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Abstract

Consider the following classical problem in ad-hoc networks: n devices are distributed

uniformly at random in a given region. Each device is allowed to choose its own transmission

radius, and two devices can communicate if and only if they are within the transmission

radius of each other. The aim is to (quickly) establish a connected network of low average

and maximum degree.

In this paper we present the first efficient distributed protocols that, in poly-logarithmically

many rounds and with high probability, set up a connected network with O(1) average

degree and O(log n) maximum degree.

Our algorithms are based on the following result, which is a non-trivial consequence of

classical percolation theory: suppose that all devices set up their transmission radius in

order to reach the K closest devices. There exists a universal constant K (independent

of n) such that, with high probability, there will be a unique giant component (i.e. a

connected component of size Θ(n)). Furthermore, all remaining components will be of size
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O(log2 n). This leads to an efficient distributed probabilistic test for membership in the

giant component, which can be used in a second phase to achieve full connectivity.

Keywords: networks, connectivity, percolation
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1 Introduction

In this paper we study a geometric random graph model that has interesting applications to

wireless networking. We suppose that n points distributed uniformly at random within the

unit square are given. Each point v is connected via a directed arc to the closest k(v) points,

according to the Euclidean distance, where k(v) is a positive integer value. Given this directed

graph we define an undirected graph G with the same vertex set as follows: vw ∈ E(G), i.e.

vw is an edge of G, if and only if there is a directed arc from v to w and viceversa. Henceforth,

we will refer to the points also as nodes or devices.

The question that we study in this paper is how to determine the value of the k(v)’s in

order to meet two conflicting goals: G should be connected, but its average degree should be

as small as possible. Moreover, the maximum degree should also be small.

More precisely, we think of the points as wireless devices capable of setting their own

transmission range (by modifying their own transmission power) and able to communicate

along the edges of the graph G. We are looking for efficient distributed algorithms to decide

the values k(v). In this paper we give two such algorithms that, with high probability, set up a

connected network G and moreover (a) the expected degree of a node is constant and (b) the

maximum degree is O(log n) (resp. O(log2 n)). The number of communication rounds of our

algorithms is O(log3 n) (resp. O(log2 n)). We adopt the standard definitions of the distributed

computing literature, spelled out in subsequent sections.
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These results appear to be relevant to wireless networking. Our model of connectivity for

G is the most realistic from the point of view of wireless applications since the communication

primitives of standards such as IEEE 802.11 and Bluetooth rely on ack (as in acknowledgment)

messages, and therefore a communication link really exists only when both nodes are within the

transmission radius of each other. Limiting the degree of nodes can be beneficial in many ways.

For instance, in security applications, nodes exchange keys and run cryptographic protocols

with their neighbors (see, for instance, [12]). Limiting the degree reduces the amount of traffic

and computation. Moreover, the transmission radius of v is set in order to reach its k(v) closest

neighbors. Hence limiting the k(v)’s reduces the overall transmission power and translates in

longer network lifetimes. In particular, we can show that the expected power consumption

to sustain the network generated by our algorithms is order of the area. This is in some

sense optimal, since the optimal power consumption is, with high probability, proportional to

the area of the region within which the nodes are randomly distributed. Probably the most

important benefit is that, by bounding k(v) and by setting the transmission power accordingly,

interference is kept under control: the smaller the degree of a node, the lower the number

of neighbors affected by a transmission and, consequently, the lower the number of possible

packet collisions and corresponding retransmissions (see, for instance, [1]). Note that our high

probability bound on the maximum degree ensures that not only things are good on average,

but also that no node will be penalized too much.

Let us now describe our algorithms. Probably the simplest distributed algorithm one can

think of is the following: set beforehand k(v) = K, for all nodes v where K is a suitable

constant (see [5, 6, 9, 10] for experimental results). Unfortunately, there is no constant K

which guarantees connectivity with high probability, i.e. with probability going to 1 as n

grows. To reach this goal, K must grow like log n [11].

If points can communicate, the situation changes. Indeed, Kucera [7] gives a protocol to
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decide k(v), for all v, that sets up a connected network of expected constant degree. The result

however is existential in flavor: the protocol requires nodes to explore linear-size components of

the network, linearly many times, making it completely impractical. Our faster protocols are

based on the following insight (see Theorem 2): There is a universal constant K, independent

of n, such that, if all the devices set k(v) = K, with high probability the network has the

following special structure:

• There is a unique giant component containing Θ(n) nodes;

• All other components have size O(log2 n).

This says that it is possible to set up a giant component in a very simple way, a useful fact

by itself (e.g. for coverage applications). It also says that there is an efficient distributed test

for membership to the giant component: a node belongs to the unique giant component if and

only if it belongs to a component with more than (order of) log2 n nodes.

Given this, the following strategy is very natural. Devices that discover to be trapped inside

small components increase their transmitting power in order to reach a device that belongs to

the giant component. A node in the giant component that is contacted in this way will respond,

setting its power in order to reach the calling node. We shall refer to this as Algorithm A, to be

described in detail in the next section. Algorithm A sets up a network in which the expected

number of neighbors of each device is (upper bounded by a) constant. Furthermore, with high

probability the network is connected and its maximum degree is O(log2 n). The number of

communication rounds required is O(log2 n). This gives an exponential speed up with respect

to [7] therefore turning an existential result into a usable algorithm.

We can improve the bound on the maximum degree at the expense of an increased com-

munication cost. Suppose that each device v belonging to a small component increases its

transmitting power a bit at a time, each time checking if it has reached a node in the giant
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component. Nodes closer to the giant component will join it first. Nodes farther away might

be able to connect to such closer nodes, rather than expanding their radius all the way to the

closest node in the original giant component. In the next section we will give a precise descrip-

tion of this, referred to as Algorithm B. Algorithm B sets up a network in such a way that the

expected number of neighbors of each device is constant. Furthermore, with high probability

the network is connected and its maximum degree is O(log n). The number of communication

rounds required is O(log3 n).

Finally, we show that our algorithms set up energy-efficient networks, in the following

sense: the expected transmission power needed to sustain the network is of the same order of

magnitude of that of the expected optimal power assignment.

These bounds on the expected and maximum degrees, power consumption, and on the

communication costs make our algorithms likely candidates for efficient, real implementations.

2 The protocols

As it is customary we shall use the terms “distributed algorithm” and “protocol” as synonyms.

The input to the protocols consists of n devices that are spread uniformly at random within the

unit box. Recall that two devices are connected if each is within the transmission radius of the

other. Two devices that are mutually within range are said to be neighbours. The neighbour

relation defines a graph whose vertices are the devices and where edges connect neighbours.

We assume that this graph operates as a synchronous network that is, computation proceeds

in a sequence of discrete time units called communication rounds. In one communication round

each device is able to send messages to and receive messages from all of its neighbours. The

running time of a protocol is given by the number of communication rounds needed by the

protocol to terminate.
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We assume that the value of n is known to the devices. We also assume the following prim-

itive. Each device v has a local variable k(v). When k(v) is increased by one this enables v to

set its transmission radius in order to reach the next closest device, according to the Euclidean

distance. We will also assume that incrementing k(v) by one takes one communication round.

We will discuss later how such a primitive can be realized in practice.

Algorithm A has two constant parameters K and ϕ, and works as follows.

Algorithm A

Phase 1: Every device v initially marks itself as lacustrine and then sets its own trans-

mission radius in order to reach the closest k(v) := K devices (all devices if n < K).

Phase 2:

– Let C(v) denote the connected component of device v. If |C(v)| > ϕ log2 n, v marks

itself as continental.

– Every lacustrine device v increments k(v) until k(v) > ϕ log2 n or v reaches the next

closest continental device, denoted as s(v). In the latter case, device s(v) responds

by increasing its own transmission radius in order to reach v (if this is not already

the case).

The goal of Phase 2 for a node that fails the test “|C(v)| > ϕ log2 n” is to hook up to the closest

continental device. The clause “k(v) > ϕ log2 n” is to make sure that the algorithm stops in all

cases. Although it happens with negligible probability, without this test the algorithm could

increment k(v) forever, without terminating. We now describe Algorithm B. Besides K and

ϕ, Algorithm B has a third parameter t > 0, and works as follows:

Algorithm B

Phase 1: As in Algorithm A.
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Phase 2: Repeat t log n many times:

– Let C(v) be the connected component of device v. If |C(v)| > ϕ log2 n then v marks

itself as continental.

– Otherwise, v increments k(v) by one. If v reaches a continental node s(v), s(v)

responds by increasing its own transmission radius in order to reach v (if this is not

already the case).

Implementation issues and running time. In the algorithms there are two types of oper-

ation taking place. There are power control operations, such as those necessary to implement

Phase 1 and to increment k(v) in Phase 2, and communication rounds needed in Phase 2 to

explore the topology of the network.

The only task of the algorithms that requires communication is the test “|C(v)| > ϕ log2 n”

of Phase 2. This can be implemented with a Breadth First Search in O(log2 n) communication

rounds.

For the sake of simplicity, we assume that the basic power control primitive for a device v is

to increment k(v) by one, allowing v to reach the next closest device, and that this requires one

round. This assumption is not really an issue for Algorithm A, whose power control operations

occur before the test, in Phase 1, and after it, when each lacustrine device increments its power

looking for the closest continental node (as long as k(v) ≤ ϕ log2 n). The message conveyed

by Algorithm A is that by paying a little extra-cost in terms of communication, and without

increasing very much the cost of the power control operations, it is possible to save significantly

in terms of power with respect to the baseline solution (i.e. set K := log n) [11].

In Phase 2 the power of every lacustrine device v is increased until the closest continental

node s(v) is reached. How does v know? In practice, this can be implemented by increasing

v’s power a little at a time, each time sending a beacon with some relevant information about
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the sender such as its ID and its transmission radius. With this information a continental node

that receives the beacon can adjust its own transmission radius, if necessary, and respond so

that v and s(v) will be aware of each other and become neighbours. Other schemes are also

possible and used in practice.

Things are sligthly more problematic for Algorithm B which, in Phase 2, interleaves power

control operations (the increment of k(v)) with graph exploration. Assuming that k(v) can be

incremented by one in one round hides several implementation details under the carpet, but,

again, here we are mostly concerned whether certain goals are attainable in principle, leaving

the problem of finding efficient implementations to further study. In fact, increasing the level

of detail would only clutter the presentation without adding any new insights.

The message of Algorithm B is that by paying somewhat more in terms of communication

with respect to Algorithm A, we can set up a network whose maximum degree is O(log n)

as opposed to O(log2 n). This is good, because, in general, smaller degree means less power

consumption, less interference etc. Thus, even though the total power consumptions of the

algorithms are comparable, Algorithm B imposes a smaller load on individual vertices. The

algorithms therefore illustrate a fundamental trade-off between the cost of communication and

the power needed to sustain a connected network.

With our assumptions and definitions, it is clear by inspecting the algorithms that their

running time is, respectively, O(log2 n) and O(log3 n).

Correctness. The mapping s(v) is, for all practical purposes, well-defined since almost surely

all pairwise distances are different. We will assume this from now on.

We say that an event occurs “with high probability” if its probability is 1 − o(1), where

o(1) is a term that goes to zero as n, the number of devices, goes to infinity. In the analysis

we will show that the parameters of the algorithms can be chosen in such a way that the o(1)

term goes to zero as any inverse polynomial. Notice that in principle both algorithms might
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fail. However, we will show the following:

1. There is a constant K, independent on n, such that, at the end of Phase 1, with high

probability, there is a unique giant component.

2. With high probability, all other (non giant) components contain O(log2 n) many points.

The first fact is potentially useful by itself because a giant component is often good enough

for the applications and this shows that it can be set up with constant K, i.e. with low power.

Observe also that Phase 1 does not require any global information, such as the value of n.

The two facts above imply that, with high probability, the algorithms are correct. Namely,

• The parameters K and ϕ can be chosen in such a way that, with high probability, Algo-

rithm A sets up a connected network in which the expected degree of a node is bounded

by a constant, and the maximum degree is O(log2 n). The choice of the parameters is

independent on n.

• The parameters K, ϕ and t can be chosen in such a way that, with high probability,

Algorithm B sets up a connected network in which the expected degree of a node is

bounded by a constant and its maximum degree is O(log n). Again, the choice of the

parameters is independent on n.

In the rest of the paper we will prove the claims above.

3 Overview

Since the proof is rather involved we first give an overview. The basic idea is to reduce our

connectivity problem to site percolation in a finite box consisting of Θ(n) sites. It is known

that in the supercritical phase, with high probability there is a unique giant cluster of Θ(n)

sites in the box and that its complement consists of small regions each containing O(log2 n)
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sites (see, among others, [3, 4]). In the following we shall refer to the maximal regions in

the complement of the giant cluster as lakes. The reduction will ensure that the unique giant

cluster in the box will correspond to a unique giant component of Θ(n) points, and that the

remaining components of points are trapped inside lakes, each containing O(log2 n) points.

This is the situation at the end of Phase 1 (with high probability). Note that the maximum

degree of this giant component is bounded by K, a constant (independent of n)– a useful fact

by itself.

The reduction to site percolation is achieved via several intermediate steps. The first

is to replace the uniform distribution of points with a Poisson distribution, to exploit the

strong independence properties of the latter. In particular, unlike the uniform distribution,

the Poisson distribution ensures that the configuration of points in one region does not affect

the distribution of points of any other disjoint region. There are some standard and rather

general ways to connect the two settings, but here we will make use of a coupling construction

that gives stronger bounds than these general tools. The configurations of points given by the

mentioned Poisson processes is referred to as scenario A.

We introduce next a first percolation problem, scenario B, by subdividing the unit square

into a grid of non-overlapping square cells (corresponding to the sites). The area of each cell is

such that the expected number of points inside it is a constant parameter α. This parameter

is crucial for the whole construction. A cell is good if the number of points that it contains is

in [α2 , 2α].

Scenario B is a Bernoulli field but unfortunately clusters of good cells do not translate nec-

essarily into connected components of points. Therefore another percolation problem, scenario

C, is introduced by defining a cell i open if it is good and moreover all cells within distance D

from i are good. The value of D is a constant, independent of n, whose value will be set in

such a way that the points belonging to a cluster of open cells will form a component of points.
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The problem with scenario C is that it is not a Bernoulli field– knowing that a cell C is open

or closed alters the distribution of neighboring cells. However the dependence only involves

cells at distance at most h = 2D from C– the field is h-dependent (see [4, 8]). Therefore a new

scenario D is introduced. Scenario D is given by a general construction of [8]. This construction

translates scenario C into a Bernoulli field (i.e. D) that is stochastically dominated by C. This

implies in particular that if a cell is open in scenario D then it is also open in scenario C, and

that if a giant cluster of open cells exists in scenario D, the same cluster exists in scenario C.

Thus, if a giant cluster exists with probability p in scenario D then it exists also in scenario

C with at least the same probability. In turn, the construction ensures that the unique giant

component of sites that, with high probability, exists in scenario C, translates into a connected

component of points in scenario A, and that all other components are small. The reason to

introduce scenario D is that this is a Bernoulli field and we can invoke results in the literature

to give sharp probability estimates of the events of interest.

The probability that sites are on or off in the various scenarios depends on the value of

the constant K of the protocol. We will fix K in such a way that a unique giant cluster of

open cells exists in scenario D with high probability. By construction, this translates into a

giant component of points G in scenario A. To ensure that this giant component is unique in

scenario A we make use of the definition of open cells of scenario C which ensures that points

trapped inside lakes cannot connect to points in other lakes, bypassing the giant component

G.

Remark 1 By setting the radius of each point to ∼ n−1/2 we would obtain a simpler reduction

to site percolation to show the emergence of a giant component. Our reduction however is

independent of n, showing that a giant component can be created with no global information at

all.
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3.1 Preliminaries

Fact 1 The rate function for a Poisson random variable X with mean µ is

I(x) = x ln

(

x

µ

)

− (x − µ).

Let us define x = αµ, so we can write

I(αµ) = µ[α ln (α) − (α − 1)] =: µC(α), (1)

where C(α) > 0 when α 6= 1. We will be using the following well-known facts about the Poisson

random variable:

Pr(X < αµ) ≤ e−C(α)µ (2)

for α ∈ (0, 1) and

Pr(X > αµ) ≤ e−C(α)µ (3)

for α ≥ 1.

As mentioned, in scenarios B, C, and D, we consider a partition of the unit square into a

grid of non-overlapping square cells of the same size. The number of cells is m = k2, where

k :=
⌊√

n
α

⌋

, and α is a constant. This partition naturally induces a mesh, whose sites are

the cells and each cell (site) has (at most) four neighbors: the cells on the left, right, top and

bottom. Let ix,y be the cell in position (x, y) in the grid. The distance between ix1,y1
and

ix2,y2
is max{|x1 − x2|, |y1 − y2|}. The ∗-neighbors of cell i are the cells at distance one from i.

We call cluster a connected component of cells, and ∗-cluster a connected component of cells

with respect to ∗-neighborhood. We will use this distance in the mesh, while we will use the

Euclidean distance when talking about points in the unit square.

When a device v is inside the transmission radius of another device u we say that u captures

v. As remarked, if u captures v and viceversa then the two devices can communicate directly

and they become neighbours in the graph connected by the edge uv.
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A giant cluster is a cluster of open cells which contains at least δ m cells, for a given constant

δ ∈ (0, 1]. Assuming a unique giant cluster (an event that we will show happening with high

probability), a lake is a maximal ∗-cluster in the complement of the giant cluster. A giant

component is a connected component of points (devices) of linear (in n) size in the network

of devices defined by the neighbour relation. With |X| we denote either the number of cells

of X or the number of points of X, depending on whether X is a cluster or a component,

respectively.

4 Emergence of a giant component

In this section we show that after Phase 1 of the algorithm there is a giant component G

containing Θ(n) points with high probability.

As outlined previously we consider four different scenarios. We consider two Poisson pro-

cesses P0 and Pt. Process P0 has parameter µ0 := n− ǫn, where ǫ is a small positive constant,

say ǫ = 1
4 . Process Pt is built on top of P0 by adding to it a new independent Poisson pro-

cess ∆ P with parameter 2ǫn. It is well-known that Pt is a Poisson process with parameter

µt := µ0 + 2ǫn = n + ǫn. Then we define a sequence of point processes {Qi} sandwiched

between P0 and Pt. Starting from Q0 := P0, Qi+1 is given by Qi by adding one point chosen

uniformly at random in Pt − Qi.

As we shall see, our reduction to site percolation will apply simultaneously to all Qi’s, show-

ing the existence of a unique giant component in scenario A for each Qi with high probability.

Each Qi generates points uniformly distributed in the box (conditioned on the given number of

points). The next lemma shows that, with high probability, one of the Qi will generate exactly

n points. As a consequence, if something holds for all Qi’s of scenario A simultaneously, it also

holds for the original n-points problem. We denote with N0 (resp. Nt) the number of points
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of the Poisson Process P0 (resp. Pt).

Lemma 1 Let N0 and Nt be the Poisson variables relative to P0 and Pt. There is a positive

constant γ (independent of n) such that Pr
(

{N0 ≤ n ≤ Nt}
)

≤ e−γn.

Proof Apply the large deviation inequalities (2) and (3) respectively to the events {N0 > n}

and to {n < Nt}. ▽

We now define scenario B. Let us subdivide the unit square into a grid of m = k2 non-

overlapping square cells, where k :=
⌊√

n
α

⌋

, and α is a positive constant. Note that m = Θ(n)

and the expected number of points in a cell is (roughly) α. The parameter α plays a crucial

role in the whole proof. This parameter should be thought of as a large constant. Its value

will be fixed later.

Definition 1 A cell is good if the number of points in the cell given by both P0 and Pt is in

[α2 , 2α]. The cell is bad otherwise.

Note that if a cell is good then its number of points is in [α2 , 2α] for all Qi’s of scenario A.

Scenario B is a Bernoulli field because points are generated by Poisson processes so that a cell

is good or bad independently of other cells, and the probability of being good is the same for

all cells.

Lemma 2 Let pα be the probability that a cell is good. Then limα→∞ pα = 1.

Proof Apply the standard large deviation principle to the Poisson random variables corre-

sponding to the number of points given by P0 and Pt in the cell considered. ▽

We would like to show that large connected clusters of good cells in scenario B give raise to

large connected components of points in scenario A. This however is not true. This motivates

the next scenario C. In it we consider another site percolation problem which is not, however,

independent. Let D ≥ 3 be a constant to be fixed later.
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Definition 2 A cell i is open if i and all the cells at distance at most D from i are good. The

cell is closed otherwise.

We now choose K and D in order to enforce the following two properties: First, if we have

a giant cluster of open cells in scenario C, then the points inside these cells belong to a giant

component G of scenario A for each Qi. Second, components other than G will be trapped

inside lakes (delimited by closed cells), i.e. points inside distinct lakes cannot establish edges

among them directly, by-passing G.

For simple geometrical reasons, the first property is guaranteed by choosing

K := 72(2α) = 98α (4)

(the maximum number of points in the cells at distance at most 3 from a given open cell).

This choice of K ensures that the transmission radius of every point in an open cell will reach

all points in neighboring cells. Thus, if two neighboring cells are open the points in them will

form a clique. Thus, any point inside a cell at distance at most D − 3 from an open cell i

belongs to the same connected component to which the points in i belong. By choosing D

such that 2(D − 3)α/2 > K, say D = 102, also the second property is ensured (see the proof

of Lemma 5). We have not tried to optimize the values of D and K.

In scenario C we have the desired translation of connectivity– if we have a cluster of open

cells then all points belonging to these cells lie in a connected component of points in scenario

A (for all Qi’s).

Moreover, the probability qα that a cell is open satisfies qα ≥ p
(2D+1)2
α and thus, using

Lemma 2, we obtain

lim
α→∞

qα = 1.

Unfortunately scenario C is not a Bernoulli field. Definition 2 however ensures that it is h-

dependent with h = 2D (the probability that a cell is open is independent from what happens
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in cells at distance 2D + 1 or larger).

Therefore we introduce a fourth scenario D that is a Bernoulli field. The connection between

scenarios C and D is given by a very general theorem of [8]. The theorem states that there

is a coupling between scenario C and a Bernoulli field, referred to as scenario D, with site

probability rα such that:

• If qα goes to 1 so does rα, and hence limα→∞ rα = 1;

• If a cell is open in scenario D the same cell is open in scenario C.

Therefore, if we have a giant cluster in scenario D, the same cells form a cluster also in scenario

C. In turn, all points inside these cells will be connected in scenario A.

Scenario D allows us to estimate the probability of relevant events. A result of Deuschel

and Pisztora [3] on site percolation ensures that, for every constant δ ∈ (0, 1) there is a value

rα < 1 such that, if every site is open with probability rα then, with probability at least

1 − e−γ
√

m there is a unique giant cluster of at least δm open cells in scenario D, for some

constant γ > 0.

The following theorem and corollary summarize the discussion above.

Theorem 1 Let G denote a connected component of points of maximum size at the end of

Phase 1 of the algorithms. For every c ∈ (0, 1
2) there is a choice of α > 0, and so a correspond-

ing choice of K by Equation (4), such that

Pr(|G| ≤ cn) ≤ 2 e−ξ
√

n (5)

where ξ > 0 is a constant independent of n.

Proof Let m ≃ n
α be the number of cells in scenario D, and let C(m) be a maximum size

cluster in scenario D. By [3], for any given δ ∈ (0, 1) there is a value of α such that

Pr(|C(m)| ≤ (1 − δ)m) ≤ e−γ
√

m. (6)
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The same set of cells is open in scenario C. By definition, an open cell contains at least α
2

points. Thus, C(m) corresponds to a giant component of at least (1− δ)mα
2 points in scenario

A (for all Qi’s). Recalling Lemma 1 and by choosing δ < 1 − 2c in Equation (6), we have

Pr(|G(n)| ≤ cn) ≤ Pr(|C(m)| ≤ 2cn/α) + Pr({N0 ≤ n ≤ Nt}) ≤ 2 e−ξ
√

n,

for some constant ξ > 0 and n large enough. This follows from the fact that if the condition

{N0 ≤ n ≤ Nt} does not hold we give up, while we pursue the construction of the four scenarios

only if it holds. ▽

Remark 2 By choosing ǫ appropriately in the definition of the two Poisson processes P0 and

Pt of scenario A, and by defining a cell to be good if its number of points in both P0 and Pt is

in the interval [(1 − ǫ)α, (1 + ǫ)α], the relative size of G can be any constant smaller than 1,

for a proper choice of the parameter K in the algorithms.

The following corollary states the useful and interesting fact that, for the emergence of a giant

component, the value of k(v) can be set, for every v, to a constant K independent of the

number of points n.

Corollary 1 For every c ∈ (0, 1) there exist constants K > 0 and γ > 0 such that, if every

point v sets k(v) = K, then the probability that there is no connected component of size at least

cn is at most e−γ
√

n.

Proof It follows from the proof of Theorem 1 and Remark 2. ▽

5 Minuscule components

In this section we suppose that K is so large that the system of scenario D is in the super-

critical regime. Therefore, at the end of Phase 1, there exists a giant component G with high
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probability. In this section we show that, at the end of Phase 1, every connected component

in scenario A distinct from the giant component G contains O(log2 n) points, with high prob-

ability. As a consequence, G is the unique giant component (while the uniqueness of the giant

cluster is already guaranteed by [3]).

The next lemma bounds the number of cells of a lake in scenario C.

Lemma 3 For any lake L of scenario C, Pr(|L| > k) ≤ e−γ
√

k, where γ > 0 is a constant.

Proof It is well-known that, for a Bernoulli field in the super-critical phase for percolation,

if we take any ∗-cluster S in the complement of the giant cluster then Pr(|S| > k) ≤ e−γ
√

k,

for some constant γ > 0 [4]. Therefore the same holds for any lake of scenario D. Now, by the

monotonicity implied by the coupling construction of [8] that relates scenario C and scenario

D, the same bound holds for L in scenario C (lakes can only be smaller). ▽

The next lemma is the key to analyze the performance of the algorithms at the end of the

second phase. The difficulty lies in the careful analysis of the dependencies– knowing that a

cell is closed/open affects not only the distribution of points inside this cell, but also that of

neighboring cells.

Lemma 4 Let Zi be the number of points in cell i, and let L be a lake in scenario C. Then,

if the number of points n is large enough, there is a constant γ > 0 such that

Pr

(

∑

i∈L

Zi > h

)

≤ e−γ
√

h.

Proof Let B := (B1, . . . , Bm) be the random vector denoting which cells are good or bad,

and b = (b1, . . . , bm) any particular such configuration. Then

Pr(
∑

i∈L

Zi > h) =
∑

k

Pr

(

∑

i∈L

Zi > h | |L| = k

)

Pr(|L| = k)

=
∑

k

∑

b

Pr

(

∑

i∈L

Zi > h | |L| = k,B = b

)

Pr(B = b | |L| = k) Pr(|L| = k)
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=
∑

k

∑

b

Pr

(

∑

i∈L

Zi > h | B = b

)

Pr(B = b | |L| = k) Pr(|L| = k).

The last equality follows, since if we know B we also know the size of L. We now focus on the

term Pr(
∑

i∈L Zi > h | B = b). We will show that we can replace the variables (Zi | B = b) with

a set of i.i.d. variables that stochastically dominate them and that obey the large deviation

principle.

The Poisson process can be realized as the product of m independent Poisson processes,

each operating inside a cell. This implies that if we have a set of events Ei where each event

depends only on what happens in cell i, then Pr(∩iEi) =
∏

i Pr(Ei). Thus, we have

Pr(∩i{Zi = hi}|B = b) =
Pr(∩i{Zi = hi, Bi = bi)}

Pr(∩iBi = bi)}
=

∏

i Pr(Zi = hi, Bi = bi)
∏

i Pr(Bi = bi)

=
∏

i

Pr(Zi = hi|Bi = bi).

If we define Xi = (Zi|Bi = good) and Yi = (Zi|Bi = bad), it follows that
∑

i(Zi|B) has the

same law of the sum of independent variables each of which is Xi or Yi depending on whether

cell i is good or bad. Let us define a collection of i.i.d. positive random variables Wi’s each of

which has the distribution of (Zi|Zi > 2α). Each Wi stochastically dominates both Xi and Yi

so that

Pr(
∑

i∈L

Zi > h | B = b) ≤ Pr(
∑

i∈L

Wi > h),

for each configuration b. Moreover the Wi obey the large deviation principle, i.e. the probability

of large deviations from the mean is exponentially small. More precisely, we have

Pr(
∑

i∈L

Wi > h) ≤ e−γ1h (7)

for a suitable constant γ1 > 0 independent of h.

We thus have, for β < 1/E[W1],

Pr(
∑

i∈L

Zi > h) =
∑

k

∑

b

Pr

(

∑

i∈L

Zi > h | B = b

)

Pr(B = b | |L| = k) Pr(|L| = k)
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≤
∑

k

∑

b

Pr





∑

i≤k

Wi > h



Pr(B = b | |L| = k) Pr(|L| = k)

=
∑

k

Pr





∑

i≤k

Wi > h



Pr(|L| = k)

=
∑

k≤βh

Pr





∑

i≤k

Wi > h



Pr(|L| = k) +
∑

k>βh

Pr





∑

i≤k

Wi > h



Pr(|L| = k)

≤
∑

k≤βh

Pr





∑

i≤βh

Wi > h



Pr(|L| = k) +
∑

k>βh

Pr





∑

i≤k

Wi > h



Pr(|L| = k)

≤
∑

k≤βh

Pr





∑

i≤βh

Wi > h



+
∑

k>βh

Pr(|L| = k)

= βhPr





∑

i≤βh

Wi > h



+
∑

k>βh

Pr(|L| = k)

From Lemma 3, for a proper constant γ2 > 0,

Pr(|L| = k) ≤ e−γ2

√
k

Altogether

βhPr(
∑

i≤βh

Wi > h) +
∑

k>βh

Pr(|L| = k) ≤ βh e−γ1h +
∑

k>βh

e−γ2

√
k

≤ e−γ
√

h

for a suitable constant γ > 0. This concludes the proof. ▽

The next lemma shows that, for any given Qi of scenario A, components of points inside

distinct lakes cannot be linked, by-passing G. Recall that we assumed K = 98α.

Remark 3 Let i be an open cell and let vi be a point inside it. By definition of open, if vj is

a point inside a cell j within distance D−3 from i, then vi and vj belong to the same connected

component. Because every point in a cell is a neighbour of every other point inside the cell or

a neighboring one. In particular, if vi belongs to the giant component, so does vj .

Lemma 5 Let u and v be points contained in two distinct lakes of scenario C. Unless they

both belong to G they are not neighbours.
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Proof Let us assume by contradiction that u and v are neighbours in scenario A without

belonging to G. Since u and v belong to different lakes, they must be separated by a portion

of the giant cluster. Thus, from Remark 3, u and v must be separated by at least 2(D − 3)

good cells. But every good cell contains at least α/2 points, and therefore if uv is an edge then

u reaches at least 2(D − 3)α/2 = 102α − 3α > 98α points. This is a contradiction because a

vertex in Phase 1 reaches K = 98α points. ▽

The following theorem immediately follows from Theorem 1, Lemmas 1, 4, and 5. We are

assuming that K is so large that Equation (5) of Theorem 1 is verified, i.e. there exists a giant

component with high probability. Moreover we note that in Theorem 1 the constant ξ depends

on the constant c and for a given constant c there is a constant K(c), depending on c, such

that for every K > K(c) the result follows.

Definition 3 Let Eϕ,c,n be the following event: {At the end of Phase 1 there is a unique giant

component containing at least cn points while the remaining components are contained inside

lakes, with each lake containing at most ϕ log2 n points}.

The next theorem shows that, by choosing ϕ large enough, we can upper bound Pr[Eϕ,c,n] with

any inverse polynomial.

Theorem 2 For every c ∈ (0, 1)

Pr[Eϕ,c,n] ≤ 2

nd

for n sufficiently large, where d = γ
√

ϕ − 1 and γ > 0 is the same constant as in Lemma 4.

Proof The event Eϕ,c,n fails if the Poisson construction fails. This happens with probability

e−γ0n, where γ0 is given by Lemma 1.

By Theorem 1, for every c ∈ (0, 1), there exists K(c), such that, when the algorithm is run

with parameter K > K(c), the probability that there is no component with at least c n points
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at the end of Phase 1 is at most 2e−ξ
√

n. By Lemma 4 and the union bound, the probability

that there exists a lake with more than ϕ log2 n points is at most

ne−γ
√

ϕ log2 n = n−γ
√

ϕ+1.

Using Lemma 5 we know that the points belonging to distinct lakes are in distinct components,

therefore the total failure probability is

Pr[Eϕ,c,n] ≤ e−γ0n + 2e−γ1

√
n + n−γ

√
ϕ+1 ≤ 2

nd

for n large enough. ▽

6 Connectivity

In this section we discuss the connectivity properties of Algorithms A and B. Recall the event

Eϕ,c,n of Theorem 2. We crucially observe that Eϕ,c,n implies that (a) there is a unique giant

component G in the network and (b) a device is continental if and only if it belongs to G.

Theorem 3 For every d > 0, there exists a choice of the parameters K and ϕ, such that the

probability that Algorithm A sets up a connected network is at least 1 − n−d.

Proof Assume that the event Eϕ,c,n of Definition 3 holds. Then, after the test “|C(v)| >

ϕ log2 n” of Phase 2, every node in G will declare itself to be continental, and every other node

will remain lacustrine. Then, in step 2 of Phase 2, every lacustrine node will find a neighbour

in the unique giant component. The claim follows from Theorem 2. ▽

The proof of the connectivity properties of Algorithm B is more involved.

Theorem 4 For every d > 0, there exists a choice of the parameters K, ϕ and t, such that

the probability that Algorithm B sets up a connected network is at least 1 − n−d.
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Proof We shall refer to one iteration of Phase 2 of Algorithm B as an exploration phase. Let

us define the event Gt,n = {The network is connected within t log n exploration phases}. We

will show the stronger claim that for every d > 0 there exists t > 0 such that

Pr[Gt,n] ≤ 1

nd
.

Recall that Pr(Eϕ,c,n) ≤ n−Θ(ϕ). This probability can be made arbitrarily small by choosing

the parameter ϕ appropriately in the algorithm.

Consider an (alternative) partition of the unit square into square cells such that the ex-

pected number of points in every cell is b log n, where the value of b will be fixed later. Focus

on one of these cells, and let X be the number of points that end up inside the cell. X is

a Bernoulli variable B(n, p) with p = b ln n/n. By the large deviation principle for Bernoulli

random variables, we have that

Pr(|X − b ln n| ≥ b ln n/2) ≤ 1

nc0b
= n−Θ(b), (8)

where c0 is a positive constant non depending on n and b. So, by increasing the constant b,

we can make the probability in (8) smaller than any inverse polynomial.

Let us now define the event Ab,n = {The number of points in every cell is in [12b log n, 3
2b log n]}.

By Equation (8) and the union bound,

Pr[Ab,n] ≤ 1

nc0b−1
.

We now show that Eϕ,c,n and Ab,n imply Gt,n. Let J := 49 × (3
2b log n). The point of this

definition is that after J exploration phases a device u has captured all devices inside its cell

and in the neighboring cells. This is because, by the definition of Algorithm B, every time a

device runs an exploration phase a new point is captured. Let us see what happens by round

J + 1.

Pick any cell and consider any point u inside it. If the cell of u or one of its neighboring

cells contains a continental device v then, by the definition of algorithm B, v will capture u,
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and u will join G since, as remarked, the event Eϕ,c,n ensures that G contains all devices that

mark themselves continenatl, and only those. Otherwise, let v be any point in the cell of u or in

one of its neighboring cells. Like u, v is lacustrine and therefore it has executed J exploration

phases. At this point, u has captured v, and viceversa. But then u and v are linked by an edge.

Since u and v are arbitrary, this shows that the points in the cell of u and in its neighboring

cells form a complete graph. Since our choice of the cell and of u were arbitrary, by transitivity

the whole network must be connected after J exploration phases. Therefore Eϕ,c,n and Ab,n

imply Gt,n.

The above argument shows that if we set t = 493
2b in Phase 2 of algorithm B, then the

network is not connected within t log n exploration phases with probability at most,

Pr[Gt,n] ≤ Pr[Ab,n] + Pr[Eϕ,c,n] ≤ 1

nγ
√

ϕ−1
+

1

nc0b−1
.

This can be made smaller than any inverse polynomial by choosing b and ϕ appropriately. The

claim follows. ▽

7 Expected and Maximum Degree

The next theorem bounds the maximum degree of the nodes at the end of the algorithms.

Theorem 5 With high probability the maximum degree of a node in the network set up by

Algorithms A and B is O(log2 n) and O(log n), respectively.

Proof We prove the claim for Algorithm B. The proof for Algorithm A is analogous. Assume

that the event Eϕ,c,n of Theorem 2 holds. By construction, the degree of lacustrine nodes is

upper bounded by K + t log n ≤ a log n for a proper constant a. To conclude the proof it is

enough to show that continental nodes that increase their radius in Phase 2 have also degree

O(log n) at the end of the protocol.

24



Let R :=
√

d log n/n, for a constant d to be fixed later, and let B(u,R) denote the ball

of radius R centered at a fixed vertex u. The expected number of points inside B(u,R) is

πd log n, for any u. Fix a device u and consider the following event

E(u,R) = {a log n + 1 ≤ |B(u,R)| ≤ 2πd log n}.

Consider then E(R) :=
⋂

u E(u,R). We can choose d in such a way that E(R) holds with

probability growing to one for n that goes to infinity. In what follows, assume that E(R)

occurs.

Observe now that the maximum transmission radius r at the end of the algorithm is realized

by a lacustrine node. This is because after Phase 1 continental nodes increase their radius only

in response to a request of a lacustrine node. It follows that r ≤ R. Thus, we have that, for

every node u, |B(u, r)| ≤ |B(u,R)| = O(log n), which implies the claim. ▽

Theorem 6 The expected degree of every point at the end of Algorithms A and B is bounded

by a constant.

Proof Given the same configuration of nodes within the unit box, the degree of each node

in the network constructed by Algorithms A is larger than or equal to the degree of the same

node in the network produced by Algorithms B. Therefore it suffices to argue for Algorithm A

only.

Consider first the expected degree of any lacustrine point v. Let L be the lake containing

v at the end of Phase 1 and let s(v) be the point of the initial giant component G closest to

v. By Lemma 5 the value of k(v) is bounded by 1 +
∑

i∈L Zi since in the worst case, v will

capture the points in L plus s(v). By Lemma 4,

E

[

∑

i∈L

Zi

]

≤
∑

h

hPr

(

∑

i∈L

Zi ≥ h

)

≤
∑

h

he−γ
√

h < ∞.

The degree of continental nodes can be bounded in a similar way. ▽
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8 Near-optimal Power Consumption

In this final section we study the expected power consumption needed to sustain the networks

generated by our algorithms. We assume that the power needed to cover a circle of radius r

is proportional to the area of the circle. More precisely, denoting by rv the radius covered by

node v, the total power consumption is defined to be
∑

v∈V r2
v where V denotes the set of n

devices. For a given distribution of points in the square, denoted as D, let opt(D) denote the

optimal power consumption and A(D) (resp. B(D)) the power consumption needed to sustain

the network generated by algorithm A (resp. B). We will show that there exists two absolute

constants α and β (independent on the number of points) such that, for all D, α ≤ E[opt(D)]

and E[A(D)] ≤ β and E[B(D)] ≤ β.

We begin by showing that α ≤ E[opt(D)]. Let R̃v be the random variable denoting the

minimal distance from v to all other nodes. The random variables {R̃v : v ∈ V } are identically

distributed. Obviously these radii are the minimal requirement to realize a connected network.

We will bound opt(D) by the total area induced by them. Therefore

∑

v∈V

R̃2
v = nR̃2

v1
≤ opt(D).

Taking expectations,

E

[

∑

v∈V

R̃2
v

]

= nE
[

R̃2
v1

]

≤ E[opt(D)]. (9)

We then bound E
[

R̃2
v1

]

. Let us fix arbitrarily the position of the first point v1 in the unit

square. Then the probability that all the other n − 1 points have distance from v1 at least

1/
√

n is larger than zero for every n, and also the limit of this probability, when n goes to

infinity, is larger than zero. Therefore, there exists a constant p0 > 0 such that

E
[

R̃2
v1

]

≥ p0

n
.

From Equation (9) it follows that E[opt(D)] ≥ p0, for all D with at least two points.
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We now turn to the upper bound for the expected power consumption of our Algorithms.

Theorem 7 The expected power consumption of the networks that are set up by Algorithms

A and B is upper bounded by a constant β, not depending on the number of devices n.

Proof By the remark at the beginning of the proof of Theorem 6, the average power consump-

tion of Algorithm A is no smaller than that of Algorithm B. So we will consider Algorithm A

only.

We divide the proof in two steps. First we prove that after Phase 1 of Algorithm A the

expected power consumption is finite. Let W
(1)
v (resp. W

(2)
v ) be the power of device v at the

end of Phase 1 (resp. Phase 2) of the algorithm, and let V denote the set of n points that are

uniformly and randomly distributed within the unit box. Note that if a device u uses power w

then the portion of the unit box that is covered by u’s ball has area at least w/2 = Θ(w). The

total power at the end of phase one is thus
∑

v W
(1)
v . The random variables {W (1)

v : v ∈ V }

are identically distributed, and so E[
∑

v W
(1)
v ] = nE[W

(1)
v1

].

Let N(v,w) denote the number of points inside the ball centered at v when the power of

v is w; we also define N0(v,w) to denote the number of points inside the same ball when the

Poisson process P0 is used to generate the points (see Section 4).

Clearly the following two events are equal

{W (1)
v1

> w} = {N(v,w) < K}

where K is the parameter of Phase 1 of the algorithm. We know by Lemma 1 that the

probability that (in a given region) the Poisson process P0 generates more than n points is at

most e−γn, for a constant γ. Therefore,

E[W (1)
v1

] =

∫ 2

0
P (W (1)

v1
> w)dw

=

∫ 2

0
P (N(v1, w) < K)dw
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≤
∫ 2

0
[P (N0(v1, w) < K) + e−γn]dw

≤
∫ 2

0
P (N0(v1, w) < K)dw + 2e−γn. (10)

Notice that the intensity µ = 3
4n of the Poisson process P0(n) satisfies µ ≥ 3wn/8 for each

w ∈ [0, 2]. Therefore if 3wn ≥ 8K then µ ≥ K.

We now use the fact that K ln(K/µ) − (K − µ) is increasing in µ for µ ∈ [K,∞). If we

choose w to satisfy w > 8K/3n then

K ln

(

K

µ

)

− (K − µ) ≥ K ln

(

8K

3wn

)

−
(

K − 3wn

8

)

,

and therefore the right-hand side of Equation (10) is at most

∫ 8K

3n

0
1dw +

∫ 2

8K

3n

exp

(

−K ln

(

8K

3wn

)

+ (K − 3wn

8
)

)

dw + 2e−γn.

By setting y = 3n
8K w we can see that this is at most

8K

3n
+

8K

3n

∫ ∞

1
exp (−K ln(y) + (K − y)) dy + 2e−γn ≤ AK

n
,

where AK is a positive constant depending only on K. Therefore E[
∑

v W
(1)
v ] ≤ AK .

Thus the expected power is bounded by a constant at the end of Phase 1. Let us turn to

Phase 2.

Given a lake L we use |L| to denote the number of cells that belong to it, and NL to denote

the number of points inside it. For a given lake L we have the bound

∑

v∈L

W (2)
v ≤ b

|L|
n

NL,

where b > 0 is a constant not depending on n.

Consider the random variables {Wi} defined in Lemma 4 to stochastically dominate the

random variable NL. We have that NL ≤stoch
∑|L|

i=1 Wi. Hence,

E

[

∑

v∈L

W (2)
v

]

≤ b

n
E[|L|NL]
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≤ ≤ b

n
E



|L|
|L|
∑

i=1

Wi





≤ b

n

∞
∑

l=1

E



|L|
|L|
∑

i=1

Wi | |L| = l



Pr(|L| = l).

The Wi’s are independent from |L| and have the same distribution. Thus, recalling Lemma 3,

b

n

∞
∑

l=1

E

[

l
l
∑

i=1

Wi | |L| = l

]

Pr(|L| = l) =
b

n

∞
∑

l=1

E

[

l
l
∑

i=1

Wi

]

Pr(|L| = l)

=
b

n

∞
∑

l=1

l2E[W1] Pr(|L| = l)

≤ b

n
E [W1]

∞
∑

l=1

l2e−γ
√

l =
c

n
.

Therefore the expected power after Phase 2 can increase at most by a constant because the

cardinality of the lakes are random variables with the same distribution, and the total number

of the lakes is at most n. ▽
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