
Breaching the 2-Approximation Barrier for Connectivity Augmentation:1
A Reduction to Steiner Tree∗2

JAROS lAW BYRKA† , FABRIZIO GRANDONI‡ , AND AFROUZ JABAL AMELI§3

Abstract. The basic goal of survivable network design is to build a cheap network that maintains the connectivity between4
given sets of nodes despite the failure of a few edges/nodes. The Connectivity Augmentation Problem (CAP) is arguably one5
of the most basic problems in this area: given a k(-edge)-connected graph G and a set of extra edges (links), select a minimum6
cardinality subset A of links such that adding A to G increases its edge connectivity to k + 1. Intuitively, one wants to make7
an existing network more reliable by augmenting it with extra edges. The best known approximation factor for this NP-hard8
problem is 2, and this can be achieved with multiple approaches (the first such result is in [Frederickson and Jájá’81]).9

It is known [Dinitz et al.’76] that CAP can be reduced to the case k = 1, a.k.a. the Tree Augmentation Problem (TAP), for10
odd k, and to the case k = 2, a.k.a. the Cactus Augmentation Problem (CacAP), for even k. Prior to the conference version11
of this paper [Byrka et al. STOC’20], several better than 2 approximation algorithms were known for TAP, culminating with12
a recent 1.458 approximation [Grandoni et al.’18]. However, for CacAP the best known approximation was 2.13

In this paper we breach the 2 approximation barrier for CacAP, hence for CAP, by presenting a polynomial-time 2 ln(4)−14
967

1120 +ε < 1.91 approximation. From a technical point of view, our approach deviates quite substantially from previous work. In15
particular, the better-than-2 approximation algorithms for TAP either exploit greedy-style algorithms or are based on rounding16
carefully-designed LPs. We instead use a reduction to the Steiner tree problem which was previously used in parameterized17
algorithms [Basavaraju et al.’14]. This reduction is not approximation preserving, and using the current best approximation18
factor for Steiner tree [Byrka et al.’13] as a black-box would not be good enough to improve on 2. To achieve the latter goal,19
we “open the box” and exploit the specific properties of the instances of Steiner tree arising from CacAP.20

In our opinion this connection between approximation algorithms for survivable network design and Steiner-type problems21
is interesting, and might lead to other results in the area.22

∗A PRELIMINARY VERSION OF THIS PAPER APPEARED IN THE PROCEEDINGS OF STOC’20.
†University of Wroc law, Poland, jby@cs.uni.wroc.pl. Supported by the NCN grant number 2015/18/E/ST6/00456.
‡IDSIA, USI-SUPSI, Switzerland, fabrizio@idsia.ch. Partially supported by SNF Excellence Grant 200020B 182865/1.
§Eindhoven University of Technology, Netherlands, a.jabal.ameli@tue.nl. Partially supported by SNF Excellence Grant

200020B 182865/1.

1

This manuscript is for review purposes only.

1. Introduction. The basic goal of Survivable Network Design is to construct cheap networks that23
provide connectivity guarantees between pre-specified sets of nodes even after the failure of a few edges/nodes24
(in the following we will focus on the edge failure case). This has many applications, e.g., in transportation25
and telecommunication networks.26

The Connectivity Augmentation Problem (CAP) is among the most basic survivable network design27
problems. Here we are given a k-(edge)-connected1 undirected graph G = (V,E) and a collection L of extra28
edges (links). The goal is to find a minimum cardinality subset OPT ⊆ L such that G′ = (V,E ∪ OPT)29
is (k + 1)-connected. Intuitively, we wish to augment an existing network to make it more resilient to30
edge failures. Dinitz et al. [12] (see also [9, 24]) presented an approximation-preserving reduction from this31
problem to the case k = 1 for odd k, and k = 2 for even k. This motivates a deeper understanding of the32
latter two special cases.33

The case k = 1 is also known as the Tree Augmentation Problem (TAP). The reason for this name34
is that any 2-edge-connected component of the input graph G can be contracted, hence leading to a tree.35
For this problem several better than 2 approximation algorithms are known [1, 7, 8, 13, 14, 19, 26, 27, 29].36
Among these results the best approximation factor prior to the conference version of this paper [4] was 1.45837
due to Grandoni et al. [19] (see Section 1.3 for subsequent developments).38

The case k = 2 is also known as the Cactus Augmentation Problem (CacAP), where for similar reasons39
we can assume that the input graph is a cactus2. Here the best-known approximation factor previous to our40
work [4] was 2, and this factor was achieved with multiple approaches [15, 17, 23, 24]. A better approximation41
was achieved recently for the special case where the input cactus is a cycle [20].42

1.1. Our Results and Techniques. The main result of this paper is the first better than 2 approxi-43
mation algorithm for CacAP, hence for CAP.44

Theorem 1.1. For any constant ε > 0, there is a polynomial-time 2 ln(4) − 967
1120 + ε < 1.9092 + ε45

approximation algorithm for the Cactus Augmentation problem.46

From Theorem 1.1 and the reduction to CacAP implied by [12], we get:47

Corollary 1.2. For any constant ε > 0, there is a polynomial-time 2 ln(4) − 967
1120 + ε < 1.9092 + ε48

approximation algorithm for the Connectivity Augmentation problem.49

Our result is based on a reduction to the (cardinality) Steiner tree problem by Basavaraju et al. [3].50
The authors use this connection to design improved parameterized algorithms (see also [28] for a related51
result). Recall that in the Steiner tree problem we are given an undirected graph GST = (T ∪ S,EST),52
where T is a set of t terminals and S a set of Steiner nodes (disjoint from T). Our goal is to find a tree53
(Steiner tree) OPTST = (T ∪ A,F) that contains all the terminals (and possibly a subset of Steiner nodes54
A) and has the minimum possible number of edges |OPTST |. Basavaraju et al. [3] observed that, given a55
CacAP instance (G = (V,E), L), it is possible to construct (in polynomial time) an equivalent Steiner tree56
instance GST = (T ∪ L,EST) (see also the description in [30]). Here T corresponds to the nodes of degree57
2 in G, L is the set of Steiner nodes, and the edges EST are defined properly (more details in Section 2.1).58
Intuitively, each link node ` ∈ L is adjacent to the terminal nodes in T which are endpoints of ` (if any),59
and two link nodes `, `′ ∈ L are adjacent iff the respective endpoints cannot be separated by a min-cut of G.60
In particular, an optimal solution to GST induces an optimal solution to (G,L) and vice versa. An example61
of the reduction is given in Figure 2.1. Unfortunately, this reduction is not approximation-preserving. In62
particular, by working out the simple details (see also Section 2.1), one obtains that a ρST -approximation for63
Steiner tree implies a ρ ≤ 3ρST −2 approximation for CacAP. The current best value of ρST is ln 4+ε < 1.3964
due to Byrka, Grandoni, Rothvoss and Sanità [5]. Hence this is not good enough3 to obtain ρ < 2.65

In order to obtain our main result we use the same algorithm as in [5], but we analyze it differently. In66
particular, we exploit the specific structure of the instances of Steiner tree arising from CacAP instances via67
the above reduction to get a substantially better approximation factor.68

1We recall that G = (V,E) is k-connected if for every subset of edges F ⊆ E, |F | ≤ k − 1, the graph G′ = (V,E \ F) is
connected.

2We recall that a cactus G is a connected undirected graph in which every edge belongs to exactly one cycle. For technical
reasons it is convenient to allow length-2 cycles consisting of 2 parallel edges.

3One would need ρST < 4
3 here. Notice that this is not ruled out by the current lower bounds on the approximability of

Steiner tree.

2

This manuscript is for review purposes only.

In more detail (see also Section 3), in the analysis of the algorithm in [5] one considers an optimal Steiner69
tree solution OPTST = (T ∪ A,F) rooted at some arbitrary node r, marks a random subset Fmar ⊆ F of70
edges so that each Steiner node is connected to some terminal via marked edges, and based on Fmar defines71
a proper (random) witness set W (e) for each e ∈ F . The cost of the approximate solution turns out to be72
at most (1 + ε)

∑
e∈F E[H|W (e)|], where Hi := 1 + 1

2 + . . . + 1
i is the i-th harmonic number. In particular,73

the authors show that E[H|W (e)|] ≤ ln 4 for each e ∈ F , hence the claimed approximation factor.74
Our analysis of the algorithm deviates from [5] for the following critical reasons:75
1. They (i.e., the authors of [5]) mark one child edge of each Steiner node chosen uniformly at random.76

In our case it is convenient to favor child edges with one terminal endpoint (if any). The fact that77
this helps is not obvious in our opinion.78

2. As mentioned above, they provide a per-edge upper bound on E[H|W (e)|]. We rather need to average79
over multiple edges in order to achieve a good bound. Finding a good way to do that is not trivial80
in our opinion.81

We remark that, from a technical point of view, our result deviates quite substantially from prior82
approximation algorithms for TAP. The first improvements on a 2 approximation where achieved via greedy-83
style algorithms and a complex case analysis [13, 26, 27, 29]. More recent approaches are based on rounding84
stronger and stronger LP (or SDP) relaxations for the problem [1, 7, 8, 14, 19]. We also use an LP-based85
rounding algorithm, which is however defined for a generic Steiner tree instance (while the properties of TAP86
are used only in the analysis). In our opinion the connection that we established between the approximability87
of survivable network design problems and Steiner-type problems might lead to other results in the future.88

1.2. Related and Previous Work. One can consider a natural weighted version WCAP of CAP89
where each link has a positive weight and the goal is to minimize the total weight of selected links. The90
best-known approximation for WCAP is 2. The techniques used in this paper seem not to generalize to91
the weighted case. In particular, one might use a reduction to a node-weighted version of the Steiner tree92
problem, however the latter problem is harder and in general allows only a logarithmic approximation [25].93

Prior to the conference version of this paper, 2 was the best-known approximation factor even for the94
weighted version WTAP of TAP. Some progress on weighted TAP was made in the case of small integer95
weights. In particular, when the largest weight W is upper bounded by a constant, better than 2 ap-96
proximation algorithms are given in [1, 14, 19]. A technique in [32] allows one to extend these results to97
W = O(logn). Weighted TAP also admits a 1 + ln 2 approximation for arbitrary weights if the input tree98
has constant radius [11]. A better than 2 approximation can also be achieved if the fractional solution to a99
natural LP relaxation has non-zero entries bounded away from zero [22].100

A problem closely related to CAP is to build a minimum cost k-edge-connected spanning subgraph of a101
given input graph [10, 16, 21, 34]. Here the best known approximation factor is 4/3 for the unweighted case,102
and 2 for the weighted one.103

1.3. Subsequent Work. After the publication of the conference version of this paper [4], there were104
a few breakthroughs in the area of survivable network design. Cecchetto et al. [6] developed an elegant and105
unified framework to approximate both TAP and CacAP, leading to a 1.393-approximation. Notice that this106
does not only greatly improves on our approximation factor for CacAP, but also on the approximation factor107
for TAP in [19]. Though it leads to weaker approximation factors, we believe that our connection between108
survivable network design and Steiner-type problems might be useful in future related work. Indeed, after109
our work, a similar connection was made by Nutov [31]. In more detail, he proved that an α approximation110
for Steiner tree implies a 1 + ln(4−x) + ε approximation for CAP, where x is the solution to 1 + ln(4−x) =111
α + (α − 1)x. This leads to an approximation factor below 2 (though worse than the one achieved in this112
work) using the current best approximation for Steiner tree [5]. Notice that, differently from our result,113
Nutov’s reduction is black box, a useful feature.114

Recently, Traub and Zenklusen [35] achieved a 1 + ln 2 + ε approximation for WTAP , hence solving a115
major open problem in the area. The authors later improved their result to a 1.5 + ε-approximation [36].116
Achieving a better than 2 approximation for WCAP remains a challenging open problem.117

Grandoni, Jabal Ameli and Traub [18] obtained the first better than 2 approximation for the Forest118
Augmentation Problem (FAP), i.e. the generalization of TAP where the input graph is a forest rather than119
a tree.120

A variant of our approach was used by Nutov [30] to obtain, among other results, the first better than121

3

This manuscript is for review purposes only.

v1

v2v3

v8

v9 v10

v11 v12

v7v4

v6v5

`1
`2

`5

`4

`3

`6

`7

`8

`1 `3

`2`5`4 `7 `8 `6

v2 v3

v4 v6 v5 v7 v9 v10 v11

v12

Fig. 2.1. (top) Instance of CacAP, where dashed edges denote links. The projections of `1 are
proj(`1) ={{v7, v1}, {v1, v8}, {v8, v9}}. Link `2 is crossing with `1 and `5. (bottom) The Corresponding Steiner tree instance,
where square nodes denote terminals.

2 approximation for the node-connectivity version of TAP. The approximation factor for this problem was122
later improved by Angelidakis, Hyatt-Denesik, and Sanità [2], again using an approach similar to the one in123
this paper.124

2. Steiner Tree and Connectivity Augmentation. In this section we present the mentioned re-125
duction in [3] from CacAP to Steiner tree (Section 2.1). Furthermore, we describe a specific Steiner tree126
approximation algorithm that we will use to solve the instance arising from the above reduction (Section 3).127
We analyze the resulting approximation factor in Section 4.128

2.1. A Reduction to Steiner Tree. Consider a CacAP instance (G = (V,E), L). For a link ` =129
(v0, vq+1), let v1, . . . , vq be the sequence of nodes of degree at least 4 that lie along every simple v0-vq+1130
path, excluding the endpoints (that may or may not have this property). Intuitively, any simple path from131
v0 to vq+1 will contain edges from some cycles C0, . . . , Cq in this order. Then vi, i ∈ {1, . . . , q}, is the (cut)132
node shared by the cycles Ci−1 and Ci. Notice that each pair `i = {vi, vi+1}, i = 0, . . . , q, lies along a133
distinct cycle Ci visited by the mentioned path. We call each such `i the projection of ` on Ci, and we let134
proj(`) be the set of all projections of `. Consider two links ` = {x, y} and `′ = {x′, y′}. Then we say that135
` and `′ cross if one of the following two conditions hold: (1) they share one endpoint or (2) there exists a136
cycle C such that C includes x, y, x′ and y′ and taking one simple x-y path P along C, P contains exactly137
one node in {x′, y′} as an internal node. We say that any two links ` and `′ cross if there exist `i∈ proj(`)138
and `′j∈ proj(`′) such that `i and `′j cross. See Figure 2.1 (top) for an example.139

From (G,L) we construct a Steiner tree instance GST = (T ∪ S,EST) as follows. For each one of the t140
nodes v of degree 2 in G, add a terminal v to T ; for each link ` ∈ L, add a Steiner node ` to S (i.e., S = L);141
for each ` ∈ L and endpoint v ∈ T of `, add {`, v} to EST ; finally, for any two links ` and `′ that cross, add142
{`, `′} to EST . See Figure 2.1 (bottom) for an example. We observe the following simple facts.143

Property 1. Each Steiner node s is adjacent to at most 2 terminals, namely the terminals correspond-144
ing to the endpoints of the link associated with s.145

Property 2. The neighbors of each terminal t are Steiner nodes which form a clique: this clique cor-146

4

This manuscript is for review purposes only.

responds to the links that share the node corresponding to t as a common endpoint.147

We will critically exploit the following lemma sketched in [3] (Lemma 1). For the sake of completeness148
we give a (more detailed) proof of it in Appendix B.149

Lemma 2.1. [3] A ⊆ L is a feasible solution to a CacAP instance (G,L) iff, in the corresponding Steiner150
tree instance GST = (T ∪ L,EST), GST [T ∪A] is connected.151

Notice that the above reduction is not approximation-preserving. Still, we can state the following.152

Corollary 2.2. Any optimum solution OPT to the input CacAP instance, induces a solution OPTST153
of cost |OPTST | = |OPT |+ t− 1 for the associated Steiner tree instance, where t is the number of terminals154
in the latter instance. Vice versa, given a solution APXST to the Steiner tree instance, one can construct155
in polynomial time a solution APX to the input CacAP instance with |APX| = |APXST | − t+ 1.156

Proof. Both claims follow directly from Lemma 2.1. For the first claim, it is sufficient to observe that a157
spanning tree of GST [T ∪OPT] contains t+ |OPT |−1 edges. For the second claim, observe that the Steiner158
nodes in APXST induce a feasible solution to CacAP. The claim follows since |APXST | = s+ t− 1, where159
s is the number of Steiner nodes in APXST .160

We will exploit also the following simple fact.161

Lemma 2.3. Given some optimal solution OPT to a CacAP instance, there is a feasible solution OPTST162
to the associated Steiner tree instance with |OPTST | = |OPT |+ t− 1 where terminals have degree exactly 1163
(namely, all the terminals are leaves).164

Proof. Given any feasible solution ST to the problem, we can transform it into a solution ST ′ of the165
same cost where some terminal v of degree d(v) ≥ 2 in ST has degree d(v)− 1 in ST ′. In order to do that,166
consider any terminal v adjacent to two Steiner nodes ` and `′ in ST . By Property 2, ` and `′ are adjacent.167
Hence ST ′ := ST ∪ {`, `′} \ {v, `′} is a feasible Steiner tree of the same cost and with the desired property.168

By iteratively applying the above process to the solution OPTST guaranteed by Corollary 2.2 one obtains169
the desired solution.170

As mentioned earlier, a ρST approximation for Steiner tree (used as a black box) provides a 3ρST − 2171
approximation for CacAP by the above construction. Indeed, the Steiner tree instance has cost at most172
|OPT |+t−1 by Corollary 2.2, hence an approximate solution APXST would cost at most ρST (|OPT |+t−1).173
By the same corollary, we can convert this into a solution APX to CacAP of cost at most ρST (|OPT |+ t−174
1) − t + 1. Next observe that |OPT | ≥ t/2. Indeed, any node of degree 2 in the CacAP instance needs to175
have at least one link incident to it in a feasible solution, and a link can be incident to at most 2 such nodes.176
Thus |APX| ≤ 3ρST |OPT | − 2|OPT |. In order to improve on this simple bound, we will have to open the177
box.178

Let us remark that the size |APX| of the approximate solution for CacAP that we will compute is179
precisely the number of Steiner nodes involved in the solution APXST that we compute for the corresponding180
Steiner tree instance. In our 1.91 approximation we implicitly address all the Steiner tree instances satisfying181
Properties 1 and 2. Therefore, we implicitly achieve the same approximation factor for the latter instances182
of Steiner tree, where the objective function is to minimize the number of Steiner nodes in the computed183
Steiner tree.184

3. Steiner Tree via Iterative Randomized Rounding. As we mentioned in the introduction, the185
current best (ln 4 + ε)-approximate Steiner tree algorithm from [5], used as a black box, is not good enough186
to break the 2-approximation barrier for CacAP. However, it turns out that the same algorithm achieves187
this goal in combination with a different analysis that exploits the properties of the specific Steiner tree188
instances arising from CacAP.189

We first sketch the basic property of the algorithm and analysis in [5] that we need here and express190
it in the form of Lemma 3.1. For the sake of completeness, we include a more detailed description and a191
sketch of the proof of the lemma in the following Section 3.1 . The authors of [5] consider an LP relaxation192
DCRk for the problem based on directed k-components for a proper constant parameter k depending on ε.193
They iteratively solve this LP, sample a directed k-component C with probability proportional to the LP194
values, and contract C. The process ends when all terminals are contracted into one node. This algorithm195
can be derandomized, and the deterministic version is good enough for our application. We do not need196
more details about this algorithm, other than that it runs in polynomial time.197

5

This manuscript is for review purposes only.

In the analysis (more details in Sections 3.1 and 3.2) the authors of [5] consider any feasible Steiner tree198
ST = (T ∪ A,F). They interpret each full component4 S′ of ST as a tree rooted at some Steiner node r of199
S′ (if there is no such node, it can be created by splitting the single edge in S′). Then the authors define200
a marking scheme where some child edge of each internal (Steiner) node of S′ is marked. Notice that the201
marked edges induce a collection of disjoint paths in each full component S′: such paths span the nodes of202
S′ and each such path contains precisely one terminal (as an endpoint). A given marking scheme defines a203
witness set W (e) for each edge e in S′: this consists of all the pairs of terminals {t′, t′′} in S′ such that the204
t′-t′′ path in S′ contains e and precisely one unmarked edge. We let w(e) = |W (e)|. Notice that for each205
unmarked edge e there exists exactly one such t′-t′′ path, hence w(e) = 1 (we will later use this property in206
Lemma 4.1). Then the authors prove the following, where Hi := 1+ 1

2 + . . .+ 1
i is the i-th harmonic number.207

208

Lemma 3.1. [5] For any feasible Steiner tree ST = (T∪A,F) and marking scheme, for a large enough pa-209
rameter k = Oε(1), the cost of the solution computed by the above algorithm is at most (1+ε)

∑
e∈F E[Hw(e)].210

3.1. Some Details About the Steiner Tree Approximation Algorithm in [5]. For a complete211
presentation of the Steiner tree algorithm we refer to the original paper [5]. Here we sketch the main ideas.212
The algorithm is based on the following Directed Component Relaxation (DCR) of the Steiner tree problem.213

min
∑
C∈C

c(C)xC (DCR)(3.1)214

s.t.
∑

C∈δ+
C (U)

xC ≥ 1 ∀∅ 6= U ⊆ T \ {r}(3.2)215

xC ≥ 0 ∀ C ∈ C.(3.3)216217

Here C is the set of directed components, where each directed component C is a minimum-cost Steiner tree218
(of cost c(C)) over a subset of terminals. Furthermore, the leaves of C are precisely its terminals, and C219
is directed towards a specific terminal: the sink of C, and the remaining terminals are the sources of C.220
Intuitively, our goal is to buy a minimum-cost subset of directed components so that they induce a directed221
path from each terminal to the root. In more detail, for any cut U that separates some non-root terminal222
from the root, let δ+

C (U) be the set of components with some source in U and the sink not in U . Then every223
feasible solution has to buy some component in δ+

C (U). The DCR relaxation follows naturally.224
After restricting DCR to solutions that only use components with at most k terminals we obtain DCRk.225

For constant k, DCRk has a polynomial number of variables. Furthermore, the separation problem can be226
solved in polynomial time via a reduction to minimum cut. Therefore DCRk can be solved in polynomial227
time. Moreover, the value of DCRk is known to be a (1 + ε)-approximation of the value of DCR for large228
enough k = Oε(1).229

The iterative randomised rounding algorithm from [5], until all terminals are connected to the root, in230
iterations t = 1, 2, 3 . . ., does the following:231

• solve DCRk for the current instance of the Steiner tree problem to get xt;232
• sample a component Ct from Ck with probability proportional to xtC ;233
• contract the sampled component Ct.234

For the ease of the analysis, by adding dummy components w.l.o.g, one may assume that the total235
number of components in the fractional solution remains constant across the iterations of the algorithm, i.e.,236 ∑
C∈C x

t
C = M for a proper M for all t = 1, 2, It is argued that after t iterations of the algorithm, having237

bought the first t sampled components, the residual instance of the problem is expected to be less costly. To238
this end a reference solution St is constructed such that St ∪

⋃t−1
t′=1 C

t connects all the terminals. The initial239
reference solution S1 = OPTST is an optimal solution to the Steiner tree instance of cost opt. Consecutive240
reference solutions S2, S3, . . . are obtained by gradually deleting edges that are no longer necessary due to241
the connectivity provided by the already sampled components.242

Key to estimate the expected cost of the final solution is to bound the number of iterations until243
a particular edge e ∈ S1 can be removed. Define D(e) = max{t|e ∈ St}. In [5] (proof of Theorem244

4Recall that a full component is a maximal subtree whose terminals are exactly its leaves.

6

This manuscript is for review purposes only.

21) it is shown that there exist a randomised process of constructing reference solutions S1, S2, . . . such245
that E[D(e)] ≤ ln(4) ·M , which allows one to bound the total expected cost of sampled components as246

E
[∑

t≥1 c(Ct)
]
≤ (ln(4)+ε) ·opt. Note that the above per-edge guaranty allows for easily handling arbitrary247

costs of individual edges. In our application to (unweighted) CacAP, we need to average over multiple edges248
to achieve a good enough bound.249

3.2. Witness Tree and Witness Sets. We next slightly abuse notation and sometimes denote in the250
same way a tree and its set of edges. The construction of reference solutions S1, S2, . . . is not trivial. It251
involves:252

• construction of a terminal spanning tree W , called the witness tree, based on randomised marking253
(selection) of a subset of edges of S1. Each edge e of S1 is associated with a proper subset W (e) ⊆W254
(witness set of e);255

• randomised deletion of a proper subset of W in response to selecting a particular component Ct in256
iteration t;257

• removing an edge e from St when all edges W (e) have already been deleted.258
In the following we discuss the main ideas behind our approach and the key properties of each of the259

three above mentioned processes.260
Construction of the witness tree. The high level idea behind the witness tree is that we need to always261

satisfy the condition that St ∪
⋃t−1
t′=1 C

t connects all the terminals, which is that the remaining fragments262
of the initial reference solution S1 together with the already sampled components must provide sufficient263
connectivity. To this end a simpler object providing connectivity is constructed. It is an auxiliary tree W264
whose node set is the terminals of the instance (while the edges of W are not necessarily edges of the input265
graph). It will be easier to delete edges from W in response to sampling components rather than deleting266
them directly from St.267

We will now discuss methods to construct W . Intuitively, removing edges from a Steiner tree (in response268
to receiving connectivity from a component) is directly possible for only a subset of edges of the Steiner tree.269
In particular it appears more difficult to remove a Steiner node (and hence a path connecting a Steiner node270
to a terminal). This is related to the concept of Loss and Loss contracting algorithms (see, e.g., [33]), where271
one accepts that the cost of the system of paths connecting Steiner nodes to terminals is not removable.272

Consider the following procedure: For each full component S′ of the Steiner tree S1 select a single Steiner273
node r and interpret S′ as a tree rooted at r . For every Steiner node s of S′, mark one edge between s and274
one of its children. Note that for each Steiner node s the marked edges will form a unique path towards a leaf275
containing terminal t(s). Note also that connected components formed by the marked edges will all contain276
a single terminal node. Construct W (S′) by adding to E(W (S′)) an edge {t(u), t(v)} for each unmarked277
edge {u, v} of S′.5 Observe that the above constructed graph W (S′) is a tree spanning the terminals of S′.278
By repeating this procedure for all full components of S1 we obtain a tree W spanning all terminals of the279
Steiner tree instance.280

So far we did not specify how to select the edge below the Steiner node v ∈ S′ to be marked. In [5]281
the tree was assumed to be binary, and the edge would be selected at random by tossing a fair coin. In the282
current paper we use a different marking strategy as discussed in Section 4.1.283

Removing edges of the witness tree. When edges of the witness tree W become unnecessary, we remove284
them. We keep the invariant that the (not removed) edges of W together with the already collected compo-285
nents are sufficient to connect all terminals. Still, given a fixed collection of the already sampled components,286
the choice of which edges of W to remove is not obvious. In [5] a randomised scheme was considered. It287
was shown (Lemma 19 in [5]) that there exists a random process removing edges from W in response to288
sampled components, such that for every edge e ∈W not removed before iteration t, the probability that it289
is removed in iteration t is at least 1/M . In the current work we continue using the mentioned “uniform”290
witness tree edge removing process, and utilise the following lemma.291

Lemma 3.2 (lemma 20 in [5]). Let W̃ ⊆ W . Then the expected number of iterations until all edges in292
W̃ are removed is at most H|W̃ | ·M .293

5Note that in [5] the role of marked and unmarked edges was reversed. It was irrelevant for the analysis in [5] as it was
assumed that the tree S′ is binary. In this paper however we will exploit the high degree of Steiner nodes in S′ and hence prefer
to mark the “Loss” edges.

7

This manuscript is for review purposes only.

Removing edges of the reference tree St. Which edges of the reference tree can be removed? Clearly it294
suffices if St provides the same terminal connectivity as the not removed edges of the witness tree W . Note295
that a single edge e ∈ W corresponds to a single path p(e) in S1. It then suffices to keep the edges of S1296
that occur in a path p(e) of at least one (still not removed) edge e ∈W .297

We introduce the following notation: for an edge f in S1 let W (f) = {e ∈ W |f ∈ p(e)}, we call W (f)298
the witness set of f . Therefore, at iteration t, the reference solution St contains the edges from S1 whose299
witness sets are not fully removed until iteration t− 1.300

Observe that the expected value of the number D(f) of iterations an edge f from the reference solution301
survives (until being removed) can be expressed using only the size of its witness set W (f).302

Corollary 3.3. Let f ∈ S1, then E[D(f)] ≤ H|W (f)| ·M .303

Following the argument from the proof of Theorem 21 in [5], we also get304

Corollary 3.4. For k = Oε(1) large enough, the total expected cost of the components bought by the305
algorithm is at most306

1 + ε

M

∑
f∈S1

E[D(f)] · c(f) ≤ (1 + ε) ·
∑
f∈S1

H|W (f)| · c(f)307

Therefore, it suffices to analyse how the marking scheme used in the construction of the witness tree308
affects the distributions of the sizes of the witness sets for the individual edges of S1. To this end we will309
exploit two properties of our instances: the high degree of the Steiner nodes in the initial optimal solution310
S1, and the fact that all the edges of S1 have the same cost.311

4. An Improved CacAP Approximation Algorithm. In this section we present our improved ap-312
proximation for CacAP. The algorithm is rather simple: we just build the Steiner tree instance GST =313
(T ∪L,EST) associated with the input CacAP instance (G,L) and compute an approximate solution APXST314
to G via the algorithm in [5] sketched in Section 3. Then we derive from APXST a feasible solution APX315
to the input CacAP instance as described in Corollary 2.2. We let apx denote the approximation ratio of316
this algorithm.317

In Section 4.1 we describe our alternative marking scheme and prove some of its properties. In Section318
4.2 we complete the analysis of the approximation factor.319

4.1. An Alternative Marking Scheme. Recall that in the analysis of the Steiner tree approximation320
algorithm in [5], one can focus on a specific feasible Steiner tree ST and on a specific marking scheme (so that321
Steiner nodes are connected to some terminal via paths of marked edges). Le OPT be some optimal solution322
to the considered CacAP instance. As a feasible solution ST we consider the solutionOPTST = (T∪OPT, F),323
of cost |OPT |+ t− 1 and with terminals being leaves, guaranteed by Lemma 2.3.324

We mark edges in the following way. Consider each full component S′ of OPTST . W.l.o.g, S′ contains325
at least one Steiner node (otherwise, we can create it by splitting one edge). Let us root S′ at some Steiner326
node r which is adjacent to at least one terminal (notice that such r must exist). For a Steiner node `, we let327
d(`), s(`) and t(`) be the number of its children, Steiner children, and terminal children, resp. In particular328
d(`) = s(`) + t(`) and (by Property 1) t(`) ≤ 2.329

For each link node `, there are two options. If ` has at least one terminal child, we select one such child330
t uniformly at random, and mark edge {`, t}. Otherwise, we choose a child `′ of ` (`′ being a Steiner node)331
uniformly at random, and mark edge {`, `′}. Notice that this is a feasible marking scheme, namely for each332
Steiner node we mark exactly one child edge. Observe also that in our marking we favor edges connecting333
Steiner nodes to terminals: this will be critical in our analysis6. See Figure 4.1 for a possible marking of this334
type.335

Let APXST be the Steiner tree computed by the algorithm. Let Fmar and Funm be the (random) sets336
of marked and unmarked edges, resp., that partition F . Recall that for each e ∈ F , there exists a (random)337
witness set W (e) of size w(e) = |W (e)|. Observe that each Steiner node ` has precisely one marked child338
edge m(`). We let the cost c(`) of ` be E[Hw(m(`))]. The following bound on the approximation ratio holds.339

Lemma 4.1. apx ≤ 2ε+ 1+ε
|OPT |

∑
`∈OPT c(`).340

6While we are able to show that our marking scheme leads to a better than 2 approximation, we are not able to show that
the same cannot be achieved with the original marking scheme in [5].

8

This manuscript is for review purposes only.

`4

v2 v3`1

`2 `3

v7v5 `5

v6v4

`6 `7

v12v11 v9 v10

e

Fig. 4.1. A feasible Steiner tree for the instance of Figure 2.1, which happens to be well-structured. Bold edges denote
a possible marking. One has m(`3) = e := {`3, `7}, and W (e) contains {v9, v12}, {v9, v5} and {v9, v3}. Notice that w(e) =
|W (e)| = d(`3)+d(`1)−1. Leaf-Steiner nodes are drawn in grey. Here `2 (resp., `3) is a good (resp., bad) father. Consequently
`5 (resp., `6) is good (resp., bad). A feasible grouping is g(`2) = {`2}, g(`3) = {`3, `7}, g(`1) = {`1, `6}, g(`4) = {`4}, and
g(`5) = {`5}.

Proof. Recall that by Lemma 3.1 the expected cost of the computed Steiner tree APXST is, modulo a341
factor (1 + ε), at most342

E[
∑
e∈F

Hw(e)] = E[
∑

e∈Fmar

Hw(e) +
∑

e∈Funm

Hw(e)]343

=E[
∑

e∈Fmar

Hw(e) + |Funm|] = E[
∑

e∈Fmar

Hw(e)] + t− 1.344

In the second-last equality above we used the fact that w(e) = 1 deterministically for an unmarked edge,345
and in the last equality above the fact that there are precisely |OPT | marked edges and consequently346
exactly t− 1 unmarked ones. From APXST we derive a feasible solution APX to the input instance of cost347
|APX| = |APXST |−t+ 1 by Corollary 2.2. Hence348

|APX| ≤ (1 + ε)(E[
∑

e∈Fmar

Hw(e)] + t− 1)−t+ 1349

≤ (1 + ε)E[
∑

e∈Fmar

Hw(e)] + 2ε|OPT |.350

351

In the last inequality above we used the trivial lower bound |OPT | ≥ t/2 that we mentioned earlier. The352
claim follows since by definition

∑
e∈Fmar

E[Hw(e)] =
∑
`∈OPT c(`).353

From the above lemma, modulo factors (1 + ε), the approximation ratio of our algorithm is given by the354
average cost of Steiner nodes. The following lemma gives a generic upper bound on the cost for each non-root355
Steiner node based on the degree sequence of its ancestors7.356

Lemma 4.2. Given a non-root Steiner node `, let `q be the lowest proper ancestor8 of ` with t(`q) > 0.
Let ` = `1, `2, . . . , `q, q ≥ 2, be the simple path between ` and `q, and let di = d(`i). Then9

c(`) =
q−2∑
h=1

(dh+1 − 1)Hd1+...+dh−h+1

d2 · . . . · dh+1
+
Hd1+...+dq−1−q+2

d2 · . . . · dq−1
.

7Observe that for the root r, c(r) = Hd(r)−1 deterministically.
8Observe that this ancestor exists since the root has this property by assumption.
9The value of a product of type ai · ai+1 · . . . · aj for j < i is assumed to be 1 by definition.

9

This manuscript is for review purposes only.

Proof. By definition c(`) = c(`1) = E[Hw(e)], where e = m(`1) = {`1, `0} is the marked child edge357
of `1. Recall that W (e) contains one entry for each path in the tree between terminals that contains e358
and precisely one unmarked edge. In our specific case, condition on {`0, `1}, {`1, `2}, . . . , {`h−1, `h} being a359
maximal sequence of consecutive marked edges. Notice that by construction {`q−1, `q} is unmarked (since360
`q has a terminal child by definition), hence h ≤ q − 1. In this case w(e) = d1 + . . . + dh − (h − 1). For361
h < q− 1, the mentioned event happens with probability 1

d2
· . . . · 1

dh
· dh+1−1

dh+1
. For h = q− 1, this probability362

is 1
d2
· . . . · 1

dh
. The claim follows by computing the expectation of Hw(e).363

We next provide an upper bound on c(`) as a function of d(`) only. Let us define the following variant
of Hi:

Ĥi := 1
2Hi + 1

4Hi+1 + . . . =
∑
j≥0

1
2j+1Hi+j .

One has that Ĥ1 = ln(4) and Ĥj+1 = 2Ĥj − Hj . Notice that, modulo an additive ε, Ĥ1 is precisely the364
approximation factor for Steiner tree achieved in [5]. The first few approximate values of Ĥi are Ĥ1 < 1.3863,365
Ĥ2 < 1.7726, Ĥ3 < 2.0452, Ĥ4 < 2.2571, Ĥ5 < 2.4308, Ĥ6 < 2.5781, Ĥ7 < 2.7062, and Ĥ8 < 2.8195.366

The proof of the following lemma, though not entirely trivial, is mostly based on algebraic manipulations367
and therefore we postpone it to Appendix A.368

Lemma 4.3. For any ` ∈ OPT , c(`) ≤ Ĥd(`).369

In next subsection we will see that for a carefully defined subset of Steiner nodes ` it is possible to obtain a370
better upper bound on c(`) than the one provided by Lemma 4.3. This will be critical in our analysis since371
the latter bound is not strong enough.372

4.2. Analysis of the Approximation Factor. In this section we upper bound the approximation373
factor apx as given by Lemmas 4.1 and 4.2. In order to simplify our analysis, it is convenient to focus our374
attention on a specific class of well-structured Steiner trees OPTST (see also Figure 4.1). The following375
lemma shows that this is (essentially) w.l.o.g.376

Definition 4.4. A rooted Steiner tree is well-structured if, for every Steiner node `, the following two377
conditions hold:378

1. ` has at least 2 children and379
2. ` has 0 or 2 terminal children.380

Lemma 4.5. Let ρ be the supremum of ρ(OPTST) =381
1

|OPT |
∑
`∈OPT c(`) over Steiner trees OPTST = (T ∪OPT, F), and ρws be the same quantity computed over382

the subset of well-structured Steiner trees OPTST of the mentioned type. Then ρ ≤ max{Ĥ1, ρws}.383

Proof. Recall that by Property 1 in OPTST each Steiner node ` has at most 2 terminal children. Consider384
any such tree where some Steiner node `′ has precisely one terminal child t. Consider the tree OPT ′ST which385
is obtained from OPTST by appending to `′ a second terminal child t′. Observe that the value of c(`) does386
not decrease for any `, and it increases for ` = `′. Thus ρ(OPT ′ST) > ρ(OPTST). Hence ρ is equal to the387
supremum of ρ(OPTST) over the subfamily of trees that satisfies (2) in Definition 4.4.388

Now consider any tree OPTST that satisfies (2), and let oc(OPTST) be the number of its Steiner nodes389
with precisely one child. We prove by induction on oc(OPTST) that ρ(OPTST) ≤ max{Ĥ1, ρws}. The claim390
is trivially true for oc(OPTST) = 0 since in this case OPTST is well-structured. Assume the claim is true391
up to q − 1 ≥ 0, and consider OPTST = (T ∪ OPT, F) with oc(OPTST) = q. Let `′ be any Steiner node392
with precisely one child `′′. Observe that `′′ has to be a Steiner node as well by (2), and that c(`′) ≤ Ĥ1393
by Lemma 4.3. Consider the tree OPT ′ST = (T ∪ OPT ′, F ′) obtained by contracting the edge (`′, `′′). We394
observe that OPT ′ST satisfies (2), oc(OPT ′ST) = q − 1 and |OPT ′| = |OPT | − 1. Note also that for any395
Steiner node ` different from `′ and `′′ the value of c(`) does not change, while for the new node ˜̀ resulting396

10

This manuscript is for review purposes only.

from the contraction one has c(˜̀) = c(`′′). We can conclude that397

1
|OPT |

∑
`∈OPT

c(`)398

≤ 1
|OPT |

(Ĥ1 +
∑

`∈OPT\{`′}

c(`))399

= 1
|OPT |

(Ĥ1 +
∑

`∈OPT ′
c(`)) ≤ max{Ĥ1,

1
|OPT ′|

∑
`∈OPT ′

c(`)}400

≤ max{Ĥ1, ρws},401

where in the last inequality we used the inductive hypothesis.402

We next show an upper bound on ρws which is strictly greater than Ĥ1. It then follows from Lemma403
4.5 that the same upper bound holds on ρ. For this goal, we next assume that OPTST is well-structured.404

The upper bound on c(`) from Lemma 4.3 is not sufficient to achieve a good approximation factor. In405
order to achieve a tighter bound, we consider the following classification of the Steiner nodes (see also Figure406
4.1).407

Definition 4.6. A Steiner node `′ is a good father if it has at least one terminal child (hence precisely408
2 such children by the above assumptions and Property 1), and a bad father otherwise. Each Steiner child409
` of a good father `′ is good, and all other Steiner nodes are bad. Let OPTgf , OPTbf , OPTg and OPTb410
denote the sets of good fathers, bad fathers, good nodes and bad nodes, resp.411

Notice that the above classification is not affected by the random choices in the marking scheme. For412
good nodes, the analysis of the cost can be refined as follows.413

Lemma 4.7. For any ` ∈ OPTg, c(`) ≤ Hd(`).414

Proof. Suppose ` has a parent `′, which is a good father by definition. This implies that the edge (`′, `)415
is deterministically unmarked, hence w(m(`)) = d(`) deterministically. If ` has no parent (i.e., it is the root416
r), then w(m(`)) = d(`)− 1. The claim follows.417

Putting everything together, we obtain the following.418

Lemma 4.8. apx ≤ 2ε+ 1+ε
|OPT |

∑
`∈OPT c

′(`) where

c′(`) =
{
Hd(`) if ` ∈ OPTg;
Ĥd(`) if ` ∈ OPTb.

Proof. It follows from Lemma 4.1, by replacing c(`) as in Lemma 4.2 with the upper bounds given by419
Lemmas 4.3 and 4.7.420

We rewrite the upper bound from Lemma 4.8 as follows. Let p ∈ [0, Ĥ2−H2] be a parameter to be fixed421
later. Intuitively, each good Steiner node ` ∈ OPTg pays a present p to its (good) father `′ ∈ OPTgf to thank422
`′ for making itself good. This increases the cost of ` by p. Symmetrically, each good father `′ ∈ OPTgf423
collects presents from its (good) Steiner children and uses them to lower its own cost. Clearly by definition424
the total modification of the cost is zero. Let us call c′′(`) the modified costs. Then one obtains the following425
equality:426

1
|OPT |

∑
`∈OPT

c′(`) = 1
|OPT |

∑
`∈OPT

c′′(`)(4.1)427

where

c′′(`) =


Hd(`) + p− s(`)p if ` ∈ OPTg ∩OPTgf ;
Hd(`) + p if ` ∈ OPTg ∩OPTbf ;
Ĥd(`) − s(`)p if ` ∈ OPTb ∩OPTgf ;
Ĥd(`) if ` ∈ OPTb ∩OPTbf .

In order to upper bound (4.1), we partition OPT into groups of nodes as follows (see also Figure 4.1).428

11

This manuscript is for review purposes only.

Definition 4.9. A Steiner node ` is leaf-Steiner if it has no Steiner children (i.e., d(`) = t(`) = 2)429
and internal-Steiner otherwise (i.e., s(`) > 0). We let OPTlf and OPTin be the set of leaf-Steiner and430
internal-Steiner nodes, resp.431

We associate to each ` ∈ OPTin a distinct subset OPTlf (`) of precisely s(`)− 1 leaf-Steiner nodes, and let432
g(`) = {`} ∪ OPTlf (`) be the group of `. The mapping is constructed iteratively in a bottom-up fashion433
as follows. Initially all Steiner nodes are unprocessed. We maintain the invariant that the subtree rooted434
at an unprocessed leaf-Steiner node or at a processed node with unprocessed parent contains precisely one435
unprocessed leaf-Steiner node. Clearly the invariant holds at the beginning of the process. We consider any436
unprocessed internal-Steiner node ` whose Steiner descendants are either processed or leaf-Steiner nodes.437
By the invariant, each subtree rooted at a Steiner child of ` (which is either an unprocessed leaf-Steiner438
node or a processed internal-Steiner node) contains one unprocessed leaf-Steiner node. Among this set of439
s(`) unprocessed leaf-Steiner nodes, we select arbitrarily a set OPTlf (`) of size s(`) − 1 and set g(`) =440
{`} ∪ OPTlf (`). All nodes in g(`) are marked as processed. Observe that the subtree rooted at ` still441
contains an unprocessed leaf-Steiner node, hence the invariant is preserved in the following steps. At the end442
of the process (i.e., after processing the root r) there will be precisely one leaf-Steiner node `∗ which is still443
unprocessed, which forms a special group g(`∗) = {`∗} on its own. Notice that the groups define a partition444
of OPT . In particular, OPT = {`∗} ∪

⋃
`∈OPTin

g(`). Notice also that |g(`)| = s(`) for all ` ∈ OPTin (while445
|g(`∗)| = 1).446

Let a(`) be the average value of c′′(·) over the elements of g(`). Then obviously the maximum value of447
a(`) over the groups upper bounds the average value of c′′(·):448

(4.2) 1
|OPT |

∑
`∈OPT

c′′(`) ≤ max
`∈OPTin∪{`∗}

{a(`)}.449

For ` = `∗ one has that a(`∗) = c′′(`∗) = Ĥ2 if `∗ is bad, and a(`∗) = c′′(`∗) = H2 + p ≤ Ĥ2 otherwise. For
the other groups g(`), there is always a subset of s(`)−1 leaves whose contribution to the cost is at most Ĥ2
each by the same argument as above. Furthermore, we have to add the cost c′′(`). We can conclude that:

a(`) ≤



a1(s(`)) := Hs(`)+2+p−s(`)p+(s(`)−1)Ĥ2
s(`) if `∈OPTg∩OPTgf ;

a2(s(`)) := Hs(`)+p+(s(`)−1)Ĥ2
s(`) if `∈OPTg∩OPTbf ;

a3(s(`)) := Ĥs(`)+2−s(`)p+(s(`)−1)Ĥ2
s(`) if `∈OPTb∩OPTgf ;

a4(s(`)) := Ĥs(`)+(s(`)−1)Ĥ2
s(`) if `∈OPTb∩OPTbf ;

Ĥ2 if ` = `∗.

In the first and third case above we used the fact that d(`) = s(`) + 2 (` is a good father, hence has 2450
terminal children), while in the second and fourth case the fact that d(`) = s(`) (` is a bad father, hence has451
no terminal child).452

We are now ready to prove the main result of this paper.453

Proof of Theorem 1.1. Consider the above algorithm. Combining Lemma 4.8 with (4.1) and (4.2) one454
gets455

(4.3) apx ≤ 2ε+ (1 + ε) max
i≥1
{Ĥ2, a1(i), a2(i), a3(i), a4(i)}.456

Notice that the above approximation factor is a function of the parameter p ∈ [0, Ĥ2−H2] which still needs457
to be fixed. In order to choose a convenient p, we need the following technical result (proof in Appendix A).458

459

Claim 1. For any p ∈ [0, Ĥ2 −H2], the maximum of a1(i), a2(i), a3(i), and a4(i) is achieved for i at460
most 6, 8, 6 and 8, resp.461

From (4.3) and Claim 1, for any p ∈ [0, Ĥ2 −H2], one has462

apx ≤ 2ε+ (1 + ε) max{Ĥ2, max
1≤i≤6

{a1(i)}, max
1≤i≤8

{a2(i)},463

max
1≤i≤6

{a3(i)}, max
1≤i≤8

{a4(i)}}.(4.4)464

12

This manuscript is for review purposes only.

Numerically the minimum of the right-hand side of (4.4) is achieved for p ' 0.135, and the two largest values465

inside the maximum turn out to be a2(7) and a3(1). By imposing H7+6Ĥ2+p
7 = a2(7) = a3(1) = Ĥ3 − p one466

gets p = 7Ĥ3−H7−6Ĥ2
8 . For that value of p the value of the maximum is precisely H7+6Ĥ2+Ĥ3

8 = 2 ln 4− 967
1120 .467

The claim follows by scaling ε properly.468

Appendix A. Omitted Proofs from Section 4.469

Claim 2. Hd1 +
∑∞
j=d1+1

1
j·2j−d1 = Ĥd1 .470

Proof. Note that471

Ĥd1 =
∞∑
i=0

Hd1+i

2i+1 =
∞∑
i=0

Hd1 +
∑i
j=1

1
d1+j

2i+1472

= Hd1 +
∞∑
j=1

∑∞
i=j

1
2i+1

d1 + j
= Hd1 +

∞∑
j=1

1
(d1 + j)2j .473

474

Proof of Lemma 4.3. The claim is trivially true if ` is the root since in that case c(`) = Hd(`)−1 < Ĥd(`).
So we next assume that ` is not the root. For a generic sequence S = (d1, . . . , dk) of positive integers, let us
define

f(S) =
k−1∑
j=1

(dj+1 − 1) ·Hd1+d2+...+dj−j+1

d2 · d3 . . . dj+1
+ Hd1+d2+···+dk−k+1

d2 · d3 . . . dk
.

By Lemma 4.2, in order to prove the claim it is sufficient to show that f(S) ≤ Ĥd1 . For an infinite
sequence S′ = (d1, d2, . . .) of positive integers, we analogously define

f(S′) =
∞∑
j=1

(dj+1 − 1) ·Hd1+d2+...+dj−j+1

d2 · d3 . . . dj+1

Given a finite sequence S = (d1, . . . , dk) of the above type, let S̄ = (d1, . . . , dk, 2, 2, . . .) be its infinite475
extension where we add an infinite sequence of 2 at the end.476

Claim 3. f(S) ≤ f(S̄).477

Proof. By definition478

f(S̄)− f(S)479

=
∞∑
j=k

(dj+1 − 1) ·Hd1+d2+...+dj−j+1

d2 · d3 . . . dj+1
− Hd1+d2+...+dk−k+1

d2 · d3 . . . dk
480

≥
∞∑
j=k

(dj+1 − 1) ·Hd1+d2+...+dk−k+1

d2 · d3 . . . dj+1
− Hd1+d2+...+dk−k+1

d2 · d3 . . . dk
481

= Hd1+d2+...+dk−k+1

d2 · d3 . . . dk

∞∑
j=1

1
2j −

Hd1+d2+...+dk−k+1

d2 · d3 . . . dk
482

= Hd1+d2+...+dk−k+1

d2 · d3 . . . dk
− Hd1+d2+...+dk−k+1

d2 · d3 . . . dk
= 0.483

484

By Claim 3 it is sufficient to consider infinite sequences of type S̄. We can also assume w.l.o.g. that all di,485
i ≥ 2, in such sequences are at least 2 by the following claim.486

Claim 4. Let S̄ = (d1, . . . , dk, 2, 2, . . .) and assume there exists di = 1 in the sequence for some i ≥487
2. Let S̄i = (d1, . . . , di−1, di+1, . . . , dk, 2, 2, . . .) be the subsequence where the i-th entry is removed. Then488
f(S̄) = f(S̄i).489

13

This manuscript is for review purposes only.

Proof. Consider the entries in the sum defining f(S̄) and f(S̄i). The entry j = i− 1 in f(S̄) has value490
0. For j < i − 1, the j-th entries in f(S̄) and f(S̄i) are identical. For j > i − 1, the j-th entry in f(S̄) is491
equal to the j − 1-th entry in f(S̄i).492

By the above claims we can focus on infinite sequences S̄ = (d1, . . . , dk, 2, 2, . . .), where di ≥ 2 for i ≥ 2.493
Let us prove by induction on k ≥ 1 that f(S̄) ≤ Ĥd1 . The claim is trivially true for k = 1 since in that494
case f(S̄) = Ĥd1 . Next consider any k≥2 and assume the claim is true for all values up to k − 1. Define495
S̄′ = (d1 + d2 − 1, d3, . . . , dk, 2, 2, . . .). By definition and inductive hypothesis:496

f(S̄) = Hd1

d2 − 1
d2

+ f(S̄′)
d2

≤ Hd1

d2 − 1
d2

+ Ĥd1+d2−1

d2
.497

By Claim 2,498

Hd1

d2 − 1
d2

+ Ĥd1+d2−1

d2
499

= Hd1

d2 − 1
d2

+ 1
d2

Hd1+d2−1 +
∑

j≥d1+d2

1
j · 2j−d1−d2+1

500

= Hd1 +
d1+d2−1∑
j=d1+1

1
j · d2

+
∑

j≥d1+d2

1
j · d2 · 2j−d1−d2+1501

= Hd1 +
∑

j≥d1+1

αj
j
,502

where

αj :=
{

1
d2

for d1 + 1 ≤ j ≤ d1 + d2 − 1;
1

j·2i−d1−d2+1 for j ≥ d1 + d2.

We observe the following simple facts about the coefficients αj .503

Claim 5. One has:504
1.

∑
j≥d1+1 αj = 1.505

2. For every i > 1,
∑
j≥d1+i αj ≥

1
2i−1 .506

Proof. For (1) one has

∑
j≥d1+1

αj = d2 − 1
d2

+
∞∑

j=d1+d2

1
d2 · 2j−d1−d2+1 = 1− 1

d2
+ 1
d2
.

Let us prove (2). For i ≥ d2, one has

∑
j≥d1+i

αj =
∞∑

j=d1+i

1
d2 · 2j−d1+d2−1 = 1

d2 · 2i−d2
≥ 1

2i−1 ,

where in the inequality we used the fact that k ≤ 2k−1 for any integer k ≥ 1.507
For 2 ≤ i ≤ d2 − 1, one has:∑

j≥d1+i
αj = d2 − i

d2
+ 1
d2

= d2 − i+ 1
d2

≥ 1
i
≥ 1

2i−1 ,

where in the first inequality above we used the fact that k−j+1
k is a decreasing function of k ≥ j + 1 and508

d2 ≥ i+ 1, and in the second inequality again the fact that k ≤ 2k−1 for k ≥ 1.509

Intuitively, the term A =
∑∞
j=d1+1

αj

j is a convex combination of terms of type 1/j under the constraint510
that the sum of the tail coefficients is large enough. An obvious upper bound on A is obtained by choosing511
coefficients βj that respect the constraints on αj given by Claim 5, and at the same time are as large as512

14

This manuscript is for review purposes only.

possible on the smallest terms of the sum. An easy induction shows that the best choice is βj = 1
2j−d1 for513

all j ≥ d1 + 1. Thus we can conclude514

f(S̄) ≤ Hd1 +
∑

j≥d1+1

αj
j
≤ Hd1 +

∑
j≥d1+1

βj
j

515

= Hd1 +
∞∑

j=d1+1

1
j · 2j−d1

= Ĥd1 ,516

517

where last equality comes from Claim 2.518
Summarizing, given a non-root Steiner node ` and the associated values S = (d1, . . . , dq−1), q ≥ 2, as

defined in Lemma 4.2, we have that, for S̄ = (d1, . . . , dq−1, 2, 2, . . .),

c(`) Lem. 4.2= f(S)
Claim 3
≤ f(S̄) ≤ Ĥd1 = Ĥd(`).

519

Proof of Claim 1. Consider a1(i). Excluding a fixed additive term Ĥ2 − p, the value of this function is
a′1(i) := Hi+2−x

i , where x = Ĥ2 − p ∈ (0, Ĥ2]. Taking the discrete derivative

a′1(i+ 1)− a′1(i) =
x+ i+1

i+3 −Hi+3

i(i+ 1)

one might observe that this is negative for i ≥ 6 since x+ i+1
i+3 ≤ Ĥ2 + 1 < 2.7726 < H9 > 2.8289.520

Consider now a2(i). Excluding a fixed additive term Ĥ2, the value of this function is a′2(i) := Hi−x
i ,

where x = Ĥ2 − p ∈ (0, Ĥ2]. One has

a′2(i+ 1)− a′2(i) = x+ 1−Hi+1

i(i+ 1) ,

which is negative for i ≥ 8 since x+ 1 ≤ Ĥ2 + 1 < 2.7726 < H9 > 2.8289.521

Consider next a3(i). Excluding a fixed additive term Ĥ2−p, the value of this function is a′3(i) := Ĥi+2−Ĥ2
i .522

One has523

a′3(i+ 1)− a′3(i) = Ĥ2 − Ĥi+2

i(i+ 1) +
∑
j≥1

1
2j(i+ 1)(i+ j + 2)524

≤ Ĥ2 + 1− Ĥi+2

i(i+ 1) ,525
526

which is negative for i ≥ 6 since Ĥ2 + 1 < 2.7726 < Ĥ8 > 2.8194.527
It remains to consider a4(i). Excluding a fixed additive term Ĥ2, the value of this function is a′4(i) :=528

Hi−Ĥ2
i . One has529

a′4(i+ 1)− a′4(i)530

=Ĥ2 − Ĥi

i(i+ 1) +
∑
j≥1

1
2j(i+ 1)(i+ j) ≤

Ĥ2 + 1− Ĥi

i(i+ 1) ,531

532

which is negative for i ≥ 8 since Ĥ2 + 1 < 2.7726 < Ĥ8 > 2.8194.533

Appendix B. Details on the Reduction to Steiner Tree.534

Definition B.1. Let G = (V,E) be a connected graph and let L be a set of extra edges. Let E1 ⊆ E be535
an edge-cut of G. We say that L covers the cut E1 if E1 is not an edge-cut of G′ = (V,E ∪ L).536

Lemma B.2. Let G = (V,E) be an input cactus of CacAP which consists of exactly one cycle and let A537
be a feasible solution for G. Then GST [A] is connected.538

15

This manuscript is for review purposes only.

Proof. Assume by contradiction that GST [A] is not connected. Then A can be partitioned in LR and539
LB , such that for any lR ∈ LR and lB ∈ LB , lR does not cross lB . We call the links in LR red links and the540
links in LB blue links. We can also partition V in VR and VB , such that the endpoints of red links belong541
to VR and the endpoints of blue links belongs to VB . Therefore we call VB and VR, blue vertices and red542
vertices respectively.543

Let V1, V2, . . . , V2k be the partition of vertices of the cycle G into maximal consecutive blocks of vertices544
of the same color, so that V1 ∪ V3 ∪ · · · ∪ V2k−1 = VR and V2 ∪ V4 ∪ · · · ∪ V2k = VB .545

We say that a link ` = {u,w} ∈ A is nice, if u and v belong to different blocks Vi and Vj , i 6= j. We say546
that an edge e = {u, v} ∈ E is colorful if u is red and v is blue or vice versa. Note that G has precisely 2k547
colorful edges. If there is no nice link in A, then any pair of colorful edges of G is not covered by A, which548
is a contradiction.549

Assume that ` = {u, v} ∈ A is a nice link, such that the distance between u and v in the cycle G is550
minimum. Assume w.l.o.g. that u ∈ V1 and v ∈ V2x+1 (and therefore these are red vertices) and also that551
the vertices of V2 are in the shortest path from u to v. Now let e1 and e2 be the colorful edges such that552
exactly one of their endpoints is in V2. We next show that the edge-cut {e1, e2} is not covered by A.553

Assume that {e1, e2} is covered, then there should be a link `1 = (w, z) such that w ∈ V2 and z 6∈ V2.554
Then either this link is a nice link that crosses ` (which is a contradiction since ` ∈ LR and `1 ∈ LB) or `1555
is a nice link such that the distance of w and z is less than the distance of u and v (which contradicts the556
choice of `).557

Proof of Lemma 2.1. ⇐ Let A ⊆ L be such that GST [T ∪A] is connected. Assume by contradiction that558
A is not a feasible CacAP solution. Then there exists a 2-edge cut {e1, e2}, for two edges e1, e2 belonging559
to some cycle C of G, which is not covered by any link in A. Let GL = (VL, EL) and GR = (VR, ER) be560
the two (node disjoint) connected components of G identified by this cut. Let also tL ∈ VL and tR ∈ VR561
be any two nodes of degree 2 in G. (Observe that these nodes must exist.) By assumption there exists a562
(simple) path P = tL, `1, . . . , `q, tR between tL and tR in GST [T ∪ A], where all `i’s are link nodes. Since563
{e1, e2} is not covered, each such link has both endpoints either in VL or in VR. Furthermore, `1 and `q have564
one endpoint in VL and VR, resp. Hence there must be two consecutive links `i and `i+1 where `i has both565
endpoints in VL and `i+1 both endpoints in VR. These links cannot be crossing, therefore contradicting the566
fact that {`i, `i+1} is an edge of GST .567
⇒ Let A ⊆ L be a feasible CacAP solution. We will show that GST [T ∪A] is connected. We first observe568

that, w.l.o.g., we can replace each link ` with its projections proj(`). Indeed, the feasibility of A is preserved.569
Furthermore, the number of connected components of GST [T ∪A] does not change since the links in proj(`)570
induce a path in GST . With this modification, all links in A have both their endpoints in the same cycle571
(since projections have this property by definition). Let C1, . . . , Ck be the cycles of G. For any cycle Ci of572
the cactus G let Ai be the set of links in A with both their endpoints in Ci. Lemma B.2 shows that GST [Ai]573
is connected. For every pair of cycles Ci and Cj that share a node v, there is a link `i ∈ Ai and `j ∈ Aj574
which are incident to v, thus `i and `j cross. We can conclude that GST [A] is connected. Finally, since A is575
feasible, there exists at least one link ` ∈ A incident to each node t of degree 2 in G, which implies that the576
edge {`, t} belongs to EST . Thus GST [T ∪A] is also connected.577

Acknowledgments. This work is highly in debt to Saket Saurabh. During a visit of the second author578
to Bergen University a few years ago, Saket mentioned the possibility of using the reduction to Steiner tree579
to approximate connectivity augmentation problems, possibly with an ad-hoc analysis. The result in this580
paper follows precisely that high-level path, however fixing the details in the analysis was highly non-trivial.581
The second author is also grateful to M. S. Ramanujan and L. Vegh for several helpful discussions on this582
topic.583

REFERENCES584

[1] D. Adjiashvili, Beating approximation factor two for weighted tree augmentation with bounded costs, ACM Trans.585
Algorithms, 15 (2018), https://doi.org/10.1145/3182395, https://doi.org/10.1145/3182395.586

[2] H. Angelidakis, D. Hyatt-Denesik, and L. Sanità, Node connectivity augmentation via iterative randomized rounding,587
CoRR, abs/2108.02041 (2021), https://arxiv.org/abs/2108.02041, https://arxiv.org/abs/2108.02041.588

[3] M. Basavaraju, F. V. Fomin, P. A. Golovach, P. Misra, M. S. Ramanujan, and S. Saurabh, Parameter-589
ized algorithms to preserve connectivity, in Automata, Languages, and Programming - 41st International Collo-590

16

This manuscript is for review purposes only.

https://doi.org/10.1145/3182395
https://doi.org/10.1145/3182395
https://arxiv.org/abs/2108.02041
https://arxiv.org/abs/2108.02041

quium, ICALP 2014, July 8-11, 2014, Proceedings, Part I, Copenhagen, Denmark, 2014, Springer, pp. 800–811,591
https://doi.org/10.1007/978-3-662-43948-7 66, https://doi.org/10.1007/978-3-662-43948-7 66.592

[4] J. Byrka, F. Grandoni, and A. Jabal Ameli, Breaching the 2-approximation barrier for connectivity augmentation: a593
reduction to Steiner tree, in Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,594
STOC 2020, Chicago, IL, USA, June 22-26, 2020, K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and595
J. Chuzhoy, eds., ACM, 2020, pp. 815–825.596

[5] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, Steiner tree approximation via iterative randomized rounding,597
J. ACM, 60 (2013), pp. 6:1–6:33.598

[6] F. Cecchetto, V. Traub, and R. Zenklusen, Bridging the gap between tree and connectivity augmentation: Unified599
and stronger approaches, STOC 2021, (2021), https://arxiv.org/abs/2012.00086.600

[7] J. Cheriyan and Z. Gao, Approximating (unweighted) tree augmentation via lift-and-project, part I: stemless601
TAP, Algorithmica, 80 (2018), pp. 530–559, https://doi.org/10.1007/s00453-016-0270-4, https://doi.org/10.1007/602
s00453-016-0270-4.603

[8] J. Cheriyan and Z. Gao, Approximating (unweighted) tree augmentation via lift-and-project, part II, Algorithmica, 80604
(2018), pp. 608–651, https://doi.org/10.1007/s00453-017-0275-7, https://doi.org/10.1007/s00453-017-0275-7.605

[9] J. Cheriyan, T. Jordán, and R. Ravi, On 2-coverings and 2-packings of laminar families, in Algorithms - ESA ’99, 7th606
Annual European Symposium, July 16-18, 1999, Proceedings, Prague, Czech Republic, 1999, Springer, pp. 510–520,607
https://doi.org/10.1007/3-540-48481-7 44, https://doi.org/10.1007/3-540-48481-7 44.608

[10] J. Cheriyan and R. Thurimella, Approximating minimum-size k-connected spanning subgraphs via matching,609
SIAM J. Comput., 30 (2000), pp. 528–560, https://doi.org/10.1137/S009753979833920X, https://doi.org/10.1137/610
S009753979833920X.611

[11] N. Cohen and Z. Nutov, A (1+ln2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of612
trees with constant radius, Theor. Comput. Sci., 489-490 (2013), pp. 67–74, https://doi.org/10.1016/j.tcs.2013.04.004,613
https://doi.org/10.1016/j.tcs.2013.04.004.614

[12] E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov, On the structure of a family of minimal weighted cuts in a615
graph, Studies in Discrete Optimization, (1976), pp. 290–306.616

[13] G. Even, J. Feldman, G. Kortsarz, and Z. Nutov, A 1.8 approximation algorithm for augmenting edge-connectivity617
of a graph from 1 to 2, ACM Transactions on Algorithms, 5 (2009), pp. 21:1–21:17.618

[14] S. Fiorini, M. Groß, J. Könemann, and L. Sanità, Approximating weighted tree augmentation via chvátal-gomory619
cuts, in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,620
January 7-10, 2018, A. Czumaj, ed., New Orleans, LA, USA, 2018, SIAM, pp. 817–831, https://doi.org/10.1137/1.621
9781611975031.53, https://doi.org/10.1137/1.9781611975031.53.622

[15] G. N. Frederickson and J. JáJá, Approximation algorithms for several graph augmentation problems, SIAM Journal623
on Computing, 10 (1981), pp. 270–283.624

[16] H. N. Gabow and S. Gallagher, Iterated rounding algorithms for the smallest k-edge connected spanning subgraph,625
SIAM J. Comput., 41 (2012), pp. 61–103, https://doi.org/10.1137/080732572, https://doi.org/10.1137/080732572.626

[17] M. X. Goemans, A. V. Goldberg, S. A. Plotkin, D. B. Shmoys, É. Tardos, and D. P. Williamson, Improved627
approximation algorithms for network design problems, in Proceedings of the Fifth Annual ACM-SIAM Symposium628
on Discrete Algorithms. 23-25 January 1994, Arlington, Virginia, USA, 1994, ACM/SIAM, pp. 223–232, http://dl.629
acm.org/citation.cfm?id=314464.314497.630

[18] F. Grandoni, A. Jabal Ameli, and V. Traub, Breaching the 2-approximation barrier for the forest augmentation631
problem, in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, June632
20-24, 2022.633

[19] F. Grandoni, C. Kalaitzis, and R. Zenklusen, Improved approximation for tree augmentation: saving by rewiring,634
in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, June 25-29,635
2018, Los Angeles, CA, USA, 2018, ACM, pp. 632–645, https://doi.org/10.1145/3188745.3188898, https://doi.org/636
10.1145/3188745.3188898.637

[20] W. GÃąlvez, F. Grandoni, A. Jabal Ameli, and K. Sornat, On the cycle augmentation problem: Hardness and approx-638
imation algorithms, Theory of Computing Systems, 65 (2021), pp. 1–24, https://doi.org/10.1007/s00224-020-10025-6.639

[21] C. Hunkenschröder, S. S. Vempala, and A. Vetta, A 4/3-approximation algorithm for the minimum 2-edge connected640
subgraph problem, ACM Trans. Algorithms, 15 (2019), pp. 55:1–55:28, https://doi.org/10.1145/3341599, https://doi.641
org/10.1145/3341599.642

[22] J. Iglesias and R. Ravi, Coloring down: 3/2-approximation for special cases of the weighted tree augmentation problem,643
CoRR, abs/1707.05240 (2017), http://arxiv.org/abs/1707.05240, https://arxiv.org/abs/1707.05240.644

[23] K. Jain, A factor 2 approximation algorithm for the generalized steiner network problem, Combinatorica, 21 (2001),645
pp. 39–60.646

[24] S. Khuller and R. Thurimella, Approximation algorithms for graph augmentation, Journal of Algorithms, 14 (1993),647
pp. 214–225.648

[25] P. Klein and R. Ravi, A nearly best-possible approximation algorithm for node-weighted steiner trees, Journal of Algo-649
rithms, 19 (1995), pp. 104–115.650

[26] G. Kortsarz and Z. Nutov, Lp-relaxations for tree augmentation, in Approximation, Randomization, and Com-651
binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris,652
France, 2016, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 13:1–13:16, https://doi.org/10.4230/LIPIcs.653
APPROX-RANDOM.2016.13, https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13.654

[27] G. Kortsarz and Z. Nutov, A simplified 1.5-approximation algorithm for augmenting edge-connectivity of a graph from655
1 to 2, ACM Transactions on Algorithms (TALG), 12 (2016), pp. 23:1–23:20.656

[28] D. Marx and L. A. Végh, Fixed-parameter algorithms for minimum-cost edge-connectivity augmentation, ACM Trans.657
Algorithms, 11 (2015), pp. 27:1–27:24, https://doi.org/10.1145/2700210, https://doi.org/10.1145/2700210.658

17

This manuscript is for review purposes only.

https://doi.org/10.1007/978-3-662-43948-7_66
https://doi.org/10.1007/978-3-662-43948-7_66
https://arxiv.org/abs/2012.00086
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-017-0275-7
https://doi.org/10.1007/s00453-017-0275-7
https://doi.org/10.1007/3-540-48481-7_44
https://doi.org/10.1007/3-540-48481-7_44
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1016/j.tcs.2013.04.004
https://doi.org/10.1016/j.tcs.2013.04.004
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/080732572
https://doi.org/10.1137/080732572
http://dl.acm.org/citation.cfm?id=314464.314497
http://dl.acm.org/citation.cfm?id=314464.314497
http://dl.acm.org/citation.cfm?id=314464.314497
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1007/s00224-020-10025-6
https://doi.org/10.1145/3341599
https://doi.org/10.1145/3341599
https://doi.org/10.1145/3341599
https://doi.org/10.1145/3341599
http://arxiv.org/abs/1707.05240
https://arxiv.org/abs/1707.05240
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.1145/2700210
https://doi.org/10.1145/2700210

[29] H. Nagamochi, An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree,659
Discrete Applied Mathematics, 126 (2003), pp. 83–113.660

[30] Z. Nutov, 2-node-connectivity network design, in Approximation and Online Algorithms - 18th International Work-661
shop, WAOA 2020, Virtual Event, September 9-10, 2020, Revised Selected Papers, C. Kaklamanis and A. Levin,662
eds., vol. 12806 of Lecture Notes in Computer Science, Springer, 2020, pp. 220–235, https://doi.org/10.1007/663
978-3-030-80879-2 15, https://doi.org/10.1007/978-3-030-80879-2 15.664

[31] Z. Nutov, Approximation algorithms for connectivity augmentation problems, CoRR, abs/2009.13257 (2020), https:665
//arxiv.org/abs/2009.13257, https://arxiv.org/abs/2009.13257.666

[32] Z. Nutov, On the tree augmentation problem, Algorithmica, 83 (2021), pp. 553–575, https://doi.org/10.1007/667
s00453-020-00765-9, https://doi.org/10.1007/s00453-020-00765-9.668

[33] G. Robins and A. Zelikovsky, Tighter bounds for graph Steiner tree approximation, SIAM Journal on Discrete Mathe-669
matics, 19 (2005), pp. 122–134.670

[34] A. Sebö and J. Vygen, Shorter tours by nicer ears: 7/5-approximation for graphic tsp, 3/2 for the path version, and671
4/3 for two-edge-connected subgraphs, Combinatorica, 34(5) (2014), pp. 597–629, http://arxiv.org/abs/1201.1870,672
https://arxiv.org/abs/1201.1870.673

[35] V. Traub and R. Zenklusen, A better-than-2 approximation for weighted tree augmentation, CoRR, abs/2104.07114674
(2021), https://arxiv.org/abs/2104.07114, https://arxiv.org/abs/2104.07114.675

[36] V. Traub and R. Zenklusen, Local Search for Weighted Tree Augmentation and Steiner Tree, 2022, pp. 3253–3272,676
https://doi.org/10.1137/1.9781611977073.128, https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.128, https:677
//arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.128.678

18

This manuscript is for review purposes only.

https://doi.org/10.1007/978-3-030-80879-2_15
https://doi.org/10.1007/978-3-030-80879-2_15
https://doi.org/10.1007/978-3-030-80879-2_15
https://doi.org/10.1007/978-3-030-80879-2_15
https://arxiv.org/abs/2009.13257
https://arxiv.org/abs/2009.13257
https://arxiv.org/abs/2009.13257
https://arxiv.org/abs/2009.13257
https://doi.org/10.1007/s00453-020-00765-9
https://doi.org/10.1007/s00453-020-00765-9
https://doi.org/10.1007/s00453-020-00765-9
https://doi.org/10.1007/s00453-020-00765-9
http://arxiv.org/abs/1201.1870
https://arxiv.org/abs/1201.1870
https://arxiv.org/abs/2104.07114
https://arxiv.org/abs/2104.07114
https://doi.org/10.1137/1.9781611977073.128
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.128
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.128
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.128
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.128

	Introduction
	Our Results and Techniques
	Related and Previous Work
	Subsequent Work

	Steiner Tree and Connectivity Augmentation
	A Reduction to Steiner Tree

	Steiner Tree via Iterative Randomized Rounding
	Some Details About the Steiner Tree Approximation Algorithm in BGRS13
	Witness Tree and Witness Sets

	An Improved CacAP Approximation Algorithm
	An Alternative Marking Scheme
	Analysis of the Approximation Factor

	Appendix A. Omitted Proofs from Section 4
	Appendix B. Details on the Reduction to Steiner Tree
	Acknowledgments
	References

