x1, (
3
2 + 10ε)OPT ). We continue from pup1 in the same fashion.
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The procedure ends when the chain reaches the x-coordinate W . Observe that,
by construction, every rectangle in Sselhslice lies above Cup. Furthermore, Cup is
defined by at most 1/ε axis parallel segments.

Afterward, we build symmetrically a polygonal chain Cdw as follows. We start
from pdw0 = (W, 0) and extend the chain to the left (possibly by a zero amount)
until we hit some rectangle R in T . Then, we extend the chain up by εOPT , hence
reaching a point pdw1 = (x1, εOPT ). We continue from pdw1 in the same fashion until
we reach the x-coordinate 0. Notice that each rectangle from T lies below Cdw.
Notice also that Cdw is defined by at most 1/ε axis parallel segments. Furthermore,
it is fully below Cup. To see the latter, take any coordinate x ∈ (0,W ) (which,
for simplicity, is not the position of a vertex of any one of the two chains). Let
yup and ydw be the corresponding y-coordinates in Cup and Cdw, resp. Suppose
by contradiction that ydw > yup. Observe that by construction the segment x ×
(yup, yup + εOPT ) must hit some rectangle Rup in Sselhslice. Symmetrically, the
segment x× (ydw − εOPT, ydw) must hit some rectangle Rdw in T . This however
implies that Rup and Rdw overlapped before the shifting up of Sselhslice by 11εOPT ,
a contradiction3.

We claim that points pupi and pdwi have coordinates that belong to a set that
can be computed in polynomial time. Notice that the y coordinates of the points
pupi and pdwi are multiples of εOPT (recall that OPT is known to the algorithm),
hence they satisfy the requirement. Since we know the precise packing of T , we
can compute the x-coordinates of points pdwi explicitly. The x-coordinates of points
pupi have value W minus the sum w′′ of the widths of the slices in a given strip.
By the previous discarding procedure, w′′ is the sum of up to 1/ε widths of input
rectangles, plus a multiple of εW . Hence we can compute the set of the possible
coordinates in polynomial time.

Let us subdivide the area in the strip between Cup and [0,W ]× (3
2 + 11ε)OPT

by extending to the right the horizontal segments in Cup. This gives up to 1/ε
boxes Bup that fully contain Sselhslice. Symmetrically, we can subdivide the area in
the strip between Cdw and [0,W ] by extending down the vertical segments in Cdw.
This provides up to 1/ε boxes Bdw that fully contain T . Next, consider the free
area between Bup and Bdw. By extending down the vertical sides of the boxes in
Bup until reaching Bdw and symmetrically extending up the vertical sides of the
boxes in Bdw until reaching Bup, we obtain a partition of the free area into up
to 2/ε free boxes Bfree. By the previous discussion, the possible sizes of all the
mentioned boxes can be computed in polynomial time.

It remains to pack Sdischslice. To that end, we create a new box Bdisc of width W
and height 4εOPT that we place on top of the current packing, hence increasing
the total height to (3

2+15ε)OPT . Notice that each R ∈ Sdischslice satisfies w(R) ≤ εW
and h(R) = 1 ≤ δOPT . Hence assuming ε ≤ 1/4 and δ ≤ 4ε2, Lemma 1 with
ε′ = 1/4 guarantees that Sdischslice can be fully packed in Bdisc via NFDH.

Properties (1) and (2) follow by construction, it just remains to prove (3).
Notice that by construction the area inside Bup not occupied by Sselhslice is at most
εOPT ·W . Indeed, as observed earlier, if we take any point (x, y) along Cup, where
x does not correspond to a step of Cup, the segment x× [y, y + εOPT ] hits some
rectangle in Sselhslice. Thus a(Bup) ≤ a(Sselhslice)+εOPT ·W . A symmetric argument

3 A shifting up by 2εOPT would be sufficient to achieve a contradiction here. The extra shift
by 9εOPT is used to create some more free space that is needed in the following arguments.
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shows that a(Bdw) ≤ a(T ) + εOPT ·W . We can therefore conclude that

a(Bfree) ≥ W ·
(

3

2
+ 11ε

)
OPT − a(Sselhslice)− a(T )− 2εOPT ·W

≥ W ·
(

3

2
+ 9ε

)
OPT − a(S ∪ T )

≥ W ·
(

3

2
+ 9ε

)
OPT −OPT ·W + a(V) = W ·

(
1

2
+ 9ε

)
OPT + a(V).

3.2 Including Vvslice

In this section, we show how to incorporate Vvslice into the packing from the
previous subsection. Critically, we need to leave a free box of sufficiently large
size.

Lemma 5 Consider the packing from Lemma 4 and assume ε is small enough. It
is possible to pack Vvslice inside the free boxes and furthermore define an empty
rectangular region of size 2ε2W × 1

2OPT inside one of the free boxes.

Proof Consider the set of (at most) 2/ε free boxes B1, . . . ,Bq sorted non-decreasingly
by height. We partition them into unit-width vertical stripes S′ = {S1, . . . , Sk}
sorted in the same order, and breaking ties so that stripes of the same box appear

consecutively. Recall that a(S′) ≥
(

1
2 + 9ε

)
OPT ·W + a(V).

We next place slices of Vvslice into these stripes from bottom to top in a greedy
manner. In particular, we consider rectangles R in Vvslice in any order, and place
R in the left-most stripe where it fits, as low as possible. Assume that the non-
empty stripes are S′used. Notice that the unused space in these stripes is at most

(w(S′used)− 1)(OPT2 − 1) +OPT ≤
(w(S′

used)+1

2

)
OPT , hence

a(S′used) ≤ a(V) +
w(S′used) + 1

2
OPT.

Let us partition the unused stripes S′unused into S′tallunused, the ones of height at
least OPT/2, and S′shortunused, the remaining ones. It holds that

a(S′tallunused) ≥
(1

2
+ 9ε

)
OPT ·W + a(V)− a(S′used)− a(S′shortunused)

≥
(1

2
+ 9ε

)
OPT ·W + a(V)−

(
a(V) +

(
w(S′used) + 1

)
2

OPT
)

−OPT
2

w(S′shortunused)

=
(1

2
+ 9ε

)
OPT ·W −

(
w(S′used) + w(S′shortunused)

)
2

OPT − OPT

2

≥ 9εOPT ·W − OPT

2
≥ 8εOPT ·W,

The second last inequality follows from the fact that
(
w(S′used) + w(S′shortunused)

)
≤

W . In the last inequality, we used the assumption W ≥ 1/ε.
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(
3
2

+O(ε)
)
OPT

OPT

1
2
OPT

1
2
OPT

Fig. 2 Description of the packing of Vvslice. Left: Packing of T ∪ Shslice as described in
Lemma 4 and the Oε(1) boxes for the free area defined by the dashed lines. Right: Boxes in
the free area sorted by height. Even if we ignore 1

2
OPT height from each box we have enough

space for Vvslice and even to reserve space for future discarded vertical rectangles.

Since a(S′tallunused) ≤ (3OPT
2 +11εOPT )w(S′tallunused), it follows that, for ε ≤ 1/22,

w(S′tallunused) ≥ 8ε ·W
3
2 + 11ε

≥ 4ε ·W.

Next, consider the set of boxes spanned by S′tallunused. All these boxes contain a
free rectangular region of height 1

2OPT induced by the bottom part of S′tallunused:
let us call these regions F1, . . . , Fk. Since the number of these regions is at most
2
ε (i.e. the total number of boxes) and their total width is at least 4ε ·W , by an

averaging argument there exists one such Fi of width at least 2ε2W .

3.3 Rounding

In this section, we show how to round the packing from Lemma 5 by means of
Lemma 3, hence concluding the proof of Theorem 2.

Proof (Proof of Theorem 2) We start with the packing of T ∪ Shslice ∪ Vvslice
obtained from Lemma 5. Recall that Shslice is packed into 1/ε+ 1 boxes BS and
Vvslice into 2/ε boxes BV . The total height of this packing is (3

2 + 15ε)OPT , and

this packing leaves a free region F of size 2ε2W × 1
2OPT . Provided that δ is small

enough, we can apply Lemma 3 to (Shslice,BS) and obtain a packing of S into a set

of containers fully contained in BS , plus two containers of size at most W× ε2

2 OPT
each. We place the latter two containers on top of the packing, hence increasing the
total height by ε2OPT . By applying the same Lemma to (Vvslice,BV ), we obtain
a packing of V into a set of containers fully contained in BV plus two containers

of size at most ε2

2 W ×
1
2OPT each. The latter two containers can be placed inside

F without further increasing the height of the packing, still leaving a free region
of size ε2W × 1

2OPT .
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By construction, the number of used containers is Oε(1) and their sizes belong
to a set that can be computed in polynomial time.

4 Algorithm

In this section, we describe an algorithm based on Theorem 2 to compute our final
solution.

Consider the set of containers guaranteed by Theorem 2. In polynomial time
we can guess such containers by trying all possibilities. By brute force we can also
compute (in polynomial time) a packing of these containers plus the free box in
the strip of total height at most (3

2 + O(ε))OPT . We guess which ones among
the vertical containers contain T , and pack the whole set T there greedily in
non-increasing order of height.

We next apply Lemma 2 with parameter ε′ = ε3 to the remaining containers
and to the remaining rectangles V ∪ S. This way we can pack a set R′ ⊆ V ∪ S
of area at least a(V ∪ S)(1 − ε3). It remains to pack R′′ := (V ∪ S) \ R′, which
satisfies that a(R′′) ≤ ε3a(V ∪ S) ≤ ε3(3

2 + O(ε))OPT ·W ≤ 2ε3OPT ·W . We
partition R′′ into 3 subsets and pack them as follows:

1. The rectangles V ′′ ⊆ R′′ of height at least 2εOPT (notice that they have
height at most OPT/2). By an area argument their total width is at most
2ε3OPT ·W

2εOPT = ε2W . Hence they fit in a vertical container of size ε2W × 1
2OPT

that can be placed in the area occupied by the free box (without increasing
the height of the packing).

2. The rectangles H′′ ⊆ R′′ of width at least ε2W . By a similar area argument

their total height is at most 2ε3OPT ·W
ε2W = 2εOPT . Hence they can be placed

into an horizontal container of size W × 2εOPT that can be placed on top of
the current packing.

3. The remaining rectangles S′′ ⊆ R′′ with height at most 2εOPT and width at
most ε2W . By Lemma 1 with parameter ε′ =

√
ε and for small enough ε, we

can pack S′′ by means of NFDH into an area container of size ε
√
εW×2

√
εOPT

to be placed on top of the current packing.

We now have all the ingredients to prove our main theorem.

Proof (Proof of Theorem 1) Consider the above algorithm which clearly has poly-
nomial running time for any fixed parameter ε > 0. For δ small enough, it generates
a feasible packing of all rectangles of total height at most

(
3
2 +O(

√
ε)
)
OPT . Con-

sidering the initial rounding of OPT by a factor (1 + ε), this gives a 3
2 + O(

√
ε)

approximation. The claim then follows by choosing ε appropriately.

5 Hardness of Approximation

In this section, we prove that the lower bound of 3
2 on the approximability of Strip

Packing still holds in the case of δ-skewed instances.

Lemma 6 For any δ > 0 and ε > 0, there is no polynomial-time
(
3
2 − ε

)
-

approximation for δ-skewed Strip Packing unless P=NP.
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0
W =

(
1 + δ

4

)
M

0

1

2

δ
2
M

M
δ
4
M

Fig. 3 Construction from Lemma 6. Light gray rectangles represent dummy rectangles and
dark gray rectangles represent partition rectangles.

Proof We will prove this result via a reduction from the NP-complete Partition
problem. Recall that in Partition we are given a set of integers I = {x1, . . . , xn}
whose sum is p. Our goal is to determine whether I can be partitioned into two
sets I1 and I2 such that

∑
xi∈I1 xi = p

2 . We define our Strip Packing instance as

follows: The width of the strip will be W = (1 + δ/4)M where M = 2p
δ . Also, we

will have n + 4
δ rectangles in the instance, from which 4

δ will have height 1 and

width δ
2M (dummy rectangles), and the remaining n rectangles will have, for each

i = 1, . . . , n, height 1 and width xi (partition rectangles). Notice that the instance
is indeed δ-skewed as the width of the rectangles is either δ

2M ≤
δ
2W or at most

p = δ
2M ≤

δ
2W . Notice also that OPT ≥ 2 since the area of the rectangles is 2W .

We will now prove that the Partition instance is a YES instance if and only
if OPT = 2. Since all the heights in the instance are 1, as a consequence a NO
instance has height at least 3, hence concluding the proof of the claim. Notice that
if the Partition instance is a YES instance then we can pack one next to the other
2
δ dummy rectangles plus one side of the partition since their total width would be

M + p
2 =

(
1 + δ

4

)
M . We then analogously pack the rest of the rectangles on top,

obtaining a packing of height 2 which is optimal as the total area of the rectangles
is 2W (see Figure 3). On the other hand, if the optimal height of the Strip Packing
instance is 2, the subregion [0,W ] × [0, 2] in the strip must be fully occupied by
rectangles. This actually implies that the horizontal segment [0,W ]×{1} does not
intersect the interior of any rectangle in the packing: indeed, if it is not the case,
the space below that rectangle could not be occupied by any other rectangle (as
heights are all 1). This divides the solution into two rows of height 1 and width
W which are completely filled with rectangles. The only way to divide dummy
rectangles into the two rows is to have exactly 2

δ in each row (as the largest total
width below W that they can sum up to is M and their total width is 2M), hence
the remaining partition rectangles in each row have total width exactly p

2 , forming
then a feasible solution to the Partition instance.
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