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Breaching the 2-Approximation Barrier for Connectivity Augmentation:
A Reduction to Steiner Tree*

JAROSIAW BYRKAT, FABRIZIO GRANDONI}, AND AFROUZ JABAL AMELI$

Abstract. The basic goal of survivable network design is to build a cheap network that maintains the connectivity between
given sets of nodes despite the failure of a few edges/nodes. The Connectivity Augmentation Problem (CAP) is arguably one
of the most basic problems in this area: given a k(-edge)-connected graph G and a set of extra edges (links), select a minimum
cardinality subset A of links such that adding A to G increases its edge connectivity to k + 1. Intuitively, one wants to make
an existing network more reliable by augmenting it with extra edges. The best known approximation factor for this NP-hard
problem is 2, and this can be achieved with multiple approaches (the first such result is in [Frederickson and J4j4’81]).

It is known [Dinitz et al76] that CAP can be reduced to the case k = 1, a.k.a. the Tree Augmentation Problem (TAP), for
odd k, and to the case k = 2, a.k.a. the Cactus Augmentation Problem (CacAP), for even k. Prior to the conference version
of this paper [Byrka et al. STOC’20], several better than 2 approximation algorithms were known for TAP, culminating with
a recent 1.458 approximation [Grandoni et al’18]. However, for CacAP the best known approximation was 2.

In this paper we breach the 2 approximation barrier for CacAP, hence for CAP, by presenting a polynomial-time 21n(4) —
% +e < 1.91 approximation. From a technical point of view, our approach deviates quite substantially from previous work. In
particular, the better-than-2 approximation algorithms for TAP either exploit greedy-style algorithms or are based on rounding
carefully-designed LPs. We instead use a reduction to the Steiner tree problem which was previously used in parameterized
algorithms [Basavaraju et al’14]. This reduction is not approximation preserving, and using the current best approximation
factor for Steiner tree [Byrka et al’13] as a black-box would not be good enough to improve on 2. To achieve the latter goal,
we “open the box” and exploit the specific properties of the instances of Steiner tree arising from CacAP.

In our opinion this connection between approximation algorithms for survivable network design and Steiner-type problems
is interesting, and might lead to other results in the area.

*A PRELIMINARY VERSION OF THIS PAPER APPEARED IN THE PROCEEDINGS OF STOC’20.
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1. Introduction. The basic goal of Survivable Network Design is to construct cheap networks that
provide connectivity guarantees between pre-specified sets of nodes even after the failure of a few edges/nodes
(in the following we will focus on the edge failure case). This has many applications, e.g., in transportation
and telecommunication networks.

The Connectivity Augmentation Problem (CAP) is among the most basic survivable network design
problems. Here we are given a k-(edge)-connected! undirected graph G = (V, E) and a collection L of extra
edges (links). The goal is to find a minimum cardinality subset OPT C L such that G’ = (V, E U OPT)
is (k + 1)-connected. Intuitively, we wish to augment an existing network to make it more resilient to
edge failures. Dinitz et al. [12] (see also [9, 24]) presented an approximation-preserving reduction from this
problem to the case k = 1 for odd k, and k£ = 2 for even k. This motivates a deeper understanding of the
latter two special cases.

The case k = 1 is also known as the Tree Augmentation Problem (TAP). The reason for this name
is that any 2-edge-connected component of the input graph G can be contracted, hence leading to a tree.
For this problem several better than 2 approximation algorithms are known [1, 7, 8, 13, 14, 19, 26, 27, 29].
Among these results the best approximation factor prior to the conference version of this paper [4] was 1.458
due to Grandoni et al. [19] (see Section 1.3 for subsequent developments).

The case k = 2 is also known as the Cactus Augmentation Problem (CacAP), where for similar reasons
we can assume that the input graph is a cactus®. Here the best-known approximation factor previous to our
work [4] was 2, and this factor was achieved with multiple approaches [15, 17, 23, 24]. A better approximation
was achieved recently for the special case where the input cactus is a cycle [20].

1.1. Our Results and Techniques. The main result of this paper is the first better than 2 approxi-
mation algorithm for CacAP, hence for CAP.

THEOREM 1.1. For any constant € > 0, there is a polynomial-time 21n(4) — % + e < 19092 + ¢
approxzimation algorithm for the Cactus Augmentation problem.

From Theorem 1.1 and the reduction to CacAP implied by [12], we get:

COROLLARY 1.2. For any constant € > 0, there is a polynomial-time 21n(4) — % +e < 19092 4+ ¢

approximation algorithm for the Connectivity Augmentation problem.

Our result is based on a reduction to the (cardinality) Steiner tree problem by Basavaraju et al. [3].
The authors use this connection to design improved parameterized algorithms (see also [28] for a related
result). Recall that in the Steiner tree problem we are given an undirected graph Ggr = (T'U S, Est),
where T is a set of ¢t terminals and S a set of Steiner nodes (disjoint from T'). Our goal is to find a tree
(Steiner tree) OPTsp = (T U A, F) that contains all the terminals (and possibly a subset of Steiner nodes
A) and has the minimum possible number of edges |OPTsr|. Basavaraju et al. [3] observed that, given a
CacAP instance (G = (V, E), L), it is possible to construct (in polynomial time) an equivalent Steiner tree
instance Ggr = (T U L, Egr) (see also the description in [30]). Here T corresponds to the nodes of degree
2 in G, L is the set of Steiner nodes, and the edges Egr are defined properly (more details in Section 2.1).
Intuitively, each link node ¢ € L is adjacent to the terminal nodes in T" which are endpoints of ¢ (if any),
and two link nodes £, ¢’ € L are adjacent iff the respective endpoints cannot be separated by a min-cut of G.
In particular, an optimal solution to Ggr induces an optimal solution to (G, L) and vice versa. An example
of the reduction is given in Figure 2.1. Unfortunately, this reduction is not approximation-preserving. In
particular, by working out the simple details (see also Section 2.1), one obtains that a pgp-approximation for
Steiner tree implies a p < 3pgr — 2 approximation for CacAP. The current best value of pgr isIn4d+¢ < 1.39
due to Byrka, Grandoni, Rothvoss and Sanita [5]. Hence this is not good enough?® to obtain p < 2.

In order to obtain our main result we use the same algorithm as in [5], but we analyze it differently. In
particular, we exploit the specific structure of the instances of Steiner tree arising from CacAP instances via
the above reduction to get a substantially better approximation factor.

I'We recall that G = (V, E) is k-connected if for every subset of edges FF C E, |F| < k — 1, the graph G’ = (V,E\ F) is

connected.

2We recall that a cactus G is a connected undirected graph in which every edge belongs to exactly one cycle. For technical
reasons it is convenient to allow length-2 cycles consisting of 2 parallel edges.

30ne would need pgr < % here. Notice that this is not ruled out by the current lower bounds on the approximability of
Steiner tree.
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In more detail (see also Section 3), in the analysis of the algorithm in [5] one considers an optimal Steiner
tree solution OPTsy = (T'U A, F') rooted at some arbitrary node r, marks a random subset Fy,.» C F of
edges so that each Steiner node is connected to some terminal via marked edges, and based on F,,,,, defines
a proper (random) witness set W (e) for each e € F. The cost of the approximate solution turns out to be
at most (1 + €)Y .cp E[H\w (e, where H; :== 1+ § + ...+ 1 is the i-th harmonic number. In particular,
the authors show that E[H)y ()] <In4 for each e € F, hence the claimed approximation factor.

Our analysis of the algorithm deviates from [5] for the following critical reasons:

1. They (i.e., the authors of [5]) mark one child edge of each Steiner node chosen uniformly at random.
In our case it is convenient to favor child edges with one terminal endpoint (if any). The fact that
this helps is not obvious in our opinion.

2. As mentioned above, they provide a per-edge upper bound on E[H y (.y]. We rather need to average
over multiple edges in order to achieve a good bound. Finding a good way to do that is not trivial
in our opinion.

We remark that, from a technical point of view, our result deviates quite substantially from prior
approximation algorithms for TAP. The first improvements on a 2 approximation where achieved via greedy-
style algorithms and a complex case analysis [13, 26, 27, 29]. More recent approaches are based on rounding
stronger and stronger LP (or SDP) relaxations for the problem [1, 7, 8, 14, 19]. We also use an LP-based
rounding algorithm, which is however defined for a generic Steiner tree instance (while the properties of TAP
are used only in the analysis). In our opinion the connection that we established between the approximability
of survivable network design problems and Steiner-type problems might lead to other results in the future.

1.2. Related and Previous Work. One can consider a natural weighted version WCAP of CAP
where each link has a positive weight and the goal is to minimize the total weight of selected links. The
best-known approximation for WCAP is 2. The techniques used in this paper seem not to generalize to
the weighted case. In particular, one might use a reduction to a node-weighted version of the Steiner tree
problem, however the latter problem is harder and in general allows only a logarithmic approximation [25].

Prior to the conference version of this paper, 2 was the best-known approximation factor even for the
weighted version WTAP of TAP. Some progress on weighted TAP was made in the case of small integer
weights. In particular, when the largest weight W is upper bounded by a constant, better than 2 ap-
proximation algorithms are given in [1, 14, 19]. A technique in [32] allows one to extend these results to
W = O(logn). Weighted TAP also admits a 1 + In2 approximation for arbitrary weights if the input tree
has constant radius [11]. A better than 2 approximation can also be achieved if the fractional solution to a
natural LP relaxation has non-zero entries bounded away from zero [22].

A problem closely related to CAP is to build a minimum cost k-edge-connected spanning subgraph of a
given input graph [10, 16, 21, 34]. Here the best known approximation factor is 4/3 for the unweighted case,
and 2 for the weighted one.

1.3. Subsequent Work. After the publication of the conference version of this paper [4], there were
a few breakthroughs in the area of survivable network design. Cecchetto et al. [6] developed an elegant and
unified framework to approximate both TAP and CacAP, leading to a 1.393-approximation. Notice that this
does not only greatly improves on our approximation factor for CacAP, but also on the approximation factor
for TAP in [19]. Though it leads to weaker approximation factors, we believe that our connection between
survivable network design and Steiner-type problems might be useful in future related work. Indeed, after
our work, a similar connection was made by Nutov [31]. In more detail, he proved that an « approximation
for Steiner tree implies a 1+ 1n(4 — x) 4+ ¢ approximation for CAP, where « is the solution to 1 +1In(4 — ) =
a + (a — 1)z. This leads to an approximation factor below 2 (though worse than the one achieved in this
work) using the current best approximation for Steiner tree [5]. Notice that, differently from our result,
Nutov’s reduction is black box, a useful feature.

Recently, Traub and Zenklusen [35] achieved a 1 + In 2 + ¢ approximation for WTAP , hence solving a
major open problem in the area. The authors later improved their result to a 1.5 4 e-approximation [36].
Achieving a better than 2 approximation for WCAP remains a challenging open problem.

Grandoni, Jabal Ameli and Traub [18] obtained the first better than 2 approximation for the Forest
Augmentation Problem (FAP), i.e. the generalization of TAP where the input graph is a forest rather than
a tree.

A variant of our approach was used by Nutov [30] to obtain, among other results, the first better than
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Fic. 2.1. (top) Instance of CacAP, where dashed edges denote links. The projections of €1 are
proj(€1) ={{vr,v1},{v1,vs},{vs,v9}}. Link {2 is crossing with £1 and {5. (bottom) The Corresponding Steiner tree instance,
where square nodes denote terminals.

2 approximation for the node-connectivity version of TAP. The approximation factor for this problem was
later improved by Angelidakis, Hyatt-Denesik, and Sanita [2], again using an approach similar to the one in
this paper.

2. Steiner Tree and Connectivity Augmentation. In this section we present the mentioned re-
duction in [3] from CacAP to Steiner tree (Section 2.1). Furthermore, we describe a specific Steiner tree
approximation algorithm that we will use to solve the instance arising from the above reduction (Section 3).
We analyze the resulting approximation factor in Section 4.

2.1. A Reduction to Steiner Tree. Consider a CacAP instance (G = (V, E),L). For a link ¢ =
(vo,Vg41), let v1,...,v4 be the sequence of nodes of degree at least 4 that lie along every simple vp-vg41
path, excluding the endpoints (that may or may not have this property). Intuitively, any simple path from
Vg t0 vg41 Wwill contain edges from some cycles Cy, ..., Cy in this order. Then v;, i € {1,...,¢}, is the (cut)
node shared by the cycles C;_; and C;. Notice that each pair ¢; = {v;,v;41}, ¢ = 0,...,q, lies along a
distinct cycle C; visited by the mentioned path. We call each such ¢; the projection of £ on C;, and we let
proj(€) be the set of all projections of £. Consider two links ¢ = {z,y} and ¢ = {z/,y’}. Then we say that
¢ and ¢’ cross if one of the following two conditions hold: (1) they share one endpoint or (2) there exists a
cycle C such that C includes z, y, 2’ and 3’ and taking one simple z-y path P along C, P contains exactly
one node in {z’,y’} as an internal node. We say that any two links £ and ¢ cross if there exist ¢;€ proj(¢)
and /€ proj(£') such that £; and £} cross. See Figure 2.1 (top) for an example.

From (G, L) we construct a Steiner tree instance Ggr = (T'U S, Egr) as follows. For each one of the ¢
nodes v of degree 2 in G, add a terminal v to T’; for each link ¢ € L, add a Steiner node £ to S (i.e., S = L);
for each ¢ € L and endpoint v € T of ¢, add {¢,v} to Egr; finally, for any two links ¢ and ¢’ that cross, add
{£,0'} to Egp. See Figure 2.1 (bottom) for an example. We observe the following simple facts.

PROPERTY 1. Fach Steiner node s is adjacent to at most 2 terminals, namely the terminals correspond-
ing to the endpoints of the link associated with s.

PROPERTY 2. The neighbors of each terminal t are Steiner nodes which form a clique: this clique cor-
4



responds to the links that share the node corresponding to t as a common endpoint.

We will critically exploit the following lemma sketched in [3] (Lemma 1). For the sake of completeness
we give a (more detailed) proof of it in Appendix B.

LEMMA 2.1. [3] A C L is a feasible solution to a CacAP instance (G, L) iff, in the corresponding Steiner
tree instance GgT = (T'U L, Est), Gor[T U A] is connected.

Notice that the above reduction is not approximation-preserving. Still, we can state the following.

COROLLARY 2.2. Any optimum solution OPT to the input CacAP instance, induces a solution O PTsp
of cost |OPTsr| = |OPT|+1t—1 for the associated Steiner tree instance, where t is the number of terminals
in the latter instance. Vice versa, given a solution APXgr to the Steiner tree instance, one can construct
in polynomial time a solution APX to the input CacAP instance with |APX| = |APXgp| —t+ 1.

Proof. Both claims follow directly from Lemma 2.1. For the first claim, it is sufficient to observe that a
spanning tree of Ggr [T UOPT)] contains t+ |OPT|—1 edges. For the second claim, observe that the Steiner
nodes in APXgr induce a feasible solution to CacAP. The claim follows since |APXgr| = s +¢ — 1, where
s is the number of Steiner nodes in APXg7. O

We will exploit also the following simple fact.

LEMMA 2.3. Given some optimal solution OPT to a CacAP instance, there is a feasible solution OPTst
to the associated Steiner tree instance with |OPTsr| = |OPT|+t — 1 where terminals have degree exactly 1
(namely, all the terminals are leaves).

Proof. Given any feasible solution ST to the problem, we can transform it into a solution ST’ of the
same cost where some terminal v of degree d(v) > 2 in ST has degree d(v) — 1 in ST’. In order to do that,
consider any terminal v adjacent to two Steiner nodes £ and ¢’ in ST. By Property 2, £ and ¢ are adjacent.
Hence ST := ST U{{,0'}\ {v,{'} is a feasible Steiner tree of the same cost and with the desired property.

By iteratively applying the above process to the solution O PT g guaranteed by Corollary 2.2 one obtains
the desired solution. 0

As mentioned earlier, a pgr approximation for Steiner tree (used as a black bozx) provides a 3psr — 2
approximation for CacAP by the above construction. Indeed, the Steiner tree instance has cost at most
|OPT|+t—1 by Corollary 2.2, hence an approximate solution AP X ¢ would cost at most psr(|JOPT|+t—1).
By the same corollary, we can convert this into a solution APX to CacAP of cost at most psr(|JOPT|+t —
1) —t + 1. Next observe that |OPT| > t/2. Indeed, any node of degree 2 in the CacAP instance needs to
have at least one link incident to it in a feasible solution, and a link can be incident to at most 2 such nodes.
Thus |[APX| < 3psT|OPT| — 2|OPT|. In order to improve on this simple bound, we will have to open the
box.

Let us remark that the size |APX]| of the approximate solution for CacAP that we will compute is
precisely the number of Steiner nodes involved in the solution AP X g7 that we compute for the corresponding
Steiner tree instance. In our 1.91 approximation we implicitly address all the Steiner tree instances satisfying
Properties 1 and 2. Therefore, we implicitly achieve the same approximation factor for the latter instances
of Steiner tree, where the objective function is to minimize the number of Steiner nodes in the computed
Steiner tree.

3. Steiner Tree via Iterative Randomized Rounding. As we mentioned in the introduction, the
current best (In4 + €)-approximate Steiner tree algorithm from [5], used as a black box, is not good enough
to break the 2-approximation barrier for CacAP. However, it turns out that the same algorithm achieves
this goal in combination with a different analysis that exploits the properties of the specific Steiner tree
instances arising from CacAP.

We first sketch the basic property of the algorithm and analysis in [5] that we need here and express
it in the form of Lemma 3.1. For the sake of completeness, we include a more detailed description and a
sketch of the proof of the lemma in the following Section 3.1 . The authors of [5] consider an LP relaxation
DCRy, for the problem based on directed k-components for a proper constant parameter k depending on ¢.
They iteratively solve this LP, sample a directed k-component C' with probability proportional to the LP
values, and contract C. The process ends when all terminals are contracted into one node. This algorithm
can be derandomized, and the deterministic version is good enough for our application. We do not need
more details about this algorithm, other than that it runs in polynomial time.

5
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In the analysis (more details in Sections 3.1 and 3.2) the authors of [5] consider any feasible Steiner tree
ST = (T U A, F). They interpret each full component® S’ of ST as a tree rooted at some Steiner node r of
S’ (if there is no such node, it can be created by splitting the single edge in S’). Then the authors define
a marking scheme where some child edge of each internal (Steiner) node of S’ is marked. Notice that the
marked edges induce a collection of disjoint paths in each full component S’: such paths span the nodes of
S’ and each such path contains precisely one terminal (as an endpoint). A given marking scheme defines a
witness set W (e) for each edge e in S’: this consists of all the pairs of terminals {¢#,¢”} in S’ such that the
t’-t" path in S’ contains e and precisely one unmarked edge. We let w(e) = |W(e)|. Notice that for each
unmarked edge e there exists exactly one such #'-t"” path, hence w(e) =1 (we will later use this property in
Lemma 4.1). Then the authors prove the following, where H; := 1+ % +...+ % is the i-th harmonic number.

LEMMA 3.1. [5] For any feasible Steiner tree ST = (TUA, F) and marking scheme, for a large enough pa-
rameter k = O(1), the cost of the solution computed by the above algorithm is at most (14-€) Y c p E[Hy(e))-

3.1. Some Details About the Steiner Tree Approximation Algorithm in [5]. For a complete
presentation of the Steiner tree algorithm we refer to the original paper [5]. Here we sketch the main ideas.
The algorithm is based on the following Directed Component Relaxation (DCR) of the Steiner tree problem.

(3.1) min Y ¢(C)zc  (DCR)
cec

(3.2) s.t. Z xe>1 VAU CT\ {r}
Cest(U)

(3.3) >0 VCeC

Here C is the set of directed components, where each directed component C' is a minimum-cost Steiner tree
(of cost ¢(C)) over a subset of terminals. Furthermore, the leaves of C' are precisely its terminals, and C
is directed towards a specific terminal: the sink of C, and the remaining terminals are the sources of C.
Intuitively, our goal is to buy a minimum-cost subset of directed components so that they induce a directed
path from each terminal to the root. In more detail, for any cut U that separates some non-root terminal
from the root, let 5C+ (U) be the set of components with some source in U and the sink not in U. Then every
feasible solution has to buy some component in 63 (U). The DCR relaxation follows naturally.

After restricting DCR to solutions that only use components with at most k terminals we obtain DCRy,.
For constant k, DCRy has a polynomial number of variables. Furthermore, the separation problem can be
solved in polynomial time via a reduction to minimum cut. Therefore DCRy can be solved in polynomial
time. Moreover, the value of DCRy, is known to be a (1 4 €)-approximation of the value of DCR for large
enough k = O(1).

The iterative randomised rounding algorithm from [5], until all terminals are connected to the root, in
iterations t = 1,2,3..., does the following:

e solve DCRy, for the current instance of the Steiner tree problem to get zt;
e sample a component C* from Cj, with probability proportional to x};
e contract the sampled component C*.

For the ease of the analysis, by adding dummy components w.l.o.g, one may assume that the total
number of components in the fractional solution remains constant across the iterations of the algorithm, i.e.,
Zcec zt, = M for a proper M for all ¢t = 1,2,.... It is argued that after ¢ iterations of the algorithm, having
bought the first ¢ sampled components, the residual instance of the problem is expected to be less costly. To
this end a reference solution S* is constructed such that S*U Ui;ll C" connects all the terminals. The initial
reference solution S' = OPTgr is an optimal solution to the Steiner tree instance of cost opt. Consecutive
reference solutions S2, 52, ... are obtained by gradually deleting edges that are no longer necessary due to
the connectivity provided by the already sampled components.

Key to estimate the expected cost of the final solution is to bound the number of iterations until
a particular edge e € S! can be removed. Define D(e) = max{tle € S'}. In [5] (proof of Theorem

4Recall that a full component is a maximal subtree whose terminals are exactly its leaves.

6
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21) it is shown that there exist a randomised process of constructing reference solutions S', 52, ... such
that E[D(e)] < In(4) - M, which allows one to bound the total expected cost of sampled components as

E [Zt21 c(Ct)} < (In(4) +e€) - opt. Note that the above per-edge guaranty allows for easily handling arbitrary

costs of individual edges. In our application to (unweighted) CacAP, we need to average over multiple edges
to achieve a good enough bound.

3.2. Witness Tree and Witness Sets. We next slightly abuse notation and sometimes denote in the
same way a tree and its set of edges. The construction of reference solutions S, S2,... is not trivial. It
involves:

e construction of a terminal spanning tree W, called the witness tree, based on randomised marking
(selection) of a subset of edges of S*. Each edge e of S! is associated with a proper subset W (e) C W
(witness set of e);

e randomised deletion of a proper subset of W in response to selecting a particular component C? in
iteration t;

e removing an edge e from S* when all edges W (e) have already been deleted.

In the following we discuss the main ideas behind our approach and the key properties of each of the
three above mentioned processes.

Construction of the witness tree. The high level idea behind the witness tree is that we need to always
satisfy the condition that St U Ui;ll C? connects all the terminals, which is that the remaining fragments
of the initial reference solution S! together with the already sampled components must provide sufficient
connectivity. To this end a simpler object providing connectivity is constructed. It is an auxiliary tree W
whose node set is the terminals of the instance (while the edges of W are not necessarily edges of the input
graph). It will be easier to delete edges from W in response to sampling components rather than deleting
them directly from S?.

We will now discuss methods to construct W. Intuitively, removing edges from a Steiner tree (in response
to receiving connectivity from a component) is directly possible for only a subset of edges of the Steiner tree.
In particular it appears more difficult to remove a Steiner node (and hence a path connecting a Steiner node
to a terminal). This is related to the concept of Loss and Loss contracting algorithms (see, e.g., [33]), where
one accepts that the cost of the system of paths connecting Steiner nodes to terminals is not removable.

Consider the following procedure: For each full component S’ of the Steiner tree S' select a single Steiner
node r and interpret S’ as a tree rooted at r . For every Steiner node s of S’, mark one edge between s and
one of its children. Note that for each Steiner node s the marked edges will form a unique path towards a leaf
containing terminal ¢(s). Note also that connected components formed by the marked edges will all contain
a single terminal node. Construct W (S’) by adding to E(W(S”)) an edge {t(u),t(v)} for each unmarked
edge {u,v} of S’.° Observe that the above constructed graph W (S’) is a tree spanning the terminals of S’.
By repeating this procedure for all full components of S! we obtain a tree W spanning all terminals of the
Steiner tree instance.

So far we did not specify how to select the edge below the Steiner node v € S’ to be marked. In [5]
the tree was assumed to be binary, and the edge would be selected at random by tossing a fair coin. In the
current paper we use a different marking strategy as discussed in Section 4.1.

Removing edges of the witness tree. When edges of the witness tree W become unnecessary, we remove
them. We keep the invariant that the (not removed) edges of W together with the already collected compo-
nents are sufficient to connect all terminals. Still, given a fixed collection of the already sampled components,
the choice of which edges of W to remove is not obvious. In [5] a randomised scheme was considered. It
was shown (Lemma 19 in [5]) that there exists a random process removing edges from W in response to
sampled components, such that for every edge e € W not removed before iteration ¢, the probability that it
is removed in iteration t is at least 1/M. In the current work we continue using the mentioned “uniform”
witness tree edge removing process, and utilise the following lemma.

~ LemMA 3.2 (lemma 20 in [5]). Let W C W. Then the expected number of iterations until all edges in
W are removed is at most Hyy, - M.

5Note that in [5] the role of marked and unmarked edges was reversed. It was irrelevant for the analysis in [5] as it was
assumed that the tree S’ is binary. In this paper however we will exploit the high degree of Steiner nodes in S’ and hence prefer
to mark the “Loss” edges.
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Removing edges of the reference tree St. Which edges of the reference tree can be removed? Clearly it
suffices if S* provides the same terminal connectivity as the not removed edges of the witness tree W. Note
that a single edge e € W corresponds to a single path p(e) in S!. It then suffices to keep the edges of S*
that occur in a path p(e) of at least one (still not removed) edge e € W.

We introduce the following notation: for an edge f in S let W(f) = {e € W|f € p(e)}, we call W(f)
the witness set of f. Therefore, at iteration ¢, the reference solution S* contains the edges from S whose
witness sets are not fully removed until iteration ¢ — 1.

Observe that the expected value of the number D(f) of iterations an edge f from the reference solution
survives (until being removed) can be expressed using only the size of its witness set W(f).

COROLLARY 3.3. Let f € S*, then E[D(f)] < Hyw(s) - M.
Following the argument from the proof of Theorem 21 in [5], we also get

COROLLARY 3.4. For k = O.(1) large enough, the total expected cost of the components bought by the
algorithm is at most

LSS B ) < (k- Y Hwgpy-eld)
fest fest

Therefore, it suffices to analyse how the marking scheme used in the construction of the witness tree
affects the distributions of the sizes of the witness sets for the individual edges of S'. To this end we will
exploit two properties of our instances: the high degree of the Steiner nodes in the initial optimal solution
S, and the fact that all the edges of S have the same cost.

4. An Improved CacAP Approximation Algorithm. In this section we present our improved ap-
proximation for CacAP. The algorithm is rather simple: we just build the Steiner tree instance Ggr =
(TUL, Egr) associated with the input CacAP instance (G, L) and compute an approximate solution AP X gp
to G via the algorithm in [5] sketched in Section 3. Then we derive from APXg7 a feasible solution APX
to the input CacAP instance as described in Corollary 2.2. We let apx denote the approximation ratio of
this algorithm.

In Section 4.1 we describe our alternative marking scheme and prove some of its properties. In Section
4.2 we complete the analysis of the approximation factor.

4.1. An Alternative Marking Scheme. Recall that in the analysis of the Steiner tree approximation
algorithm in [5], one can focus on a specific feasible Steiner tree ST and on a specific marking scheme (so that
Steiner nodes are connected to some terminal via paths of marked edges). Le OPT be some optimal solution
to the considered CacAP instance. As a feasible solution ST we consider the solution OPTsy = (TUOPT, F),
of cost |OPT| +t — 1 and with terminals being leaves, guaranteed by Lemma 2.3.

We mark edges in the following way. Consider each full component S’ of OPTsr. W.l.o.g, S’ contains
at least one Steiner node (otherwise, we can create it by splitting one edge). Let us root S’ at some Steiner
node r which is adjacent to at least one terminal (notice that such r must exist). For a Steiner node ¢, we let
d(?), s(¢) and t(¢) be the number of its children, Steiner children, and terminal children, resp. In particular
d(¢) = s(¢) + t(£) and (by Property 1) t(¢) < 2.

For each link node ¢, there are two options. If ¢ has at least one terminal child, we select one such child
t uniformly at random, and mark edge {¢,¢}. Otherwise, we choose a child ¢’ of ¢ (¢’ being a Steiner node)
uniformly at random, and mark edge {¢, ¢'}. Notice that this is a feasible marking scheme, namely for each
Steiner node we mark exactly one child edge. Observe also that in our marking we favor edges connecting
Steiner nodes to terminals: this will be critical in our analysis®. See Figure 4.1 for a possible marking of this
type.

Let APXgr be the Steiner tree computed by the algorithm. Let Fq, and Fypum be the (random) sets
of marked and unmarked edges, resp., that partition F'. Recall that for each e € F, there exists a (random)
witness set W (e) of size w(e) = |W(e)|. Observe that each Steiner node ¢ has precisely one marked child
edge m(¢). We let the cost c(£) of £ be E[H ,(m¢))]- The following bound on the approximation ratio holds.

LEMMA 4.1. apz < 2e + ‘OPT‘ > ecopr c(f).

SWhile we are able to show that our marking scheme leads to a better than 2 approximation, we are not able to show that
the same cannot be achieved with the original marking scheme in [5].
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Fic. 4.1. A feasible Steiner tree for the instance of Figure 2.1, which happens to be well-structured. Bold edges denote
a possible marking. One has m(¢3) = e := {l3,47}, and W (e) contains {vg,vi2}, {vo,vs} and {vg,v3}. Notice that w(e) =
|W(e)| = d(£3)+d(¢1) —1. Leaf-Steiner nodes are drawn in grey. Here o (resp., £3) is a good (resp., bad) father. Consequently
U5 (resp., €g) is good (resp., bad). A feasible grouping is g(€2) = {2}, g(¢3) = {€3,¢7}, g(1) = {€1,46}, g(la) = {la}, and
g(ls) = {ts}-

Proof. Recall that by Lemma 3.1 the expected cost of the computed Steiner tree AP X g is, modulo a
factor (1 + ¢), at most

E[ZHw(e)]:E[ Z I{w(e)Jr Z Hw(e)}

ecF e€Fmar e€Funm
E Hw(e) + |Funm| § Hw(e +t-—1.
e€Fmar e€Fmar

In the second-last equality above we used the fact that w(e) = 1 deterministically for an unmarked edge,
and in the last equality above the fact that there are precisely |OPT| marked edges and consequently
exactly ¢t — 1 unmarked ones. From AP X g we derive a feasible solution APX to the input instance of cost
|APX| = |APXgsr|—t+ 1 by Corollary 2.2. Hence

|APX| < (1+&)(E[ > Hy@l+t—1)—t+1
e€Fmar
<(1+9)E[ Y Hyel +2|OPT|.

e€Fmar

In the last inequality above we used the trivial lower bound |OPT| > t/2 that we mentioned earlier. The
claim follows since by definition ) . E[Hye)] = > ycopr ). |

From the above lemma, modulo factors (1 + ), the approximation ratio of our algorithm is given by the
average cost of Steiner nodes. The following lemma gives a generic upper bound on the cost for each non-root
Steiner node based on the degree sequence of its ancestors’.

LEMMA 4.2. Given a non-root Steiner node £, let ¢, be the lowest proper ancestor” of £ with t(¢;) > 0.
Let £ ={1,0s,...,0;, q > 2, be the simple path between ¢ and €, and let d; = d(¢;). Then’

q—2
_ Z dh+1 - 1) Hd1+ bl | Hayt. 4dy 1 —q+2
h=1

Cdnia dy ... -dy 1

7Observe that for the root r, c(r) = Hg(ry—1 deterministically.
8Observe that this ancestor exists since the root has this property by assumption.
9The value of a product of type a; - a;11 - -aj for j <iis assumed to be 1 by definition.
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Proof. By definition c(f) = c({1) = E[H)], where e = m({1) = {f1,£o} is the marked child edge
of £1. Recall that W (e) contains one entry for each path in the tree between terminals that contains e
and precisely one unmarked edge. In our specific case, condition on {fo, €1}, {¢1,€2},...,{ln_1,¢n} being a
maximal sequence of consecutive marked edges. Notice that by construction {¢;_1,¢;} is unmarked (since
¢, has a terminal child by definition), hence h < ¢ — 1. In this case w(e) = di +... +dp, — (h —1). For

h < g —1, the mentioned event happens with probability i e i . %. For h = g — 1, this probability
is i S i. The claim follows by computing the expectation of Hy,()- ]

We next provide an upper bound on ¢(¢) as a function of d(¢) only. Let us define the following variant
of Hl

. 1 1 1
>0

One has that H; = In(4) and ﬁjH = 2]:1]» — Hj;. Notice that, modulo an additive ¢, H is precisely the
approximation factor for Steiner tree achieved in [5]. The first few approximate values of H; are H, < 1.3863,
Hy, < 1.7726, Hy < 2.0452, Hy < 2.2571, Hs < 2.4308, Hg < 2.5781, H; < 2.7062, and Hg < 2.8195.

The proof of the following lemma, though not entirely trivial, is mostly based on algebraic manipulations
and therefore we postpone it to Appendix A.

LEMMA 4.3. For any £ € OPT, ¢({) < .Hd(g).

In next subsection we will see that for a carefully defined subset of Steiner nodes / it is possible to obtain a
better upper bound on ¢(¢) than the one provided by Lemma 4.3. This will be critical in our analysis since
the latter bound is not strong enough.

4.2. Analysis of the Approximation Factor. In this section we upper bound the approximation
factor apx as given by Lemmas 4.1 and 4.2. In order to simplify our analysis, it is convenient to focus our
attention on a specific class of well-structured Steiner trees OPTgsr (see also Figure 4.1). The following
lemma shows that this is (essentially) w.l.o.g.

DEFINITION 4.4. A rooted Steiner tree is well-structured if, for every Steiner node £, the following two
conditions hold:
1. £ has at least 2 children and
2. ¢ has O or 2 terminal children.

LEMMA 4.5. Let p be the supremum of p(OPTst) =
|07113T‘ > vcopr c(l) over Steiner trees OPTsy = (TUOPT, F), and pys be the same quantity computed over

the subset of well-structured Steiner trees OPTst of the mentioned type. Then p < max{ﬁl, Pws }-

Proof. Recall that by Property 1 in O PTs7 each Steiner node £ has at most 2 terminal children. Consider
any such tree where some Steiner node ¢’ has precisely one terminal child ¢. Consider the tree OPT§, which
is obtained from OPTsr by appending to ¢’ a second terminal child ¢’. Observe that the value of ¢(¢) does
not decrease for any ¢, and it increases for ¢ = ¢'. Thus p(OPT¢) > p(OPTsr). Hence p is equal to the
supremum of p(OPTsr) over the subfamily of trees that satisfies (2) in Definition 4.4.

Now consider any tree O PTgr that satisfies (2), and let oc(OPTst) be the number of its Steiner nodes
with precisely one child. We prove by induction on oc(OPTsr) that p(OPTst) < max{ﬁ 1, pws }- The claim
is trivially true for oc(OPTsr) = 0 since in this case OPTgr is well-structured. Assume the claim is true
up to ¢ — 1 > 0, and consider OPTstr = (T U OPT, F) with oc(OPTst) = q. Let £ be any Steiner node
with precisely one child £”. Observe that £’ has to be a Steiner node as well by (2), and that ¢(¢') < H,
by Lemma 4.3. Consider the tree OPT( = (T'U OPT', F') obtained by contracting the edge (¢, ¢"). We
observe that OPT{ satisfies (2), oc(OPTSr) = ¢ — 1 and |OPT'| = |OPT| — 1. Note also that for any
Steiner node ¢ different from ¢ and ¢” the value of ¢(¢) does not change, while for the new node /£ resulting

10



397

398

399

406
407
408
109
110
411
412
413
414

415
116
117

418

419
420
421
122
423
424
425
426

427

128

from the contraction one has ¢(¢) = ¢(¢””). We can conclude that

1
|OPT] 2, o)

teOPT
1 N
< —(H 4
- |OPT|( 1 JreeonT:\~[é'}C( .
1 A A 1
=—F(H £) < H,———— 14
< max{H1, pus},
where in the last inequality we used the inductive hypothesis. ]

We next show an upper bound on p,,s which is strictly greater than H;y. Tt then follows from Lemma
4.5 that the same upper bound holds on p. For this goal, we next assume that OPTgsr is well-structured.

The upper bound on ¢(¢) from Lemma 4.3 is not sufficient to achieve a good approximation factor. In
order to achieve a tighter bound, we consider the following classification of the Steiner nodes (see also Figure
4.1).

DEFINITION 4.6. A Steiner node ¢’ is a good father if it has at least one terminal child (hence precisely
2 such children by the above assumptions and Property 1), and a bad father otherwise. Fach Steiner child
¢ of a good father £’ is good, and all other Steiner nodes are bad. Let OPT,;, OPTy¢, OPT, and OPT,
denote the sets of good fathers, bad fathers, good nodes and bad nodes, resp.

Notice that the above classification is not affected by the random choices in the marking scheme. For
good nodes, the analysis of the cost can be refined as follows.

LEMMA 4.7. For any £ € OPTy, c({) < Hyy.

Proof. Suppose £ has a parent ¢, which is a good father by definition. This implies that the edge (¢, )
is deterministically unmarked, hence w(m(¢)) = d(¢) deterministically. If £ has no parent (i.e., it is the root
r), then w(m(¢)) = d(¢) — 1. The claim follows. d

Putting everything together, we obtain the following.
LEMMA 4.8. apz < 2e + ‘5%7,‘ Y veopr ¢ () where

CI( . Hd([) if l € OPTg;
ﬁd(é) if ¢ € OPTy.

Proof. Tt follows from Lemma 4.1, by replacing ¢(¢) as in Lemma 4.2 with the upper bounds given by
Lemmas 4.3 and 4.7. 0

We rewrite the upper bound from Lemma 4.8 as follows. Let p € [0, Hy — H,] be a parameter to be fixed
later. Intuitively, each good Steiner node ¢ € OPT, pays a present p to its (good) father ¢/ € OPT,; to thank
¢" for making itself good. This increases the cost of £ by p. Symmetrically, each good father ¢/ € OPT;
collects presents from its (good) Steiner children and uses them to lower its own cost. Clearly by definition
the total modification of the cost is zero. Let us call ¢’ (£) the modified costs. Then one obtains the following
equality:

1 / _ 1 "
(4.1) OPT| Z ) = OPT| Z c'(0)

LeOPT LeOPT
where
Hyey+p—s(lp if £ € OPT,NOPT,y;
C"(Z): I?d(e)—kp iffGOPTgﬁOPbe;
Hyey = s(O)p if £ € OPT, N OPTyy;
ﬁd(@) if £ € OPT, N OPTys.

In order to upper bound (4.1), we partition OPT into groups of nodes as follows (see also Figure 4.1).
11
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DEFINITION 4.9. A Steiner node ¢ is leaf-Steiner if it has no Steiner children (i.e., d(£) = t(¢) = 2)
and internal-Steiner otherwise (i.e., s(¢) > 0). We let OPTyy and OPT;, be the set of leaf-Steiner and
internal-Steiner nodes, resp.

We associate to each ¢ € OPT;, a distinct subset OPT}¢(¢) of precisely s(¢) — 1 leaf-Steiner nodes, and let
g() = {£} UOPT#(¢) be the group of . The mapping is constructed iteratively in a bottom-up fashion
as follows. Initially all Steiner nodes are unprocessed. We maintain the invariant that the subtree rooted
at an unprocessed leaf-Steiner node or at a processed node with unprocessed parent contains precisely one
unprocessed leaf-Steiner node. Clearly the invariant holds at the beginning of the process. We consider any
unprocessed internal-Steiner node ¢ whose Steiner descendants are either processed or leaf-Steiner nodes.
By the invariant, each subtree rooted at a Steiner child of ¢ (which is either an unprocessed leaf-Steiner
node or a processed internal-Steiner node) contains one unprocessed leaf-Steiner node. Among this set of
s(¢) unprocessed leaf-Steiner nodes, we select arbitrarily a set OPTj;(¢) of size s(¢) — 1 and set g(¢) =
{} UOPT;;(¢). All nodes in g(¢) are marked as processed. Observe that the subtree rooted at ¢ still
contains an unprocessed leaf-Steiner node, hence the invariant is preserved in the following steps. At the end
of the process (i.e., after processing the root ) there will be precisely one leaf-Steiner node ¢* which is still
unprocessed, which forms a special group g(¢*) = {¢*} on its own. Notice that the groups define a partition
of OPT. In particular, OPT = {£*} UU,copr,, 9(£). Notice also that [g(¢)| = s(¢) for all £ € OPT;, (while
9(e") = 1).

Let a(¢) be the average value of ¢’ (-) over the elements of g(¢). Then obviously the maximum value of
a(?) over the groups upper bounds the average value of ¢’ (-):

(4.2) @ S < max {a0)).

T (€OPT;, u{L*
LeOPT € e}

For ¢ = (* one has that a(¢*) = ¢’ (¢*) = Hy if ¢* is bad, and a(¢*) = ¢/ (¢*) = Hy + p < H, otherwise. For
the other groups g(¢), there is always a subset of s(¢) — 1 leaves whose contribution to the cost is at most Ho
each by the same argument as above. Furthermore, we have to add the cost ¢’ (£). We can conclude that:

o Hs(2)+2+p_s(€)p+(3(€)_1)1:12 lf éGOPT mOPT f.
T g g

(s(€)) R
ay(s(0)) = Lot O DI if tLecOPT,NOPTyy;
a(l) < 9 as(s(0)) == {13“)*2_5(?&;_?8“)_1)}[2 if tLeOPT,NOPTy;
ay(s(0)) = 0O DI if (cOPT,NOPTy;;
H, if ¢ = ¢,

In the first and third case above we used the fact that d(¢) = s(¢) +2 (£ is a good father, hence has 2
terminal children), while in the second and fourth case the fact that d(¢) = s(¢) (¢ is a bad father, hence has
no terminal child).

We are now ready to prove the main result of this paper.

Proof of Theorem 1.1. Consider the above algorithm. Combining Lemma 4.8 with (4.1) and (4.2) one
gets

(4.3) apr <2+ (1+¢) I?Zalx{flg, a1(%), az(i),as(i), as(3)}.

Notice that the above approximation factor is a function of the parameter p € [0, Hy — Hs] which still needs
to be fixed. In order to choose a convenient p, we need the following technical result (proof in Appendix A).

CLAM 1. For any p € [0, Hy — Hy), the mazimum of a1 (i), a(i), as(i), and as(i) is achieved for i at
most 6, 8, 6 and 8, resp.

From (4.3) and Claim 1, for any p € [0, H, — H,], one has
apzr < 2 + (1 + &) max{Ho, lrgiagﬁ{al(i)}, 11%1%)(8{@2(2')},
(4.4) max {as(i)}, max {aa(i)}}
12



465
166
467
468

469

470

471

479

480

181

482

483

484
485
486
487
488
189

Numerically the minimum of the right-hand side of (4.4) is achieved for p ~ 0.135, and the two largest values

inside the maximum turn out to be as(7) and az(1). By imposing w = ay(7) = as(1) = Hs — p one
THs—H7—6H,

gets p = . For that value of p the value of the maximum is precisely %ﬂﬁ?’ =2In4— %.
The claim follows by scaling € properly. ]
Appendix A. Omitted Proofs from Section 4.
CLam 2. Ha, + 32004 41 55 = Hy, .
Proof. Note that
oo o0
- Hy 44 Hd1+zj 1d+J
Ha, = Z 21‘41-1 - Z i+l 1
i=0 i=0
o] o0 1
Z’L* 1 21+1 1
=Hy + — =Hy + o
- ; di+j - Z (dr +5)2

Proof of Lemma 4.5. The claim is trivially true if £ is the root since in that case c(£) = Hgp)—1 < ]f.[d(g).

So we next assume that ¢ is not the root. For a generic sequence S = (dy,...,dy) of positive integers, let us
define
Ic—l
Z djy1 = 1) Hay vyt +d;—j+1 n Ha, vdyttdp—k+1
do-ds...dj41 do - dz...dg

Jj=1

A

By Lemma 4.2, in order to prove the claim it is sufficient to show that f(S) < Hy,. For an infinite
sequence S’ = (dy,ds,...) of positive integers, we analogously define

Z (djt1 — 1) - Haydot..+d;—j+1

= dy-ds...dj4

Given a finite sequence S = (dy,...,d;) of the above type, let S = (dy,...,ds,2,2,...) be its infinite
extension where we add an infinite sequence of 2 at the end.

Cramm 3. £(S) < f(S).
Proof. By definition

f(S) = f(S)
_ i (djs1—1) - Hayvdot v d;—j41 _ Haytdottdi—k+1
d-ds.. dins dy-ds .. d
j=k J

o
S Z (djs1 = 1) Hayvdottdy—k+1  Hdidot .. +dy—k+1

d2~d3...dj+1 do-ds...dy

o0
_ Hy, vdot.. 4dp—k+1 1 Hiyydyt..tdy—k+1
dy-ds...d, 2= dy - ds ... dy
‘7:

_ Hatdpr o qdibtr  Hayvdptddi—bi1 _
dy-ds...dg dy-ds...dg

d

By Claim 3 it is sufficient to consider infinite sequences of type S. We can also assume w.l.o.g. that all d;,
1 > 2, in such sequences are at least 2 by the following claim.

CrAM 4. Let S = (di,...,dx,2,2,...) and assume there exists d; = 1 in the sequence for some i >
2. Let S; = (di,...,di—1,diy1,...,dy,2,2,...) be the subsequence where the i-th entry is removed. Then
f(S) = f(Si).

13
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Proof. Consider the entries in the sum defining f(S) and f(S;). The entry j =i — 1 in f(S) has value
0. For j <i—1, the j-th entries in f(S5) and f(S;) are identical. For j > i — 1, the j-th entry in f(S) is
equal to the j — 1-th entry in f(.5;). d

By the above claims we can focus on infinite sequences S = (dy,...,dx,2,2,...), where d; > 2 for i > 2.
Let us prove by induction on k > 1 that f (5 ) < ﬁdl. The claim is trivially true for & = 1 since in that
case f(S) = f[dl. Next consider any k>2 and assume the claim is true for all values up to k — 1. Define
S" = (dy +dy —1,ds,...,dy,2,2,...). By definition and inductive hypothesis:

- dy—1  f(5) dy—1  Hgvay
S)=H <H T
f( ) dl d2 + d2 —_ dl dQ + d2
By Claim 2,
dy—1  Hyjdy
H 1 2
4 do
dy — 1 1 1
:Hd1T+aT Hay 4,1 + Z j-2i—di—da+1
2 2 j>di+ds
di+do—1 1 1
=Ha, + Z j-ds + Z jody - 2i—di—d2F1
j=di+1 j>di+ds
s
= Hdl + Z 7:7)
j=di+1 J
where
%2 ford1+1§j§d1+d271;
o = .
J W for j > dy + ds.

We observe the following simple facts about the coefficients «;.

CrAIM 5. One has:

LY isaa =1

2. For every i > 1, Zj2d1+i aj > 2%1
Proof. For (1) one has

dy—1 = 1 1 1
D G=——+ > romaam gt
j=di+1 j=di+ds

Let us prove (2). For i > ds, one has

R 1 1 1
' Z 'aj - . Z dy - 9j—di+dz—1 ds - 2i—dy — 9i—1’
j>di+i j=di+i

where in the inequality we used the fact that k < 281 for any integer k > 1.
For 2 <i < dy — 1, one has:

do — 1 1 do—i1+1 1 1
Zaj: 2d Z+d7:2d71+27'22i_17
i>diti 2 2 2 !

where in the first inequality above we used the fact that % is a decreasing function of k > j + 1 and
ds > 14 1, and in the second inequality again the fact that k < 2k=1 for k > 1. 0
Intuitively, the term A = Z;i a1 % is a convex combination of terms of type 1/j under the constraint
that the sum of the tail coefficients is large enough. An obvious upper bound on A is obtained by choosing
coefficients 3; that respect the constraints on «; given by Claim 5, and at the same time are as large as

14
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possible on the smallest terms of the sum. An easy induction shows that the best choice is 3; = for

all 7 > d; + 1. Thus we can conclude

f(S) < Hy, + Z <Hd1 > BJ

_ 1
27 —d1

J>d1+1 J>d1+1
= Ha ¥ Z o4~ Han
J= d1+1

where last equality comes from Claim 2.
Summarizing, given a non-root Steiner node £ and the associated values S = (dy,...,dg-1), ¢ > 2, as
defined in Lemma 4.2, we have that, for S = (d1,...,d¢-1,2,2,...),

Lem. 4.2 Claim 3 N

c(l) “ETTHS) < F(S) < Hay = Hygy.

|

Proof of Claim 1. Consider a;(i). Excluding a fixed additive term H, — p, the value of this function is
ay (i) :== %, where 2 = Hy — p € (0, Hy]. Taking the discrete derivative

T+ i+1 Hi+3

ai(i+1)—ai(i) = 3
1( ) 1( ) (’L + 1)
one might observe that this is negative for ¢ > 6 since x + ”1 < Hy 41 < 27726 < Hy > 2.8289.
Consider now az(z). Excluding a fixed additive term Hg, the value of this function is a4 (i) := Hi;””,
where z = Hy — p € (0, Hy]. One has
. . r+1—Hiyy
ay(i+ 1) — ay(i) = BT
which is negative for i > 8 since w41 < Hp +1 < 2.7726 < Hy > 2.8289. o
H;i2—H>

Consider next as(i). Excluding a fixed additive term Hy—p, the value of this function is aj () :=
One has

%

, L Hy— Hiypo 1
az(i+1) —aj(i) = ——F+— + — —
ali+1) = a3 (i) i(i+ 1) ;2J(2+1)(2+3+2)

Hy+1- ﬁi+2
(i+1)
which is negative for i > 6 since Hy + 1 < 2.7726 < Hy > 2.8194.
It remains to consider a4(7). Excluding a fixed additive term Hy, the value of this function is a/ (i) :=

@ One has
ay(i+1) —ay(i)
i(i+1) 2064+ +35) — iE+1)

which is negative for i > 8 since Hy 4+ 1 < 2.7726 < Hg > 2.8194. 0
Appendix B. Details on the Reduction to Steiner Tree.

DEFINITION B.1. Let G = (V, E) be a connected graph and let L be a set of extra edges. Let Ey C E be
an edge-cut of G. We say that L covers the cut Ey if Fy is not an edge-cut of G' = (V,EU L).

LEMMA B.2. Let G = (V, E) be an input cactus of CacAP which consists of exactly one cycle and let A
be a feasible solution for G. Then Ggr[A] is connected.
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Proof. Assume by contradiction that Ggr[A] is not connected. Then A can be partitioned in Lr and
Lp, such that for any I € Lr and I € Lp, g does not cross [g. We call the links in Lg red links and the
links in Lp blue links. We can also partition V' in Vi and Vg, such that the endpoints of red links belong
to Vi and the endpoints of blue links belongs to Vp. Therefore we call Vg and Vg, blue vertices and red
vertices respectively.

Let V1, Vo, ..., Vo be the partition of vertices of the cycle G into maximal consecutive blocks of vertices
of the same color, so that ViU Va3 U---U Vo1 =Vgand Vo UV U---U Vo, = Vp.

We say that a link ¢ = {u,w} € A is nice, if v and v belong to different blocks V; and V;, i # j. We say
that an edge e = {u,v} € E is colorful if w is red and v is blue or vice versa. Note that G has precisely 2k
colorful edges. If there is no nice link in A, then any pair of colorful edges of G is not covered by A, which
is a contradiction.

Assume that ¢ = {u,v} € A is a nice link, such that the distance between u and v in the cycle G is
minimum. Assume w.l.o.g. that u € V; and v € V5,11 (and therefore these are red vertices) and also that
the vertices of V5 are in the shortest path from u to v. Now let e; and e; be the colorful edges such that
exactly one of their endpoints is in V5. We next show that the edge-cut {e1, ez} is not covered by A.

Assume that {e1, ez} is covered, then there should be a link ¢; = (w, z) such that w € V5 and z € V5.
Then either this link is a nice link that crosses ¢ (which is a contradiction since ¢ € L and ¢; € Lg) or ¢,
is a nice link such that the distance of w and z is less than the distance of u and v (which contradicts the
choice of ). |

Proof of Lemma 2.1. < Let A C L be such that Ggr[T'UA] is connected. Assume by contradiction that
A is not a feasible CacAP solution. Then there exists a 2-edge cut {ej, ez}, for two edges ej, e5 belonging
to some cycle C of G, which is not covered by any link in A. Let Gy, = (V,EL) and Gr = (Vg, ERg) be
the two (node disjoint) connected components of G identified by this cut. Let also t;, € Vi, and tg € Vg
be any two nodes of degree 2 in G. (Observe that these nodes must exist.) By assumption there exists a
(simple) path P = tr,¢1,...,4q,tr between t1, and tg in Ggr[T U A], where all ¢;’s are link nodes. Since
{e1,ea} is not covered, each such link has both endpoints either in V7, or in V. Furthermore, ¢; and ¢, have
one endpoint in Vg, and Vg, resp. Hence there must be two consecutive links ¢; and ¢;; where ¢; has both
endpoints in V;, and ¢;41 both endpoints in Vi. These links cannot be crossing, therefore contradicting the
fact that {¢;,¢;+1} is an edge of Ggr.

= Let A C L be a feasible CacAP solution. We will show that Gsr[TUA] is connected. We first observe
that, w.l.o.g., we can replace each link ¢ with its projections proj(¢). Indeed, the feasibility of A is preserved.
Furthermore, the number of connected components of Gg7[T'U A] does not change since the links in proj(¢)
induce a path in Ggp. With this modification, all links in A have both their endpoints in the same cycle
(since projections have this property by definition). Let Cf, ..., Ck be the cycles of G. For any cycle C; of
the cactus G let A; be the set of links in A with both their endpoints in C;. Lemma B.2 shows that Gsr[A;]
is connected. For every pair of cycles C; and C; that share a node v, there is a link ¢; € A; and ¢; € A;
which are incident to v, thus ¢; and ¢; cross. We can conclude that Ggp[A] is connected. Finally, since A is
feasible, there exists at least one link ¢ € A incident to each node ¢ of degree 2 in GG, which implies that the
edge {/,t} belongs to Egr. Thus Ggr[T U A] is also connected. O

Acknowledgments. This work is highly in debt to Saket Saurabh. During a visit of the second author
to Bergen University a few years ago, Saket mentioned the possibility of using the reduction to Steiner tree
to approximate connectivity augmentation problems, possibly with an ad-hoc analysis. The result in this
paper follows precisely that high-level path, however fixing the details in the analysis was highly non-trivial.
The second author is also grateful to M. S. Ramanujan and L. Vegh for several helpful discussions on this
topic.

REFERENCES

[1] D. ApJiasHVILI, Beating approzimation factor two for weighted tree augmentation with bounded costs, ACM Trans.
Algorithms, 15 (2018), https://doi.org/10.1145/3182395, https://doi.org/10.1145/3182395.

[2] H. ANGELIDAKIS, D. HYATT-DENESIK, AND L. SANITA, Node connectivity augmentation via iterative randomized rounding,
CoRR, abs/2108.02041 (2021), https://arxiv.org/abs/2108.02041, https://arxiv.org/abs/2108.02041.

[3] M. Basavaraju, F. V. FomMmIN, P. A. GorovacH, P. Misra, M. S. RAMANUJAN, AND S. SAURABH, Parameter-
ized algorithms to preserve connectivity, in Automata, Languages, and Programming - 41st International Collo-

16


https://doi.org/10.1145/3182395
https://doi.org/10.1145/3182395
https://arxiv.org/abs/2108.02041
https://arxiv.org/abs/2108.02041

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

quium, ICALP 2014, July 8-11, 2014, Proceedings, Part I, Copenhagen, Denmark, 2014, Springer, pp. 800-811,
https://doi.org/10.1007/978-3-662-43948-7_66, https://doi.org/10.1007/978-3-662-43948-7_66.

. BYRKA, F. GRANDONI, AND A. JABAL AMELI, Breaching the 2-approzimation barrier for connectivity augmentation: a

reduction to Steiner tree, in Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and
J. Chuzhoy, eds., ACM, 2020, pp. 815-825.

. BYyrka, F. GRANDONI, T. ROTHVOSS, AND L. SANITA, Steiner tree approximation via iterative randomized rounding,

J. ACM, 60 (2013), pp. 6:1-6:33.

. CECCHETTO, V. TRAUB, AND R. ZENKLUSEN, Bridging the gap between tree and connectivity augmentation: Unified
and stronger approaches, STOC 2021, (2021), https://arxiv.org/abs/2012.00086.
CHERIYAN AND Z. GAo, Approximating (unweighted) tree augmentation wvia lift-and-project, part I: stemless
TAP, Algorithmica, 80 (2018), pp. 530-559, https://doi.org/10.1007/s00453-016-0270-4, https://doi.org/10.1007/
s00453-016-0270-4.

. CHERIYAN AND Z. GAO, Approzimating (unweighted) tree augmentation via lift-and-project, part II, Algorithmica, 80

(2018), pp. 608-651, https://doi.org/10.1007/s00453-017-0275-7, https://doi.org/10.1007/s00453-017-0275-7.

. CHERIYAN, T. JORDAN, AND R. RAVI, On 2-coverings and 2-packings of laminar families, in Algorithms - ESA 99, 7th

Annual European Symposium, July 16-18, 1999, Proceedings, Prague, Czech Republic, 1999, Springer, pp. 510-520,
https://doi.org/10.1007/3-540-48481-7_44, https://doi.org/10.1007/3-540-48481-7_44.

CHERIYAN AND R. THURIMELLA, Approzimating minimum-size k-connected spanning subgraphs via matching,
SIAM J. Comput., 30 (2000), pp. 528-560, https://doi.org/10.1137/S009753979833920X, https://doi.org/10.1137/
S009753979833920X.

COHEN AND Z. Nutov, A (1+In2)-approzimation algorithm for minimum-cost 2-edge-connectivity augmentation of
trees with constant radius, Theor. Comput. Sci., 489-490 (2013), pp. 67—74, https://doi.org/10.1016/j.tcs.2013.04.004,
https://doi.org/10.1016/j.tcs.2013.04.004.

. A. DmniTs, A. V. KArRzANOV, AND M. V. LoMoONOSOv, On the structure of a family of minimal weighted cuts in a

graph, Studies in Discrete Optimization, (1976), pp. 290-306.

. EveEN, J. FELDMAN, G. KORTSARZ, AND Z. NuTOVv, A 1.8 approzimation algorithm for augmenting edge-connectivity

of a graph from 1 to 2, ACM Transactions on Algorithms, 5 (2009), pp. 21:1-21:17.

. FioriNI, M. GRross, J. KONEMANN, AND L. SANITA, Approximating weighted tree augmentation via chvdtal-gomory

cuts, in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
January 7-10, 2018, A. Czumaj, ed., New Orleans, LA, USA, 2018, SIAM, pp. 817-831, https://doi.org/10.1137/1.
9781611975031.53, https://doi.org/10.1137/1.9781611975031.53.

. N. FREDERICKSON AND J. JAJA, Approzimation algorithms for several graph augmentation problems, SIAM Journal
on Computing, 10 (1981), pp. 270-283.

. N. GABOwW AND S. GALLAGHER, [lterated rounding algorithms for the smallest k-edge connected spanning subgraph,
SIAM J. Comput., 41 (2012), pp. 61-103, https://doi.org/10.1137/080732572, https://doi.org/10.1137/080732572.

M. X. GOEMANS, A. V. GOLDBERG, S. A. PLOTKIN, D. B. SHMOYS, E. TARDOS, AND D. P. WILLIAMSON, Improved

approzimation algorithms for network design problems, in Proceedings of the Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms. 23-25 January 1994, Arlington, Virginia, USA, 1994, ACM/SIAM, pp. 223-232, http://dl.
acm.org/citation.cfm?id=314464.314497.

. GRANDONI, A. JABAL AMELI, AND V. TRAUB, Breaching the 2-approximation barrier for the forest augmentation
problem, in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, June
20-24, 2022.

. GRANDONI, C. KALAITZIS, AND R. ZENKLUSEN, Improved approximation for tree augmentation: saving by rewiring,
in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, June 25-29,
2018, Los Angeles, CA, USA, 2018, ACM, pp. 632-645, https://doi.org/10.1145/3188745.3188898, https://doi.org/
10.1145/3188745.3188898.

W. GAALVEZ, F. GRANDONI, A. JABAL AMELI, AND K. SORNAT, On the cycle augmentation problem: Hardness and approz-

C

[

wn

g

Q

o

imation algorithms, Theory of Computing Systems, 65 (2021), pp. 1-24, https://doi.org/10.1007 /s00224-020-10025-6.

. HUNKENSCHRODER, S. S. VEMPALA, AND A. VETTA, A 4/3-approzimation algorithm for the minimum 2-edge connected
subgraph problem, ACM Trans. Algorithms, 15 (2019), pp. 55:1-55:28, https://doi.org/10.1145/3341599, https://doi.
org/10.1145/3341599.

. IaLEs1AS AND R. Ravi, Coloring down: 3/2-approzimation for special cases of the weighted tree augmentation problem,

CoRR, abs/1707.05240 (2017), http://arxiv.org/abs/1707.05240, https://arxiv.org/abs/1707.05240.
. JAIN, A factor 2 approzimation algorithm for the generalized steiner network problem, Combinatorica, 21 (2001),
pp- 39-60.

. KHULLER AND R. THURIMELLA, Approzimation algorithms for graph augmentation, Journal of Algorithms, 14 (1993),

pp. 214-225.
. KLEIN AND R. RAv1, A nearly best-possible approximation algorithm for node-weighted steiner trees, Journal of Algo-
rithms, 19 (1995), pp. 104-115.
KORTSARZ AND Z. NuTOV, Lp-relazations for tree augmentation, in Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris,
France, 2016, Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, pp. 13:1-13:16, https://doi.org/10.4230/LIPIcs.
APPROX-RANDOM.2016.13, https://doi.org/10.4230/LIPIcs. APPROX-RANDOM.2016.13.
. KORTSARZ AND Z. NuTOv, A simplified 1.5-approximation algorithm for augmenting edge-connectivity of a graph from
1 to 2, ACM Transactions on Algorithms (TALG), 12 (2016), pp. 23:1-23:20.
. MARX AND L. A. VEGH, Fized-parameter algorithms for minimum-cost edge-connectivity augmentation, ACM Trans.
Algorithms, 11 (2015), pp. 27:1-27:24, https://doi.org/10.1145/2700210, https://doi.org/10.1145/2700210.

17


https://doi.org/10.1007/978-3-662-43948-7_66
https://doi.org/10.1007/978-3-662-43948-7_66
https://arxiv.org/abs/2012.00086
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-017-0275-7
https://doi.org/10.1007/s00453-017-0275-7
https://doi.org/10.1007/3-540-48481-7_44
https://doi.org/10.1007/3-540-48481-7_44
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1016/j.tcs.2013.04.004
https://doi.org/10.1016/j.tcs.2013.04.004
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/080732572
https://doi.org/10.1137/080732572
http://dl.acm.org/citation.cfm?id=314464.314497
http://dl.acm.org/citation.cfm?id=314464.314497
http://dl.acm.org/citation.cfm?id=314464.314497
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1007/s00224-020-10025-6
https://doi.org/10.1145/3341599
https://doi.org/10.1145/3341599
https://doi.org/10.1145/3341599
https://doi.org/10.1145/3341599
http://arxiv.org/abs/1707.05240
https://arxiv.org/abs/1707.05240
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.1145/2700210
https://doi.org/10.1145/2700210

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

678

. NAGAMOCHI, An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree,

Discrete Applied Mathematics, 126 (2003), pp. 83-113.

. Nurov, 2-node-connectivity network design, in Approximation and Online Algorithms - 18th International Work-

shop, WAOA 2020, Virtual Event, September 9-10, 2020, Revised Selected Papers, C. Kaklamanis and A. Levin,
eds., vol. 12806 of Lecture Notes in Computer Science, Springer, 2020, pp. 220-235, https://doi.org/10.1007/
978-3-030-80879-2_15, https://doi.org/10.1007/978-3-030-80879-2_15.

. Nurov, Approzimation algorithms for connectivity augmentation problems, CoRR, abs/2009.13257 (2020), https:

//arxiv.org/abs/2009.13257, https://arxiv.org/abs/2009.13257.
Nutov, On the tree augmentation problem, Algorithmica, 83 (2021), pp. 553-575, https://doi.org/10.1007/
s00453-020-00765-9, https://doi.org/10.1007/s00453-020-00765-9.

. ROBINS AND A. ZELIKOVSKY, Tighter bounds for graph Steiner tree approximation, SIAM Journal on Discrete Mathe-

matics, 19 (2005), pp. 122-134.

. SEBO AND J. VYGEN, Shorter tours by nicer ears: 7/5-approzimation for graphic tsp, 8/2 for the path version, and

4/8 for two-edge-connected subgraphs, Combinatorica, 34(5) (2014), pp. 597-629, http://arxiv.org/abs/1201.1870,
https://arxiv.org/abs/1201.1870.

. TRAUB AND R. ZENKLUSEN, A better-than-2 approzimation for weighted tree augmentation, CoRR, abs/2104.07114

(2021), https://arxiv.org/abs/2104.07114, https://arxiv.org/abs/2104.07114.

. TRAUB AND R. ZENKLUSEN, Local Search for Weighted Tree Augmentation and Steiner Tree, 2022, pp. 3253-3272,

https://doi.org/10.1137/1.9781611977073.128, https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.128, https:
//arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.128.

18


https://doi.org/10.1007/978-3-030-80879-2_15
https://doi.org/10.1007/978-3-030-80879-2_15
https://doi.org/10.1007/978-3-030-80879-2_15
https://doi.org/10.1007/978-3-030-80879-2_15
https://arxiv.org/abs/2009.13257
https://arxiv.org/abs/2009.13257
https://arxiv.org/abs/2009.13257
https://arxiv.org/abs/2009.13257
https://doi.org/10.1007/s00453-020-00765-9
https://doi.org/10.1007/s00453-020-00765-9
https://doi.org/10.1007/s00453-020-00765-9
https://doi.org/10.1007/s00453-020-00765-9
http://arxiv.org/abs/1201.1870
https://arxiv.org/abs/1201.1870
https://arxiv.org/abs/2104.07114
https://arxiv.org/abs/2104.07114
https://doi.org/10.1137/1.9781611977073.128
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.128
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.128
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.128
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.128

	Introduction
	Our Results and Techniques
	Related and Previous Work
	Subsequent Work

	Steiner Tree and Connectivity Augmentation
	A Reduction to Steiner Tree

	Steiner Tree via Iterative Randomized Rounding
	Some Details About the Steiner Tree Approximation Algorithm in BGRS13
	Witness Tree and Witness Sets

	An Improved CacAP Approximation Algorithm
	An Alternative Marking Scheme
	Analysis of the Approximation Factor

	Appendix A. Omitted Proofs from Section 4
	Appendix B. Details on the Reduction to Steiner Tree
	Acknowledgments
	References

