
Resilient Search Trees
∗

Irene Finocchi † Fabrizio Grandoni † Giuseppe F. Italiano ‡

Abstract

We investigate the problem of computing in a reliable fashion

in the presence of faults that may arbitrarily corrupt memory
locations. In this framework, we focus on the design of

resilient data structures, i.e., data structures that, despite

the corruption of some memory values during their lifetime,
are nevertheless able to operate correctly (at least) on the

set of uncorrupted values. In particular, we present resilient
search trees which achieve optimal time and space bounds

while tolerating up to O(
√

log n) memory faults, where n

is the current number of items in the search tree. In more
detail, our resilient search trees are able to insert, delete and

search for a key in O(log n + δ
2) amortized time, where δ is

an upper bound on the total number of faults. The space
required is O(n + δ).

1 Introduction

Memories in modern computing platforms are not al-
ways fully reliable, and sometimes the content of a mem-
ory unit may be lost or corrupted, due to hardware
or power failures, cosmic radiations, or malicious at-
tacks. In fault-based cryptanalysis, for instance, some
attacks [3, 20] work by manipulating the non-volatile
memories of cryptographic devices, in order to induce
faults that force the devices to output wrong cipher-
texts, which may allow the attacker to break the secret
keys used during the encryption. Also applications that
make use of large memory capacities at low cost have
to deal with problems of memory faults and reliable
computation. As an example, consider Web search en-
gines, which need to store and process huge data sets
(of the order of Terabytes): for large data structures of
this kind, even a small failure probability can result in
few bit flips, that may become responsible for erroneous
answers to Web searches [9, 13].

∗This work has been partially supported by the Sixth Frame-
work Programme of the EU under Contract Number 507613 (Net-
work of Excellence “EuroNGI: Designing and Engineering of the
Next Generation Internet”) and by MIUR, the Italian Ministry of
Education, University and Research, under Project ALGO-NEXT
(“Algorithms for the Next Generation Internet and Web: Method-
ologies, Design and Experiments”).

†Dipartimento di Informatica, Università di Roma “La
Sapienza”, via Salaria 113, 00198, Roma, Italy. Email:
{finocchi,grandoni}@di.uniroma1.it.

‡Dipartimento di Informatica, Sistemi e Produzione, Univer-
sità di Roma “Tor Vergata”, via del Politecnico 1, 00133 Roma,
Italy. Email: italiano@disp.uniroma2.it.

Destructive memory errors may be responsible for
unpredictable behaviors in classical algorithms and data
structures. For instance, if we want to search for a key in
a sorted sequence subject to memory faults, corrupted
keys may lead the search in the wrong direction. In
the design of reliable systems, when specific hardware
for fault detection and correction is not available or is
too expensive, it makes sense to look for a solution to
these problems at the application level, i.e., to design
algorithms and data structures that are able to perform
the tasks they were designed for, even in the presence
of unreliable or corrupted information. Informally, we
say that we have a memory fault when the correct value
that should be stored in a memory location gets altered
because of a failure. We say that an algorithm or a data
structure is resilient to memory faults if, despite the
corruption of some memory values during its lifetime,
it is nevertheless able to produce a correct output (at
least) on the set of uncorrupted values.

In previous work [11], we introduced a faulty-
memory random access machine, whose memory loca-
tions may suffer from faults: we model faults with an
adaptive adversary, which may corrupt up to δ memory
words throughout the execution of an algorithm or dur-
ing the lifetime of a data structure. In this model, we
cannot distinguish corrupted values from correct ones
and we can exploit only O(1) safe memory words, whose
content never gets corrupted. In [11, 12] we presented
matching upper and lower bounds for resilient sorting
and searching. In particular, we designed an O(n log n)
time sorting algorithm that can optimally tolerate up
to O(

√
n logn) memory faults. With respect to search-

ing, we proved that any O(log n) time (even random-
ized) searching algorithm can tolerate at most O(log n)
memory faults, and we provided an optimal randomized
algorithm. We also designed an almost optimal deter-
ministic algorithm that can tolerate up to O((log n)1−ε)
memory faults, for any small positive constant ε. Note
that these results hold in a static setting, i.e., the set of
keys cannot be updated by adding new keys or deleting
existing keys.

After the design of resilient algorithms for funda-
mental tasks, such as sorting and searching, it seems
quite natural to ask whether we can successfully design
resilient data structures, without incurring in extra time
or space overhead. In many applications such as file sys-
tem design, it is very important that the implementa-
tion of a data structure is resilient to memory faults and

provides mechanisms to recover quickly from erroneous
states that may lead to an incorrect behavior.

The design of resilient data structures appears to
be quite a challenging task. Indeed, classical data
structures, such as search trees and heap-based prior-
ity queues, strongly depend upon structural and posi-
tional information: the corruption of a key in a search
tree, for instance, may compromise the search prop-
erty and guide search operations towards wrong direc-
tions. Moreover, many pointer-based data structures
are highly non-resilient: due to the corruption of one
single pointer, the entire data structure may become un-
reachable and even uncorrupted values may be lost. A
natural approach to prevent this would be to use data
replication: however, if each piece of data were repli-
cated Θ(δ) times, where δ is an upper bound on the
total number of faults, one would typically obtain a mul-
tiplicative overhead of Θ(δ) in terms of both space and
running times. A search tree of this kind, would require
O(δn) space and O(δ log n) search and update time, and
thus could tolerate only O(1) memory faults while main-
taining optimal time and space bounds. In general, us-
ing full data replication can be very inefficient when the
objects to be maintained are large and complex, such
as large database records or long strings: copying such
objects can indeed be very costly, and in some cases
we might not even know how to do it. For instance,
common libraries of algorithmic codes (e.g., the LEDA
Library of Efficient Data Types and Algorithms [15] or
the Standard Template Library [19]) typically imple-
ment data types by means of indirect addressing meth-
ods: the objects to be maintained are accessed through
pointers, which are moved around in memory instead
of the objects themselves, and the algorithm relies on
user-defined comparator functions. In these cases, the
implementation of the data structure assumes neither
the existence of ad hoc functions for data replication
nor the definition of suitable encoding mechanisms to
maintain a reasonable storage cost.

Our Results. In this paper we make a first, significant
step towards the design of resilient data structures
in unreliable memories. In particular, we present
a resilient version of search trees, which implements
the classical dictionary operations: search, insert, and
delete. In our data structure, searching, inserting or
deleting a key can be implemented in O(log n + δ2)
amortized time, where n is the number of keys and δ
is an upper bound on the total number of faults. The
space required is O(n+δ). This implies that our resilient
search trees can tolerate up to O(

√
log n) memory faults

while still achieving optimal time and space bounds.
The main idea behind our approach is to group keys

into non-overlapping intervals which span the key-space,
and to maintain the intervals in a carefully adapted bi-
nary search tree. After insertions or deletions, intervals
might be split, merged or modified. This is done in such

a way that: (1) each interval contains Θ(δ) keys, and (2)
the set of intervals, and thus the search tree, is modified
only every Ω(δ) insertions and/or deletions. The first
property allows us to search for a key inside an interval
in O(δ) time. More important, it allows us to store the
search tree reliably, while keeping the space linear. In
fact, there are O(n/δ) intervals/nodes only, and each
one can afford to use extra space O(δ) to ensure reliable
computations. Thanks to the second property, we can
update the search tree reliably (pointers included), with
low amortized running times.

Another key ingredient of our method lies in the
way we search for an interval containing a given key
κ. To this aim, we generalize the high-level approach
used for resilient searching in a sorted array [11]. We
remark that its application here is more complicated,
since we deal with a more complex data structure (with
pointers). The idea is that the search algorithm must
be fast on non-faulty instances, and thus it is not pos-
sible to perform reliable computations too often. On
the contrary, most of the times we need to trust unreli-
able variables, and only every Θ(δ) search steps we can
afford to check reliably whether the computation is go-
ing towards the right direction. The search algorithm
keeps track of these reliable checks by means of check-
points: if we realize that something wrong happened,
we backtrack to the last checkpoint, which is stored in
safe memory. The efficiency of the algorithm hinges on
the fact that searches towards wrong directions, which
do not produce useful results, can be charged to faulty
values.

Related Work. Since the pioneering work of von
Neumann in the late 50’s [21], the problem of computing
with unreliable information has been investigated in a
variety of different settings. In particular, two-person
searching games in the presence of lies have been the
subject of extensive research [1, 5, 8, 10, 14, 16, 17, 18].
In these games an adversary chooses a number in a
given range, and the algorithm has to guess this number
by asking comparison questions. The adversary is
allowed to lie under different constraints. Even when the
number of lies can grow proportionally with the number
of questions, searching can be done to optimality:
Borgstrom and Kosaraju [5], improving over [1, 8, 17],
designed an O(log n) searching algorithm. We note
that lies are not well suited at modelling destructive
memory faults: in the liar model, algorithms may
exploit effectively query replication strategies, which
make no sense in our faulty-memory model.

Blum et al. [4] considered the problem of checking
the correctness of data structures operating in unreli-
able memories. Differently from our work, the aim is to
recognize incorrect behavior of non-resilient data struc-
tures. In particular, given a data structure residing in
a large unreliable memory controlled by an adversary
and a sequence of operations that the user has to per-

form on the data structure, the problem is to design a
checker that is able to detect with some positive prob-
ability any error in the behavior of the data structure
while performing the user’s operations. The checker can
use only a small amount of safe memory and can report
a buggy behavior either immediately after a faulty op-
eration or at the end of the sequence. Memory checkers
for random access memories, stacks and queues have
been presented in [4], where lower bounds of Ω(log n)
on the amount of reliable memory needed in order to
check a data structure of size n are also given. All the
data structures considered in [4] appear to be simpler
than search trees, since their structure is independent
of the values of the data they contain.

The problem of dealing with unsafe pointers has
been addressed by Aumann and Bender in [2], providing
fault-tolerant versions of stacks, linked lists, and binary
search trees: here fault tolerance is defined, given worst-
case faults, to be the ratio of the total amount of data
lost to the actual amount of data corrupted by the
faults. The data structures described in [2] have a small
time and space overhead with respect to their non-fault-
tolerant counterparts, and guarantee that the amount
of data lost upon the occurrence of memory faults is
small and independent of the size of the data structure.
Once a data structure is discovered to contain faults, it
can be reconstructed. With respect to search trees, we
remark that, while in our approach search operations
are guaranteed to be always correct on uncorrupted
data, this is not the case in [2], where even correct data
may be temporarily lost until reconstruction of the data
structure.

Preliminaries. Without loss of generality, we assume
that the keys are distinct, finite real numbers. We de-
note by n the current number of keys. When searching
for a key κ, we either find a key equal to κ or are able to
determine that there is no correct key equal to κ. Note
that this is the best we can hope for, because memory
faults can make κ appear or disappear in the search tree
at any time. Insert and delete operations are defined in
the natural way with respect to the search above.

We recall that δ is an upper bound on the total
number of memory faults which may appear during the
entire life of the search tree. We also denote by α the
actual number of faults. Note that α ≤ δ. To simplify
the expression of the running times, throughout this
paper we assume that α > 0, i.e., there is at least one
fault.1

A reliable variable X consists of (2δ + 1) copies of
a (classical) variable. The value of a reliable variable
X is defined as the majority value of its copies (a
majority value must exist since at most δ copies can
be corrupted). Assigning a value to X means assigning

1To obtain the running times in the case α = 0, it is sufficient
to add a term O(δ).

such value to all the copies of X . Note that both
reading and updating X can be done in O(δ) time
and O(1) space (using, e.g., the algorithm for majority
computation in [6]).

Excluding the keys themselves, all the variables
used by our data structure are reliable. However,
sometimes we will read only a subset of the copies of a
given reliable variable, and compute the majority value
over such subset (if no majority value exists, we will
return an arbitrary value): in that case the computed
value might be faulty.

2 The Algorithm: Buffering Keys into
Intervals

In this section we describe a resilient search tree, whose
running time will be analyzed in Section 3. Recall that
the keys are distinct, finite real numbers.

Data Structure. As mentioned before, we main-
tain a dynamically evolving set of non-overlapping in-
tervals of the kind

(−∞, a1], (a1, a2], . . . , (ah−2, ah−1], (ah−1, +∞).

We assume that initially, when the search tree is empty,
there is a unique interval (−∞, +∞). Throughout
the sequence of operations we maintain the following
invariants:

(i) The union of all the intervals is (−∞, +∞).

(ii) Each interval contains less than 2δ keys.

(iii) Each interval contains more than δ/2 keys, except
for possibly the leftmost and rightmost intervals
(boundary intervals).

To implement any search, insert, or delete of a key κ, we
first need to find the interval I containing κ. Invariant
(i) guarantees that such interval exists.

The intervals are maintained into a standard bal-
anced binary search tree. Throughout the paper we use
as a reference implementation an AV L tree [7]. How-
ever, the same basic approach also works with other
search trees. Intervals are ordered according to, say,
their left endpoints. For each node v of the search tree,
we store reliably:

1. the endpoints of the corresponding interval I(v);

2. the number |I(v)| of keys contained in the interval
I(v);

3. the interval U(v) delimited by the smallest and
largest endpoints of the intervals contained in the
subtree rooted at v;

4. the addresses of the left child, the right child, and
the parent of v;

5. all the information needed to keep the search tree
balanced with the implementation considered.

Moreover, we maintain unreliably

6. the (unordered) set of keys contained in the cor-
responding interval I(v) so that it is possible to
search, insert or delete a key in time O(δ).

The U(v)’s are crucial in our approach: they will be
used to test whether a search is proceeding towards the
right subtree. At the beginning of each operation, U(v)
is exactly the union of all the intervals contained in
the subtree rooted at v (though this property might
be temporarily lost in the middle of key insertions
and deletions). We can maintain the U(v)’s without
increasing the asymptotic cost of key insertions and
deletions.

The nodes of the search tree are stored into an array.
The main reason for this choice is that it makes easy to
check whether a pointer/index points to a search tree
node. Otherwise, the algorithm could jump outside of
the search tree by following a corrupted pointer, without
even noticing it: this would make the behavior of the
algorithm unpredictable. We use a standard doubling
technique to ensure that the size of the array is linear in
the current number of nodes. The amortized overhead
per insertion/deletion of a node is O(δ).

It remains to describe how to search, insert, and
delete a given key κ.

Search. We first find the interval I containing κ,
which must exist by Invariant (i). Once I is available,
we search κ in the (unordered) set of keys associated to
I .

The interval search proceeds in rounds. At the
beginning of each round we are given a checkpoint node
v, which initially is the search tree root, and such that
κ ∈ U(v). We keep the index of the current checkpoint
and its (reliable) value in safe memory. At the end of
the round we find a node v′ such that either κ ∈ I(v′) or
κ ∈ U(v′) ⊂ U(v). Node v′ becomes the new checkpoint
for the next round.

Each round consists of at most two phases: a first
unreliable phase, of cost O(δ), and possibly a second
reliable phase of cost O(δ2). In both phases we perform
up to δ classical search steps. Let w be the current
node. At the beginning of each phase w = v and
at the end w = v′. If κ ∈ I(w) we end the phase.
Otherwise, depending on the value of κ and of I(w),
we proceed the search on the left or right child w′ of
w, updating w accordingly. We keep in safe memory
the information associated with both w and w′. When
the search proceeds to a child w′′ of w′, we evict the
information associated with w from safe memory, and
load the information associated with w′′. This way,
when we perform the two search steps from w to w′

and from w′ to w′′ the information associated with w′

remains in safe memory.

The differences between the two phases are as
follows. In the first (unreliable) phase we work only
with the first copy of each variable (index or endpoint),
while in the second (reliable) phase we consider all the
(2δ +1) copies, and work with their majority value. We
end the first phase, and start the second phase from the
initial node v, whenever we find any inconsistency in a
search step: e.g., κ /∈ U(w), or U(w′) 6⊂ U(w), or we
find an infeasible index.

The consistency checks performed during the first
phase involve the first copy of each variable only. Thus,
such checks do not guarantee the reliability of the
search. For this reason, at the end of the first phase, we
check reliably (in O(δ) time) whether either κ ∈ I(v′)
or κ ∈ U(v′) ⊂ U(v). In the former case (κ ∈ I(v′)), we
found the desired interval, and the algorithm halts. In
the latter case (κ ∈ U(v′) ⊂ U(v)), we skip the second
phase of the current round, and start a new round from
v′. If none of the two conditions holds, a fault (not
recognized by the consistency checks) occurred, and we
start the second phase from the initial node v.

At the end of the second phase we must end up
in a node v′ such that, reliably, either κ ∈ I(v′) or
κ ∈ U(v′) ⊂ U(v): in the former case we are done,
otherwise we start a new round from v′.

Insert. We initially search the interval I containing
κ (which must exist) with the procedure described
above. Then, if κ is not already in the list of keys
associated to I , we add κ to such list. If the size of the
list becomes 2δ because of this insertion, we perform
the following operations in order to preserve Invariant
(ii). We delete interval I from the search tree, and we
split I into two non-overlapping subintervals L and R,
L∪R = I , which take the smaller and larger half of the
keys of I , respectively. In order to split the keys of I
in two halves, we use two-way BubbleSort as described
in [12]. This takes time O(δ2). Eventually, we insert L
and R in the search tree. Both deletion and insertion of
intervals from/in the search tree are performed in the
standard way (with rotations for balancing), but using
reliable variables only, hence in time O(δ log n). Note
that Invariants (i) and (iii) are preserved.

Delete. We first search the interval I containing κ
(which must exist). If we find κ in the list associated
to I , we delete κ. Then, if |I | = δ/2 and I is not a
boundary interval, we perform, reliably, the following
operations in order to preserve Invariant (iii). First, we
search the interval L to the left of I , and delete both L
and I from the search tree. Then we do two different
things, depending on the size of L. If |L| ≤ δ, we merge
L and I into a unique interval I ′ = L ∪ I , and insert
I ′ in the search tree. Otherwise (|L| > δ), we create
two new non-overlapping intervals L′ and I ′ such that
L′ ∪ I ′ = L ∪ I , L′ contains all the keys of L but the
δ/4 largest ones, and I ′ contains the remaining keys
of L ∪ I . Also in this case creating L′ and I ′ takes

time O(δ2) with two-way BubbleSort. We next insert
intervals L′ and I ′ into the search tree. Again, the cost
per insertion/deletion of an interval is O(δ log n), since
we use reliable variables. Observe that Invariants (i)
and (ii) are preserved.

3 Analysis

In this section we analyze the time bounds of the
resilient search tree described in Section 2. In Section
4 we will describe how to reduce the amortized time
complexity via a refined search procedure.

Lemma 3.1. The space complexity of the resilient
search tree described in Section 2 is O(n + δ).

Proof. Each node of the search tree requires space O(δ).
By Invariant (iii) there can be at most (2n/δ + 2)
intervals, which is also an upper bound on the number
of nodes in the search tree. The claim follows.

Let v and v′ be the initial and final nodes of a given
round, and let κ be the key to be searched for. We
define a round to be successful if we find v′ such that
either (1) κ ∈ I(v′), or (2) κ ∈ U(v′) ⊂ U(v) and the
depth of v′ in the search tree is at least the depth of v
plus δ (the inequality holds if the adversary introduces
faults that “help” the search). We define a round to be
unsuccessful otherwise.

Lemma 3.2. In the resilient search tree of Section 2,
each search has amortized cost O(log n + α δ2).

Proof. Let v and v′ be the initial and final nodes of
a given round, and let κ the key to be searched for.
We distinguish three types of rounds, and analyze their
running time separately. Note that rounds that end
with the second phase are necessarily successful, since
only reliable variables are used in the second phase.

(a) Successful rounds which end with the
first phase. The total cost of such rounds is trivially
O(log n + δ).

(b) Successful rounds which end with the
second phase. Consider any such round. Its running
time is O(δ2). Since the first phase failed, there must
be a descendant v∗ of v, at distance smaller than δ from
v, which contains a faulty value. We charge the O(δ2)
cost to such faulty value. Since no faulty value can be
charged more than once during the same search, the
total contribution of this type of rounds to the search is
O(α δ2).

(c) Unsuccessful rounds which end with the
first phase. Consider any such round. Throughout
this round, no inconsistency is detected, otherwise we
would have started the second phase. Moreover, κ ∈
U(v′) ⊂ U(v) reliably.

Consider the sequence of δ nodes encountered dur-
ing the search. Though there might be cycles due to
faults, this sequence cannot include v which is kept in

safe memory (otherwise we would have found an incon-
sistency). Since the round is unsuccessful, there must
be a node in the sequence which contains a fault at some
point during the round. Let v∗ be the first such node in
the sequence. Note that we do not require that v∗ al-
ready contains a fault at the time it is considered during
the round, nor that it still contains a fault at the end of
the round (the adversary may “correct” the fault).

Since the nodes before v∗ in the sequence (or v itself
if v∗ is the first node in the sequence) are not faulty,
it must be κ ∈ U(v∗) ⊂ U(v) reliably. Altogether
κ ∈ U(v′) and κ ∈ U(v∗). Hence either v′ is a proper
ancestor of v∗ in the search tree, or v′ is a descendant
of v∗ (including the case v′ = v∗). We next show that
the first case cannot happen. Assume by contradiction
that v′ is a proper ancestor of v∗. Thus v′ appears
at least twice in the sequence: once before v∗, and
once at the end of the sequence. Recall that each time
during the search we pass from a node w to one of
its (supposed) children w′, we check (unreliably) that
κ ∈ U(w′) ⊂ U(w). In the next search step, when
we consider a (supposed) child w′′ of w′, we check
(unreliably) that κ ∈ U(w′′) ⊂ U(w′), with U(w′) being
kept in safe memory throughout the two search steps.
By transitivity and considering that no inconsistency
has been detected, the first copy of U(v′) must have
taken two different values during the search. Hence the
adversary must have corrupted the first copy of U(v′) at
some point. But this contradicts our assumption that
v∗ is the first faulty node in the sequence.

Hence v′ must be a descendant of v∗ in the search
tree: we charge the O(δ) cost of this round to the faulty
value contained in v∗. Since, also in this case, no faulty
value can be charged more than once in the same search,
the overall contribution of this third type of rounds to
the search is O(α δ). The claim follows.

The following lemma is crucial for the amortized
analysis of insert and delete operations.

Lemma 3.3. In the resilient search tree of Section 2 the
intervals, and thus the search tree, are modified every
Ω(δ) key insertions and/or deletions.

Proof. Initially, the search tree is empty, and there is a
unique empty (boundary) interval. This interval is split
after at least 2δ insertions.

Now consider any newly created interval I . To
prove the lemma, it is sufficient to show that, after the
creation of I , Ω(δ) insertions or deletions are needed for
|I | to reach one of the two critical thresholds δ/2 and
2δ (only the second one when I is a boundary interval).
Interval I can be obtained in the following four possible
ways:

(1) By splitting in two halves an interval I ′, |I ′| = 2δ.
Clearly, |I | = δ.

(2) By adding δ/4 keys to an interval I ′, |I ′| = δ/2. Of
course, |I | = 3δ/4.

(3) By removing δ/4 keys from an interval I ′, |I ′| > δ.
In this case 3δ/4 < |I | < 7δ/4.

(4) By merging two intervals I ′ and I ′′, |I ′| = δ/2 and
|I ′′| ≤ δ. In this case |I | ≤ 3δ/2.

Suppose |I | reaches the 2δ threshold. From the dis-
cussion above, this can only happen after at least δ/4
insertions of keys in the interval.

Suppose now |I | reaches the δ/2 threshold, and I
is not a boundary interval. In cases (1), (2), and (3)
this happens after at least δ/4 deletions in the interval.
In case (4), interval I ′′ cannot be a boundary interval
(otherwise also I would be a boundary interval). Thus
|I ′′| > δ/2 and |I | > δ. Hence in this case the number
of deletions must be at least δ/2. The claim follows.

Lemma 3.4. In the resilient search tree of Section 2,
the amortized cost of each key insertion and deletion is
O(log n + α δ2).

Proof. By Lemma 3.2, the initial search costs O(log n+
α δ2). Inserting/deleting a key κ in the list of the found
interval I containing κ costs O(δ). If, after the in-
sertion/deletion, the search tree has to be modified,
this can be done in time O(δ log n + δ2). By Lemma
3.3, the latter cost can be amortized over Ω(δ) inser-
tions/deletions. Thus the overall amortized cost per
operation is O(log n + α δ2).

The following theorem summarizes the discussion
above.

Theorem 3.1. The resilient search tree of Section 2
has amortized cost O(log n + α δ2) per operation and
space complexity O(n + δ).

4 Refined Search

The cost of searching can be reduced to O(log n +
α δ1+ε), for any constant ε > 0, by carefully adapting
the resilient binary searching procedure described in
[12]. Roughly speaking, the idea is to read, for every
k = 1, 2, . . . 1/ε, the first (2δk ε + 1) copies of each
variable associated to a node (instead of the first one
only), every δk ε nodes encountered during the search.
For each value of k, we keep in safe memory the last
node which “passed” the corresponding (2δk ε + 1)-test.
This multi-level set of checkpoints and tests allows us to
backtrack in a smarter way, and thus to better amortize
the costs. Unfortunately, with this approach ε cannot
be arbitrarily close to zero. This is because the cost
of each round is O(δ/ε). Even worse, the number of
checkpoints stored in safe memory is Ω(1/ε).

We next describe a simpler, more efficient technique
which allows us to reduce the cost of each search to

O(log n+αδ). We refine the search algorithm of Section
2. As before, in each round we start with a node
v such that κ ∈ U(v), and we end up with a node
v′ such that either κ ∈ I(v′) or κ ∈ U(v′) ⊂ U(v).
However, this time we carry out more phases per round:
in particular, the number of phases grows from two to
O(log δ). In phase k, k = 1, 2, . . . , dlog2(δ + 1)e, we
execute the search steps, consistency checks included,
according to the majority value of the first (2k−1) copies
of each variable (or any value if there is no majority).
In the last phase k = 1 + dlog2(δ + 1)e we use all the
(2δ + 1) copies. We recall that the majority value, if
any, can be computed in O(2k) time and O(1) space
with the algorithm in [6]. Note that all the phases
but the last one are unreliable. However, the degree of
“unreliability” decreases from phase to phase. Phase
(k + 1) starts only if phase k fails. Observe that,
differently from the approach described at the beginning
of this section, here we need to store in safe memory only
one checkpoint and the index k of the current phase.

Theorem 4.1. The resilient search tree of Section 2,
with the refined search described above, has amortized
cost O(log n + α δ) per operation and space complexity
O(n + δ).

Proof. From the proof of Lemmas 3.1, 3.2, and 3.4, it is
sufficient to show that finding the interval I containing
a given key κ, with the refined search procedure, costs
O(log n + α δ) only.

In the following we denote by v and v′ the initial
and final nodes of the round considered. Recall that a
round is successful if either we find I containing κ or
the depth of v′ in the search tree is at least the depth of
v plus δ. As in the proof of Lemma 3.2, we distinguish
the following three types of rounds:

(a) Successful rounds which end with phase
1. The total cost of these rounds is trivially O(log n+δ).

(b) Successful rounds which end with phase

k, k ≥ 2. Any such round contributes O(
∑k

i=1
2iδ) =

O(2kδ) to the total cost. Consider phase (k − 1). Since
the phase failed, there must be a node v∗, at distance
smaller than δ from v, which contains at least 2k−2

faults. We charge the cost of this round evenly against
such faults, with a cost of O(δ) per fault. Since no
fault can be charged more than once during the search
considered, the total cost of this type of rounds is
O(α δ).

(c) Unsuccessful rounds which end with
phase k, k ≥ 1. Any such round costs O(2kδ). No in-
consistency is detected during phase k (otherwise we
would have started phase k + 1). Therefore, generaliz-
ing the argument used in the proof of Lemma 3.2, there
must be a node v∗, v∗ 6= v, along the path from v to v′

which is affected by at least 2k−1 faults (it might be v′

itself). We charge the cost of the round to such faults,
with an average cost O(δ) per fault. Also in this case,

no fault can be charged more than once. Hence the total
cost of this third type of rounds is O(α δ). The claim
now follows.

References

[1] J. A. Aslam and A. Dhagat. Searching in the presence
of linearly bounded errors. Proc. 23rd ACM Symp. on
Theory of Computing (STOC’91), 486–493, 1991.

[2] Y. Aumann and M. A. Bender. Fault-tolerant data
structures. Proc. 37th IEEE Symp. on Foundations of
Computer Science (FOCS’96), 580–589, 1996.

[3] J. Blömer and J.-P. Seifert. Fault based cryptanalysis
of the Advanced Encryption Standard (AES). Proc. 7th
Int. Conf. on Financial Cryptography (FC’03), LNCS
2742, 162–181, 2003.

[4] M. Blum, W. Evans, P. Gemmell, S. Kannan and M.
Naor. Checking the correctness of memories. Proc.
32th IEEE Symp. on Foundations of Computer Science
(FOCS’91), 1991.

[5] R. S. Borgstrom and S. Rao Kosaraju. Comparison
based search in the presence of errors. Proc. 25th ACM
Symp. on Theory of Computing (STOC’93), 130–136,
1993.

[6] R. Boyer and S. Moore. MJRTY - A fast majority vote
algorithm. University of Texas Tech. Report, 1982.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT
Press/McGraw-Hill Book Company, 2nd Edition, 2001.

[8] A. Dhagat, P. Gacs, and P. Winkler. On playing
“twenty questions” with a liar. Proc. 3rd ACM-SIAM
Symp. on Discrete Algorithms (SODA’92), 16–22, 1992.

[9] M. Farach-Colton. Personal communication. January
2002.

[10] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Com-
puting with noisy information. SIAM Journal on Com-
puting, 23, 1001–1018, 1994.

[11] I. Finocchi and G. F. Italiano. Sorting and searching in
the presence of memory faults (without redundancy).
Proc. 36th ACM Symposium on Theory of Computing
(STOC’04), 101–110, 2004.

[12] I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal
sorting and searching in the presence of memory faults.
Proc. 33rd Int. Colloquium on Automata, Lang. and
Prog. (ICALP’06), 2006.

[13] M. Henzinger. The past, present and future of Web
Search Engines. Invited talk. 31st Int. Coll. Automata,
Languages and Programming, Turku, Finland, July 12–
16 2004.

[14] D. J. Kleitman, A. R. Meyer, R. L. Rivest, J. Spencer,
and K. Winklmann. Coping with errors in binary search
procedures. Journal of Computer and System Sciences,
20:396–404, 1980.

[15] K. Mehlhorn and S. Näher. LEDA: A platform for com-
binatorial and geometric computing. Cambridge Univer-
sity Press, 1999.

[16] S. Muthukrishnan. On optimal strategies for searching
in the presence of errors. Proc. 5th ACM-SIAM Symp.
on Discrete Algorithms (SODA’94), 680–689, 1994.

[17] A. Pelc. Searching with known error probability. Theo-
retical Computer Science, 63, 185–202, 1989.

[18] A. Pelc. Searching games with errors: Fifty years of
coping with liars. Theoretical Computer Science, 270,
71–109, 2002.

[19] P. J. Plauger, A. A. Stepanov, M. Lee, D. R. Musser.
The C++ Standard Template Library, Prentice Hall,
2000.

[20] S. Skorobogatov and R. Anderson. Optical fault induc-
tion attacks. Proc. 4th Int. Workshop on Cryptographic
Hardware and Embedded Systems, LNCS 2523, 2–12,
2002.

[21] J. von Neumann, Probabilistic logics and the synthesis
of reliable organisms from unreliable components. In
Automata Studies, C. Shannon and J. McCarty eds.,
Princeton Univ. Press, 43–98, 1956.

