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Abstract— The classical filtering problem is re-examined to many practical cases, our information about the system to be
take into account imprecision in the knowledge about the modeled may not allow us to characterize these functiorts wit
probabilistic relationships involved. Imprecision is moceled in single (precise) distributions. For example, in the Garssi

this paper by closed convex sets of probabilities. We deriva v b ble to det - int | that
solution of the state estimation problem under such a framewrk case, we may only be able 1o determine an interval tha

that is very general: it can deal with any closed convex set contains the mean of the Gaussian distribution or, in more
of probability distributions used to characterize uncertainty in  general cases, we may only be able to state that the distribut
the prior, likelihood, and state transition models. This ismade of the noise belongs to some set of distributions.

possible by formulating the theory directly in terms of coheent One possible solution to deal with a set of distributionfiés t
lower previsions, that is, of the lower envelopes of the exptations _calledB . itivit \vsis B . bust
obtained from the set of distributions. The general solutio is SO-Calledbayesian se-nsll VI y.ana ys&8 bayeslan robustness
specialized to two particular classes of coherent lower prgsions.  [4] approach. Its basic idea is to check the robustness of the
The first consists of a family of Gaussian distributions whos estimate by applying Bayes’ rule to each pair of distribogio
means are only known to belong to an interval. The second is in the set of prior and/or in the set of likelihood distrilmrts

the so-called linear-vacuous mixture model, which is a fany iy orger to form a set of posterior distributions and to check

made of convex combinations of a known nominal distribution heth Il th teri lead to th USi
(e.g., a Gaussian) with arbitrary distributions. For the latter case, whether a €se posteriors lead 1o the same conclusions

we empirically compare the proposed estimator with the Kalnan ~ (€.9., the same estimate or the same credible interval).n\Whe
filter. This shows that our solution is more robust to the pregnce this is the case, we declare that the model (i.e., the sets
of modelling errors in the system and that, hence, appears tbe  of distributions) is robust and that the conclusions frony an
a more realistic approach than the Kalman filter in such a case particular pair of distributions are reliable. Conversalien
this is not the case the model is unreliable, and we can devise
Index Terms— Coherent lower previsions, epistemic irrele- three possible ways to overcome the problem.

vance, robustness, Kalman filter. The first consists of narrowing the sets of prior and like-
lihood functions through additional elicitation or obtiaig
|. INTRODUCTION additional data, hopefully resulting in an increased roiess.

. ) . This approach is not always possible for several reasorss, (co
This paper deals with the problem of estimating the stafg e nardness of the problem).

of a discrete-time stochastic dynamical system on the basisrhe second alternative consists of replacing the set of
of observations. One way of approaching this problem igi,rjikelihood functions by a single element obtained by
to assume that the dynamics, th_e initial .condmon,. and the 1\« kind of criterion such as, for instance, “averaginggrov
o_bsgrva_tlons are corrupFed by noise _contrlb_utqrs \_knbwn the class as in the hierarchical Bayesian approach. The basi
distributionsand then to find the conditional distribution of the 4. is to consider a (finite) sets of priors and/or likelii®o
state given the past observations. This is the so-calle@®ay , e observations to compute the corresponding set oépost
state estimation approach. _ _ riors and, finally, to average them according to some caiteri

If the dynamics and observations are linear functions of the). 5 review of various techniques for model averaging see
state and the noise contributors are assumed to be Gaus%g\jn,[e;] [7]. For instance, in [7] the idea is to estimate the
it is well known that the optimal solution of the Bayesian,eraging weights from measurements. In this way, robestne
state_estlmatlon prob!em is the Kalmar_1 filter _(KF). !n theg gained also through adaptability. Model averaging has
non-linear/non-Gaussian case, an analytic solution oB@ roven to be effective in several practical problems butso a
state estimation is in general not available in closed forfLs some robustness problems w.r.t. the choice of modeprio
and a numerical or analytical approximation is requirede Thynq model transition probabilities.
extended Kalman filter is the most known analytical approxi- The third path to robustness is based on a negative answer to
mation of the Bayesian state estimation prc_)blem for noearn the following question [4]: When different reasonable psior
systems. Conversely, among the numerical techniques, figjihoods yield substantially different answers, is éason-
ones used most frequently are based on Monte Carlo samplifige (o state that there is a single answer? The idea is then to
methods, see for instance [1], [2], [3]. deal with all elements of the class of priors/likelihood&isT

A common trait to these techniques is that they assum&s to alternative models of representation of unceytain
that the distributions associated with the prior, statesiteon, pased on a set of probability distributions, suchpasoxes
and likelihood functions are perfectly known. However, iy, instance. Ap-box [8] is an enclosure of the Cumulative

. . . . Distribution Function (CDF) of a random variabld; <
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distribution andF’, upper distribution. Also Choquet capacitie®one starts from satisfy the standard notion of independence
[9] and belief functions [10] can be included in this set olvith CLPs, however, there are a number of less restrictive
alternative models, since they can be seen as special chsesossibilities [22]. Among these, we shall consider in thepuss
closed-convex sets of probability distributions. the notion ofepistemic irrelevancaNe refer to [21, Sects. 2.10

These techniques have also been applied successfullyaid 5.9] for a further comparison of the theory of CLPs with
many cases. For instance, in [11]pabox representation of the Bayesian sensitivity analysis approach.
the set of probability distributions is used for robust esti Let us summarize the main contributions of this paper.
mation. In [12], the KF with a diffuse prior is derived inWe study the problem of estimating the state of a dynamical
the context of belief functions. Other approaches are tite sgystem when we do not have enough information to describe
valued Kalman filter [13] or the projection-based approadhe prior, the state transition and the likelihood modelthwi
[14] that model the initial state uncertainty as a convex sfdingle) precise probabilities. Instead, we shall modet ou
of probability distributions. On the other hand, in [15],tho uncertainty about the variables of interest by means of CLPs
system and measurement noise are modeled with convex setd derive a solution of the state estimation problem for
of probability density functions by also assuming that éheshe general case of CLPs. Our approach has the following
convex sets are polytopes (here polytope means the conebaracteristics. First, we can deal with any closed cone¢x s
hull of a finite number of distributions). Another possityili of probability distributions used to characterize undetia
to deal with uncertainty is to consider a worst-case apgroaa the prior, likelihood and state transition models. Ths i
(i.e., to consider the worst-case distribution in the dejding the main contribution of the paper and generalizes the tesul
to minimax-estimators, as in [16], [17]. in [11], [13], [14], [15], [17], [18], [19] and [20]. Second,

We should also like to mention here a slightly differenbur solution allows us to work directly with CLPs, i.e., the
approach to robustness that is presented in [18], [19] fer tlower envelopes of the set of probability distributions.isTh
case of linear state models. The authors assume that the @isan important difference between our paper and the usual
tributions of the noise terms belong to a set of unknown (noapproaches in literature for state estimation with a closed
Gaussian) distributions with known finite second momentsonvex set of probability distributions [15], which corisis
The main goal in these papers is not to solve the Bayesiahdirectly processing the distributions in the set. In #os
estimation by propagating this set of distributions (anid thapproaches, an essential assumption is to require thedclose
is one of the reasons the proposed method differs from tbenvex set of probability distributions to be a polytopehwit
aforementioned ones and from the one we present in tlfiisite sets of vertices (in this context vertex means an exg¢re
paper) but rather to provide a bound for the probability qfoint of the set of distributions). Then a Bayesian estimeto
the KF estimation error exceeding certain threshold valudsrived by element-wise processing the vertices of the-poly
(this probabilistic bound is computed in a manner simildopes associated with the prior (or to the previously coregut
to the Chebyshev inequality). By doing this, a tight outguosterior), likelihood and state transition models. A draek
approximation of the true confidence intervals for the eaten of this approach is that the number of vertices needed to
of the state provided by the KF can be computed. This tharacterize the convex sets increases exponentiallytheer
another reason the proposed method differs from the one member of time steps [15]. This problem is overcome in our
present in this paper which, conversely, aims to computetexanodel by working directly with lower envelopes as we do not
robust confidence intervals. A similar path to [18], [19] iseed to explicitly compute the vertices. This nevertheless
followed in [20]; the method there is based on asymptotapproach guarantees that the conclusions drawn are eeptival
theory that requires that the distributions of the noisenter [21] to those we should obtain by element-wise processiag th
become asymptotically Gaussian. distributions in the closed convex sets.

In this paper, we follow the third path to robustness using Third, we extend the ideas behind Bayesian decision mak-
Walley’s theory ofcoherent lower previsionf21], which is ing for state estimation to the CLP framework. Bayesian
also referred to atmprecise Probability(IP). In this context, methodology for decision making provides the estimate twhic
standard probability theory, which models uncertainty byng minimizes the expected posterior risk. If in particular we
a single probability distribution, is referred to gsecise consider a squared error loss risk, the Bayesian estimate is
probability. The choice of Walley's theory is motivated by thehe mean of the posterior distribution. This estimation is
fact that the alternative models of representation of uagely provided in general together with itsedibility region (also
discussed above can all be regarded as special casesatied confidence region), i.e., the region whose probgbili
coherent lower previsionR21]. A Coherent Lower Prevision of including the true value of the state exceeds a certain
(CLP) is the lower envelope of expectations with respect totlreshold. By extending these ideas to CLPs, we calculate
closed convex set of probability distributions. Thus, Cldaa the lower and upper mean of the state and a robust (CLP-
be easily interpreted in Bayesian sensitivity analysis,, if based) version of the credibility region. In particulag tiobust
we specify a family of precise models, they determine CLRsedibility region is evaluated by determining the minimum
by taking their lower envelopes. However, it is also moreolume region whoséower probability of including the true
general on some aspects [21]. One important differencevialue of the state exceeds a certain bound. This allows us
the context of this paper is related to the modelling of thte derive more reliable inferences. In this respect, the ide
notion of independence: with the Bayesian sensitivity ysial of computing a robust credibility region is similar to the
interpretation we must require that all the admissible nedepproach followed in [18], [19] for decision making. Howeve



as already discussed above in this section, our approdehsdif Bayesian filtering probleme have
from the one in [18], [19] in the way these credibility regson

t—1
are derived. plaly’) = wyt_l)p(ydxt)

Our general solution is then specialized for two particular pluely™=) .
classes of CLPs. The first consists of a family of Gaussian _ / sy p(@t]ze—1)p(yeze)p(zi-a]y™ ")
distributions whose means are only known to lie in an interva p(yely™=1)

This model can be used to address estimation problems st 3)

based on measurements that are affected by an unknown gy (2) and (3), we see that boitt|y*) andp(z,|yt) can
bounded bias but, also, to describe uncertainties in themsys pe optained recursively. Ongéz;|y!) has been computed, it
parameters as in [17]. The second is the so-caliedar- g possible to compute the expected valagy(z;)|y] w.r.t.

vacuous mixturd¢21] or e—contar_ningtion model [4], which_is (z:|y") for any functiong(z;) of interest. A particular case
the family of all convex combinations of a known nomin f Eq. (1) is given by

distribution (e.g., Gaussian) with arbitrary distribut#o This

family can be used to address estimation problems in which { Tepr = A+ wy (4)
we take into account that our model (nominal distributics) c yr = Cioy+ vy,

be inexact and, thus, we perturb (contaminate) it to refl@st t iy, .. N(0,Q0), vr ~ N0, Ry), z0 ~ N
modelling uncertainty. For thBnear-vacuous mixturenodel, \\here the matricesl;, C;, Q;, R; are assumed to be known
we empirically compare the proposed estimator with the K& o5ch time step. Then the conditional PDB(z¢|y?) is also

and show that our solution is more robust to modelling eITOFSayssian\ (41, P,) whered; = Avir_1 + Le[ys — Cy Ayiiy1]

and that, hence, it outperforms the KF in such a case. Sorpe _ AP AT & Qp — LiS,LT, S, = Cy[AP_1 AT +

of the preliminary results of this work can be found in [ZS]Qt]CtT + Ry, Ly = [AP1 AT + Q]CT S, and wherel

and results on statistical inference with CLPs in finite €8aCqyanotes the transpose operator. These are the equatidms of t
can be found in [24]. Kalman filter.

jo, P()), and

Il. BAYESIAN FILTERING IIl. COHERENT LOWER PREVISIONS

Let us summarize the basic principles of Bayesian filtering. In this section we give an overview of the theory of coherent
Its goal is the estimation of the state variables of a diserefOWer previsions. This is a theory of probability generatiz
time nonlinear system which is “excited” by a sequence & handle imprecisely specified probabilities through s¥ts
random vectors. It is assumed that nonlinear combinatiéns@stributions. Despite being a theory of probability, itsr-f
the state variables corrupted by noise are observed. We hB¥#ation may look unusual to the reader familiar with more

thus traditional ways to present probability, and this can mdies t
T = f(t,me) +wy ) theory s_omewhat uneasy to access. Becaus_e of this f_act, we
ye = h(t,z) + v, shall point out here informally some of the differences ia th

formulations, in order to help the reader have a smoother sta

wheret is the time,z; € R" is the state vector at timg into the theory. In particular, in this section we shall evithe
w; € R™ is the process noisg, € R™ is the measurement main concepts of CLPs that we shall use later in the paper to
vector, v; € R™ is the measurement noise arfd-) and derive the solution of the filtering problem. We refer thedem
h(-) are known nonlinear functions. Having observed a finitg [21] for an in-depth study of coherent lower previsionsd a
sequencey’ = {yi,...,y:} of measurements, we may, ing [25] for a survey of the theory.
general, seek for an estimate of an entire sequence of statgsropability theory is most often defined, after Kolmogorov,
at = {zo,..., e} using a triple made of aample spacea sigma algebraand a

In the Bayesian framework, all relevant information ofrobability functionP. The functions from the sample space
a' = {xo,...,2;} attimet is included in the posterior distri- into the real numbers that are measurable with respect to the
bution p(z*|y*). In general, a Markov assumption is made tgigma algebra are calledndom variablesThe expectation of
model the system, which implies the following independenggrandom variable is defined on the basis of the probablity

conditions: Conditional probability is also defined usidtybut only when
+ the conditioning event is assigned positive probability/by
plze2™) = plzilri_1), pflet) = H p(yk|zk). The theory of CLPs has its focus on expectation rather than
k=1 probability. We still have the sample space (which is usuall

referred to as th@ossibility space?). We also have a set of
Y3ndom variables, which are callgdmblesthese are bounded
functions from the possibility space to the real numbers Th
Pty p(ae|we—1)p(ye| ) set .of gamb_les does not_need to be concerngd vyith measur-

) 2) ability q.uestlo.ns, that is, it can be chosen arbitrarilyraHiy,

a CLP is defined as a functional, from the set of gambles

In many applications, we are interested in estimatiig |y*), to the real numbers, that satisfies some rationality caiteri
one of the marginals of the above PDF. This is the so-calléself-consistency). This function is conjugate to anotthet

Using these assumptions the probability density functi
(PDF) over all states can be written simply as:

pla'ly’) =



is called a coherent upper prevision. The intuition behimel t A gamble represents an uncertain reward which depends on
notions of coherent lower and upper previsions is that oklowthe a priori unknown valu¢; = z;, i.e., if z; turns out to be
and upper expectation functiondldVhen a CLP coincides the true value oZ;, we receive an amounft(z;) of utility.2
with its conjugate coherent upper prevision, it is calldthear Definition 2. Consider two disjoint subset3 # (),U of
prevision and it corresponds with the expectation functiondll, ..., n}. We callEz, (-|Zy) a conditional linear prevision
with respect to a finitely additive probability. In general, on the set of gamble§(Zou), if the following conditions
CLP is in a one-to-one correspondence with a set of lineaold for all z;y € Zy, f,9 € L(Zour), and X > 0:
sir;\:ililti?osr;sand can therefore be regarded a set of profyabili , 1, (7)., > inf 2, {20y /-
When the set of gambles wh iy the CLP are all] 2o\3/170) = ABzo (7lz0).
~ When the set of gambles where we apply the are all, g, (f4glz0) = Ez (flov) + Bz (g]20).
indicator functions of events, the CLP is calledcaherent . . : . .
o . . . If U = 0, this functional is called ar{unconditional) linear
lower probability and its conjugate is called a coherepper s 4
previsionEz, (-). [

probability. When these two functionals coincide, we afbtai . - .
Note that linear previsions correspond to expectations.

the familiar notion of probability. One important remarklst ence. ifE,. is a linear prevision om(Z.). then we can
in the precise case there is no difference between workitty w|_| ’ Zo P (Z0),

events (probabilities) or gambles (expectations), ancetbes defmj a_mgss fl}ncn\?ﬂfor oIn tihetﬁong sett (r)fonatsi fr?”?ms
a linear prevision is always determined by its restriction tng( t)A_f ZZ,O( A.)’ be? 4 s_el it cabol unc tOAO Z
events, which is a finitely additive probability. This is noo " >c“ O <o, given by lw) =11 w belongs to4, an

o ; -
longer the case when imprecision enters the picture: a CLPIi‘é(w) = 0 otherwise. It tuns out that the functionad, thus

not necessarily determined by the coherent lower proh)yibilfjefmed Is a (finitely additive) probability measure, afig,

which is given by its restriction to indicators of eventsdan:S Z}:C?Zfeec\ﬁ'?]g\gt?h;ezpigij:%‘ For instance, wheo
this is why the theory is formulated in general in terms of ' q y

gambles [21]. _

In the conditional framework, the differences between the Bzo (1) 2020 f(z0)pzo(z0).
precise and the imprecise theories are even more marked. For
instance, a conditional lower prevision can be defined witho We can make a similar comment for conditional linear
any reference to an unconditional one, and it can even BgeVvisions: if Ez,(-|Zy) is a conditional linear prevision
defined when the conditioning event has (lower or uppe?) the set of gamble£(Zouy), then for everyzy € Zy
probability equal to zero [21, Ch. 6]. In a sense, the notidRe functionalEz, (-|zv) is the conditional expectation with
of conditional lower prevision is the fundamental one, an@spPect to a probabilityz,, (-|zv).
the unconditional notion can be derived as a special cag€finition 3. Consider two disjoint subset8 # 0, U of
This change of perspective originates an issue that is rdt---.n}. We callE, (-[Zv) a separately coherent condi-
perceived in the theories that regard conditional prolftgbil tional lower previsioron the set of gambleS(Zouy ), if it is
as a derived notion: that when we specify a set of conditiorifile lower envelope of a closed and convex set of conditional
lower previsions, it is not guaranteed that those condition linear previsions, which we denote byl(E£,, (-|Zv)).i.e., if
are automatically self-consistent. The theory of CLPs sledPr all zu € Zy it holds that
with this problem by imposing a notion callgaint (or stron .
coherencF:aThis noti)c/)n ir%pliesgthe existencggf a(global rr?czdﬁ% (Flev) = inf {Ezo (flzv) : Ezo(‘|2v) € M(EZO('lz%))} '
(an unconditional joint lower prevision) which is compdgib (.)
with all the CLPs. Even more strongly, joint coherence also
prevents some inconsistencies to arise when conditioning 2
sets of zero lower probability [21, Ch. 7], which is notth
guaranteed by the existence of the global model alone.

Lower previsions can be regarded Bmver expectation
nctionals. Conditional lower previsions can also be give
e following axiomatic characterisation:

Theorem 1.E,_ (-|Zy) is a separately coherergonditional

A. Main definitions and results lower prevision on the set of gamblé$Zo ;) if and only

Consider variablesZ;, ..., Z,, taking values in the setsz tzh,e foIIow:jng c%r)dmons hold for allzy € Zu,f,g €
Z4,..., 2y, respectively. For any subsgtC {1,...,n} we (Zouv) and A > 0: '
shall denote byZ; the (new) variableZ; = (Z;);cs, which (SCH Ey, (flzv) = infzpxizyy f-
takes values in the product spa€g = x jc s Z;. We shall also (SC2) E 4, (A flzu) = AE 4, (fl2v)-
use the notatior£™ for Z¢; . This will be our possibility (SC3) Ez, (f +9lzv) = Eg, (flzv) + Eg, (9l2v)-
space in this paper. Note that, with this notation, we can dea |
with both sets of variables or sets of vectors. o _
Definition 1. For any subsef of {17 o n}, a gamblef on 2In the fllt‘erlng problemf can be the state variable (to compute the mean),
. K the quadratic-error (to compute the variance), etc.
Z; is a bounded real-valued funCt'oJﬁ: Z; — R. The set of 3Note that in the domaitf (Zourr) we can also include the gamblgson

all gambles onZ; is denoted by (Z;). B 2, by making a correspondence with a gamiflegiven by f/(zour) :=
f(zo) for each compatiblep € Zp andzour € Zouu-
1The reason we use the terms previsions for expectations améblgs for 4As discussed at the beginning of this section, we can rediraidtion of
utility functions is because the theory of CLPs is based @ lhbhavioral conditional previsions as the fundamental one, and the nditonal notion
subjective approach to probability (see Remark 1 later omfore details). as a special case.



The necessity of the conditions (SC1)—(SC3) in this theoretimat he is disposed to accept the rewakty, (f) — f + €
can easily be established using Expression (5): for instanfor everye > 0. A consequence of this interpretation is that
in the case of (SC3) we can use the linearity of the exs, (f)=—Ez,(—f) for every gamblef on Z;.
pectation operatoFz, (-|zy) to see thatEz, (f + glzv) = Similarly, given a gamblef on Zouy and zy € Zy,
Ez,(flzv) + Ez,(glzv) for each f,g € L(Zour). Using the conditional lower prevision, (f|zuv) represents the
now Eq. (5) together with the fact thabf[E,, (f|zuy) + subject’'s supremum acceptable buying price for the ungerta
Ez,(glzv)] = inf Ez,(f|zv) + inf Ez, (9)zv), we deduce reward modelled byf, if he comes to know that the variable
(SC3). Zy has taken the valuer;. The conditional upper prevision

The (conditional) lower prevision of a gamble can b&z,(f|zy) is then the subject's infimum acceptable selling
regarded as a lower bound for its expectation. Any coprice for the uncertain reward modelled bf, if he comes
ditional lower prevision is conjugate to another functipnato know that the variable€Z;; has taken the valuey. Again,
called conditionalupper prevision, and which is given by E, (flzv) = —FEz, (—f|zv) for any gamblef on Zour
Ez,(flzv) = —Ez,(—flzv) for all gamblesf. A con- and anyzy € Zy. [
ditional upper prevision is called separately coherentrwhe As we said before, in the case of linear previsions we
its conjugate conditional lower prevision is, and in thasea have the equalityE,  (f|zv) = Ez,(f|2v). This means
it is the upper envelope of the s¢¥!(£, (-|Zv)). Upper that the setM (£, (-|zr)) includes a single linear prevision
previsions can be regarded apper expectatioriunctionals. FEz, (f|zv). In this sense, we can see the classical expectation
A conditional linear prevision corresponds to the case wiaer operator Ez,, (f|zv) as the most informative CLP. On the
conditional lower prevision coincides with its conjugagper other extreme, the least informative CLP is the so-called
prevision, i.e.E,_(f|zv) = Ez,(f|zv). More generally, we vacuous previsian

have Example 1. Given a subséfy of Zp, the vacuous lower
E, (flzv) < Ezo(flzu) < Ez, (flzv) previsionE,  on L(Zo) is given by
for any Ez,, (-|zv) € M(Ey, (|2v)). Ey,(flav) = ot f(zo).

The representation of CLPs in terms of sets of linear pre-. ) ] o
visions allows us to give them Bayesian sensitivity analysis!t IS associated to the set of linear previsiond(E,,) =
representation. Assume that, because of lack of knowled%z_o : Bz (Ko) = 1}. It corresponds to the case where all
about the probability of the different(zo) for all 2o € 2o, the information we have is that the probability 8 is 1.
we are not able to define the expected utility (linear previsi Similarly, we can defin@acuous conditional lower previ-
Ez, (-|zv) for £, but only to placeEy,, (-|z;) among a set SIONSEz,, (-[Zv). Here, for each:y we can letEz, (-|zv) be
of possible candidatesy!(E,,_ (-|z/)). Then the inferences e vacuous CLP relative to som&5” C Zo, given by
we can make fran(EZo(~|zU)) are equivalent to the ones Ey (flav) = inf f(z0,20);
we can make using the lower envelopg  (-|zr) of this set. zoeKY
This lower envelope is a CLP. Hence, all the developmen 2 . .
we make with CLIFD)S can also be made with the set cF:f thel%ltrs')te thatkg < Zo can vary with eachey € Zy. In this

iated expectation rators. which are linear roags CooC: the seM (£, (-|zr)) would be those linear previsions
associated expectation operators, which are linear poess s%tisfyingEZO (K 20r) = 1 for everyzy € Zy. -

In this sense, there is a strong link between this theory and . s
Linear and vacuous previsions are two examples of CLPs.

;)bUSt sziyeSstlan anal;;ss [‘:j]' Finetli2s K biecti It follows from [21, Ch. 2] that we can construct CLPs by
emark 1. Stemming from de Finetfi26] work on subjective making convex combinations of the two. This gives rise to

probat_)lllty, cpherent Io_wer_prewsmns can z_also be given a special class of lower previsions that we introduce in the
behavioural interpretation in terms of buying and Se"'n%llowing example:

prices. Let us briefly sketch how this is done. Example 2. For eachy € Zy, consider a linear prevision

If we interpret a gamblef on Z; as a random reward, E;, (-]20) and a subseKo () C Zo ando < ¢ < 1. Define
which depends on the a priori unknown valde = z;, then E © (|20 by
L7,

the previsionEy, (f) represents a subject’s fair price for the
gamble f. This means that he should be disposed to accept E, (f|zv) = ¢Ey (flzv) + (1 —¢) inf  f(20)

the uncertain rewards’ — Ez,(f) + € (i.e., tobuy f at the z0€Ko(zv)
price Ez,(f) —¢) and Ez, (f) — f + € (i.e., tosell f at the for any f € L(Zouv). The CLPE,_(-|Zy) we can define
price Ez,(f) + ¢) for everye > 0. in this way is called dinear-vacuous mixturdt is the lower

More generally, the supremum acceptable buying price amthvelope of the so calledcontamination mode}4], that is
the infimum acceptable selling prices for a gamble need nibie class of the convex combinationsigf _(:|z) with any
coincide, meaning that there may be a range of prige$] linear previsionE, (-|zy) that is associated to the vacuous
for which our subject is neither disposed to buy nor to gell model with respect toCZV, or, in other words, such that
at a pricek € [a,b]. His supremum acceptable buying price, (K7 |zv) = 1. |
for f is then his lower previsio, (f), and it holds that  There are three additional features of the theory of colieren
the subject is disposed to accept the uncertain reward lower previsions that we shall use in our solution to the
L, (f) + ¢ for everye > 0; and his infimum acceptable filtering problem. The first one is called tiyeneralized Bayes
selling price for f is his upper previsionE'z,(f), meaning rule (GBR) [21, Sect. 6.4].



Definition 4. LetE, | .~ be an (unconditional) coherent lowerlinear prevision inM(E,_ (-|Zy)) is obtained by applying the
prevision, and lefZ ;| (-|Zv) be a separately coherent CLP.classical Bayes rule on a joint linear previsionM(E,_ ).

It is said to satisfy the generalized Bayes rule with, When we have hierarchical information, i.e., a finite number
when for everyy € Z; and every gambl¢ € L(Zouy) the of CLPs conditional on a sequence of nested variables, a
value £, _(f|zv) satisfies way to combine them into an unconditional coherent lower
prevision while maintaining the property of joint coherenc
E 000 Liz3(f = Ez,(flzv))] = 0. ©®) s by means of a procedure calledarginal extensior{21,

m Theorem 6.7.2], [27]. It is a generalisation of the law oftot
When E I,2) =E I, wz1) = 0, Eq. (6) Probability, or chain rule:
may havezoaurllj(irgfilr]]i}ge nunfgélrj(o{f Upos%i}kzle solutg)n(s,) trf@efinition 5. LetE,  E,, (|Zv,),...,Ey, (|Zu,) be
smallest of which isinf e ((-,}xzo} f(w); however, when §eparately_c0herent conditional lower previsions withpes-
Ezp.Uizpy) > 0 there is only one value of, (f|zy) tve domainsL(Zo,),L(Zo,urn); .-, £L(Z20,,uv,,.), Where
satisfying Eq. (6). Hence, in that case we can use GBR & = 0 and U; = UiZ (Ui U 0i) = Uj1 U O;y for
derive a separately coherent CLP from an unconditional one= 2;---,m- Their marginal extensiorto £(2") is given
This rule generalizes Bayes’ rule from classical probsapbili by

theory to CLPs. When it holds thdt, (I;.,;) > 0 and E(f)=E E (E 7 Oz 8
we defineE,_ (f|zu) via the Generalized Bayes Rule, then B(F) = Ezo, (70, (- (Ero,, (120,)]--)|202)). - (8)

it is the lower envelope of the conditional linear previsonand it is CLP. u
Ez,(f|lzv) that we can define using Bayes’' rule on the This procedure becomes the law of total probability in the
elements ofM(E,_ ), as we detail next: case of linear previsions and finite spaces. But it is applé&a
Example 3. From Eq6), it follows that0 = EZOUU[I{ZU}(JL in more general situations: for instance, when we are dgalin
w)] is equal to with infinite spaces or when we have lower previsions instead
of linear ones [27].
inf  {Bzouu [Iiz0y(f = 1]+ Bzouy € M(Eg,,,)} We conclude this section by recalling the notion egfis-
= inf{Ezouy Iz01f) = BEzouw (Tizny) temic irrelevance which generalizes to CLPs the notion of
. Ezoy € M(Ez, )} independence between variables [21, Sec. 971.1].

Definition 6. Given the coherent lower prevision
Assume now thatE,,  (I;.,3) > 0 and thus E, (\|Z;,Z;), we say thatZ; is epistemically irrelevant
Ezouw(I{zyy) > 0 for all Ez,,, € M(Eg, ). Then to Z; conditional on Z; if there is E, (1|Z;) such that

the above infimum is equal to E, (\|Z;,Zy) = Ey (| Zk). u
In other words, this means that we have the following
inf{ Ezooy (Izyy) {M _ M] equality:
EZOUU (I{ZU})
Ey (flzjze) = inf{Ezi(f(',zj,ZkﬂZj,Zk)
Ezo0, € M(E .
Zou € M ZOUU’} B2, (12, 2) € Mg (125.2)) }
Hence, solving w.r.tu, it follows that the unique solution is: = inf {Ezi (f(- 25, 21)| 21)
E I
- mf{M By, € M(EZOUU)} Ez,(|2) € M(Ez,(121))}
Zou z
oo = Ez(fl=), ©

inf { Bz, (flzv) : Ezouy € M(Eg,,,)} -
() forall f e L£(Zi xZ; x 2Z), 2; € Z; andz, € Z.
_ o _ _ B Note that epistemic irrelevance imposes the equality betwe
We introduced earlier in this section the notion of separatge infima, but does not make any additional constraints on
coherence, which states that the information provided bytige corresponding linear previsions M (E, (-|z;, z)) and
CLP is self-consistent. However, when we have more than ope(E, (-|z;))
CLP we must verify the consistency of all the assessments
taken together. This is what we cadint coherenceand it |y, GENERALISATION OF BAYESIAN STATE ESTIMATION
is studied in much detail in [21, Ch. 7]. This notion implies : . . : S
. iy . In this section, we generalize the Bayesian state estimatio
the existence of a global model (an unconditional joint lowe

prevision) which is compatible with all the CLPs. Even morg|scussed in Sec. 1l to Walley's theory of coherent lower

- : N corevisions, and show that Bayesian state estimation isdiec
strongly, joint coherence also prevents some inconsi&sn .
in our model as a particular case.

to arise when conditioning on sets of zero lower probability ) . s
S . The aim of Bayesian state estimation is to compute the
which is not guaranteed by the existence of the global model " : - :
L conditional linear prevision ofX; given {Y; = y1,Y> =
alone. It turns out that joint coherence becomes GBR when Y, = u} Ex,[[Y* = yt]. Hereafter we assume
we have one conditional and one unconditional CLP, and whéfi *~ > *t = Yt B -y
the sample spaces are finite. The intuition of joint coh&#enc soher possible generalisations of independence for CLRsedfound in

in that case is that, according to Eqg. (7), each conditional, ch. 9]. In this paper we shall restrict our attention pistemic irrelevance.



Xy € X and Yy € ) for eachk, where X), and ) are the jointEy. v [I{y+3 (g — 1)) can be written as
bounded subsets &"™ andR™, respectively. Assume that the B
available information does not allow us to specify a unique Ex, [Exl [Eyl {---Ext {E{G {I{gt}(g - u)‘Xt,Yt_l}
probability measure describing each source of uncertamty
the dynamical system. We can then use CLPs to model the
available knowledge. Consider CLESy , Ex, [[Xk—1] and  this can be rewritten as
Ey. [[|Xy] for k = 1,...,t, and let us derive from them a
separately coherent conditional lower previsiBg, [-|']. Let ) ) ) B " i—1
Ex:y: be a CLP inZouy = X' UY?, g: &, fn[@lg;mtﬂe Lxiryer | Ex, [EYt [I{y"}(g “)’X} ’X ”
andy® € Y'. According to GBR in Eq. (6), (14)
whereE ., y.. is the joint lower prevision orC(X*~! x
Eyl9ly']=p st Exiyellfyy(g—mw]=0  (10) yt=1) which can be obtained by applying marginal exten-
. . o . . sion recursively fromEy [-|X*] and E, [|X*!] for k =
and there is a unique: satisfying this equation wheny ;1 By exploiting the fact thal i, = I,y I(g1)
Ex:y: [Igyy] > 0. However, in the continuous case theyng that Iz, does not depend om,, we deduce from

probability that the random variable assumes a particulgi prop. 6.2.60] that (14) is equivalent to
value is zero, which in our context means that we may

have E v v« |Ir,+v| = 0; this would imply that GBR does 1

not def)i(néya[ Jﬁiéle conditional lower prevision. A way to=X'"*.Y* ! ll{@”}ﬂxf {E?t {I{g‘}(giﬂ)’Xﬂ ’Xt ”
overcome this problem in classical probability is to regard - N

the measurementg; for any k = 1,...,¢ as idealisations Hence, by (_explomng_ condltlor@l)—(lz)and the fact that the
of discrete eventsy, = B(y, ), where B(yx, §) are nested gamble of interesy is a functlon_ ofx, only, we obtain that
neighborhoods ofy;, with positive probability and which £x, [Ey, [I5,}(9 — )| X']|X*~"] is a function ofX;_; only.
converge to{y,} as their radius > 0 decreases to zero. ForHence,

‘XH,?H} ’Xl,Xo] ‘XO]

instance, wheny, is a real variable, the neighborhoods might [ : { . _ ‘ t:| tq}

have the formB(ys, d(yr)) = {21 : |z — | < 6(yx)}. Ex. | By [T lg - m| XX (15)
The assumption of discrete measurements also makes sense =Ey, {E{G [I{g,,}(g - M)’Xt} th] .

in practice because of the finite precision of the instrument . .

Having these ideas in mind, we shall assume that the sBi applying the above step recursive(y3) follows. u

Vi we work with are finite {; being in fact a representation Note Fhat the fact thag depends only om is e_ssential for
the equivalence between (13) and (14). If for instaposas

?(I fég@ (gzg‘%))én%n?htha%);)’nte[]&g)]_ |>:u0r,tht2|rfnglrlgyv§) u;alyastead a function of;_», the lower prevision in the left-hand
things compatible with Sec. 111, we assume thas a bounded Side member of (15) would be equal foy, {E?,, igey (9—
real-valued functign. w)|Xe, Xi0]| X1, Xt _o|. An example in this sense can be
Lemma 1. Consider the state vectdf, € Aj and the ound in [28, Sec. 7].

measurements vectdr, € ) for eachk and assume that | omma 1 states that we can write the joint CLP
the CLPsEy,, Ey, [|Xx-1] and Ey, [-[X}] are known for
k =1,...,t. Furthermore, assume that, for eakh=1,...,t,
Xk =2 and Y*~! are epistemically irrelevant taX; given
X;_1 and that X*=1 and Y*~! are irrelevant toY;, given
X, meaning that

Exyi[l{yy (g — p)] as a “nested function” of the CLPs
Ey, (prior), Ex, [|Xk-1] (state transition) andty [-|Xj]
(likelihood). Given the joint, we can compute the target
conditional CLP E [¢g|§'] as discussed in the following
theorem.

Ex [hala" 15" = Ex, [hiloe-1], (11)

Eg [hola®, 57" = Eg [hao|zs], (12) Theorem 2. Consider the same assumptions as in Lemma 1
and assume thaly. y.[Iz,] > 0 for any sequence of
Vhy € L(XF x Y1), hy € L(XF x YF), 2%, 4F~1. Then, measurementg’. Then, givenj’ = {§1,7,...,3} and a

given the sequence of measuremejits= {§1,92,....%:}, @ gambleg : X, — R, Ey,[g]y’] is the unique valug:* such
gambleg : X; — R, and a constan € R, it holds that: that u* = arg, (Ex, [go] = 0), with
Exey[Iyyn (g — w)] = Ex, [Exl [Eﬁ [ gr-1(Te—1,p) = Ex, {gk (I{gkzo}ﬂm (L3 [ Xk]
- Ex [ Es, [Ty (9 = )| X0, ]| Xima] - 3] [ o] . + Iy By g Xl ) o]
(13) (16)
m for k =1,...,t, where I, >, is the indicator of the set
Proof: By exploiting the marginal extension defined in 8), {7x : gr(wk, ) > 0}, I{y <oy is the indicator of its
complement andg,(z, 1) = g(x¢) — p. [ |

6In general, the precision of the neighborhood, measured be(y;,)
may depend also ofy,.



Proof: From Egs.(10) and (15), we obtain By [1X:] = By, [1X4] = By [|X,]. Then By [gl7] =
Ex,[9|7'] = Ex,[g]7"], where:

0 = Eyesoos |y E [E~I~ XX,} .
e T | I R 0
= Excayer [Ty Ex o (o0 Ex, 101X R e e
(20)
[ |
+ I{gt<0}E{,t[I{gt}|Xt])‘Xt1}] Eroof: Consider Eq. (17). Since E{/k[f{ngXk] =
Ey. 53| Xk] = Ey, [I15,3|X], we have
— E t—1 vi—1 |:I St—1 gt—1:|;
o (17) I >0y Ey, {f{gk} Xk] + Iig, <01 By, [I{gk} wk} (21)

whereg;_1 is given by is equal to By, [I;;,;|X] and, replacing CLPSE with the
corresponding linear previsiong& in (17), we obtain
gi—1 = Ex, {gt (I{g,,zo}ﬂ{/t Lig,y 1 Xt] (18)

+ f{gt<o}Eﬁ[I{gt}|Xt])‘Xt-l] 0 = Eyiiyia lf{gfl} Ext{gtEﬁU{gtﬂXt]‘Xt—lH

Note that the second equality i{17) follows from the fact

thatﬂf/t L¢3,y 9¢/X:] is equivalent toky, Uigy 9t(Lgg,>0) + EXHyH I{@”}gt—ll,

Itg,<0y)|Xt]. Sinceg; Ity >0y and—g; Ity <o) are both non- 22)
negative and constant w.rg;, we can apply AxioniSC2) to
deduce that

whereg,_; = EXx, |:gtEf/t Ugg,y 1 X Xt,l] . If we replace now
ge—1 With 9,1 — Ex, ,[g0—1]9" ]+ Ex, ,[9:-1]9" '] in the
Ey Iigy 9:(Igg, >0y + Igg, <o) | Xt last equality in(22), we obtain

= 9t(1g,>01) Ey, L5 | Xe] + (—9:(Lig,<0})) Ey, [~ 115,y | Xi] .
= Exir yia {I{gt—l} (gt71 —Ex, ,[g—119""]
= gt(I{g,>01) Ey, L1531 Xe] + 9: (L4, <0}) By, [L7,1| Xt
+ EXt—l[gt—1|gt_1]):|

In fact, g; > 0 implies thatg;I;,, >0y > 0 and Iy, <oy = 0,

whencey; I, >0 is a positive constant and Axiof8C2) can = By i {I{QH} (gti1 ~ Ex, . [gt71|gt71]):|
be applied to obtain the first term of the above sum. Similarly
wheng; < 0 we have that-g;I;,, .oy > 0 and Iy, 501 = + By g {I{gtfl}Ext,l[gt_1|3jt_1]}
0, and using the conjugate relationship|—g] = —F]g] for o
CLPs and Axion(SC2), the second term of the sum follows. = 0+ Exior yiea [I{@ffl}EXH [g9t-119 ]}
Now, in(18) the only unknqwn qyanti_ties i1 are Xy = Exi g [lg-y)Ex, . lge-l7"Y),
and . If we proceed recursively in this way, frofd7) we (23)
obtain £, [g0] = 0, where where the first equality follows by the linearity property of
linear previsions, the second is a consequence of Bayes' rul
g9 = Ex |o (I{glzo}ﬂfq [I{gl} X1} (GBR) and the third follows again from linearity. Hence,
(19) 0 = ExiugiallgeyEx, (9117
+ Lgi<r By, L) leXO] ' = Bxeryeallge]
_ ~ ~t—1
Finally, by solvingE,, [go] = 0 W.r.t.  we can deriveu* = - Ex | Bx {gtEYt Tgg.31Xi] Xt*l] 4 ]
Ex, lg(x)l5")- | N N
A nice side feature of the model presented in (16) is that, N e Ul

as it is shown in [23]£ . y. is jointly coherent with all the B P B 1x x
initial assessments and with y,[-|7*]. This means that our Kooy [ 5 {g 7. )] t]‘ t_l}
model is self-consistent. — LWEe. I ]
Let us show that the above derivation includes as a particula A S Ul
case Bayesian state estimation, once we express the efement
’ h Ex, ., |Ex, {Ef/t[f{gtﬂXt]’Xt—l}

(24)
gtl‘|
. ~t—1
of the model under the formalism of CLPs. We shall assume t— Yy ]
thus that our inputs are linear previsiofs,, Ex, [-|Xk—1] -
andEy, [|Xx] and use their linearity to obtain a more compacthe term that multiplies: is just Ey. y.[I(z], which has

solution. been assumed positive by hypothesis. Thus we can Elye
Corollary 1. Consider the same assumptions as in Thear.t. u obtaining (20). |
rem 2 and assume moreover th#y [] = FEx,[] = Assuming some regularity conditions [21, Sec. 6.10.4], as

Ex,[], Ex, [ Xk—1] = Exk [|Xk-1] = Ex,['|Xk—1] and the radiusd(y;) of the neighborhoodg, = B(yk,d(yx))



converges td) for £ = 1,...,t, we obtain Bayes’ rule for by calculating the lowei(x;) and upperE(z;) means and
conditional PDFs, i.e.FEx,[g]y'] is equal to: an IP version of the credibility region. In particular, the |
credibility region is evaluated by seeking the minimum voé&u

- _qfytt dredr,—
I Ja@@) plede1)p(@ely™)p(ydz)deide, regionx such thatt/(I;,ey3) > 1 — a. It is easy to see that,

— oz Vo(zr 1 lyt—1 2V dzrdr, in the precise case, the IP credibility region coincidestite
a:t[la}[p( e )p(ze-1ly™p(yele)deedze— Bayesian one and thdt(z;) = E(z;) = ;.

(25)

Hence,Ex, [¢]y!] is a linear functional which is completely de-
termined by the PDFg(x;|x;—1), p(x—1|y' 1) andp(y|z;).

If we compare Egs. (17)—(19) with (20)—-(23), we see that Let us consider next the linear time-invariant system in
in the imprecise case we cannot derive an expression for {#¢ but in the scalar case, i.er,,y, € R for eachk. It
conditional lower prevision similar to (20). This is due twet is not difficult to generalize the results in this section to
fact that CLPs are super-additive (see Axioms (SC2)—(SC3e case wherer; and y, are vectors. We assume all the
instead of linear and therefore we cannot reproduce stdpgotheses for the KF given in Sec. Il apart from those of
(20)~(23). Hence, in order to compufey, [¢(x)[§'] in the continuous measurements and zero-mean measurement noise.
imprecise case, it becomes necessary to go through the joint particular, we assume that discrete measurements of the
i.e., to propagate back in time the functiogaluntil the initial ~ state are available and that the uncertainty on the measuatem
state is reached, and then to find the valug efhich satisfies process can be represented witlir@ar prevision
E, [g90] = 0. This means that each step can be heavy from
a computational point of view. Possible ways to overcomBy, (h|zy, k) = Zh(z}k)/I{gk}(zk)N(zk;Czk+9k,R) dzy,
this computational issue are: (i) to find classes of CLPs for G o
which the computation of (16) is feasible; (ii) to truncalbe t (26)
recursion afterN steps in the past by finding a CLP whichwhere 6, is the mean of the measurement noise at time
approximateszy, . [¢|5*~™]. Concerning the first point, ex- Hence, the measurement noise has a non-zero bias. We assume
amples of lower previsions, for which the solution of (16) ighat the only knowledge abou, for k = 1,...,t, is that
affordable, are discussed in Sects. V-VI. The idea of trui? < 6r < 6Y, where the known scalar¢”, 6" define a
cating the recursion afteN steps in the past is based on thé&ounded interval ifR. We model the lack of information about
intuition that the influence of the past on the present deseathe valued, of the variable®,, by using a vacuous prevision

at time goes by. According to this intuition, if we are ablésee Example 1)Eq (g9) = . e%&f Gu]g(%), for all gambles
k )

: ; ; ~t—N ~t—N

to find an approximatio® , ~ [g]5* "] of Ex, (gl ~"] g. Observe that, for the gambiéf;.) = 0y, this model implies

which, for anyg, is easier to compute thaliy, |, [¢|7"""] thatEg, (9) = 0> andEe, (g) = 6V which, thus, describes

and such thaQthN[!I@t_N] < Ex, ,l9l5"~"], we could our prior knowledge or®,. In the derivations in Sec. IV, the

use Q [g]5t=N] as the new priorE from which Measurement process is described by the GLP (h|X}).
Gy i i We can obtain this CLP fronEy (-|x,0;) and Eg () b

to start the recursion (16). Note that, . will no longer il Dble _ Vi \ ko Yk Loy, y

satisfy joint coherence with the local assessments; howe\)gargmallsatlon ob:

the adverse effects of this approximation will decrease as w

increaseN . PP By, (hXx) = Eo, [E?k (Rl Xk, Ok) |,

V. BIASED MEASUREMENT NOISE

where h is a gamble inL(X* x Y*). Hence, the main
A. Decision making and estimation difference w.r.t. Sec. IV is that now we have additional
We conclude this section by discussing briefly the decisiofariables ©% for k < t. Furthermore, in this case, the
making approach to estimation, which will be used later iimprecision is only ovel,, while we have a precise model
the paper. The Bayesian methodology provides the estimée likelihood Ey. (-|X},©y), state transitionEx, (-|Xy—1)
which minimizes the expected posterior risk. If in partaul and priorEx,(-). Thus, the target conditional CLE y, [g|7']
we consider a squared error loss risk, the Bayesian estimea® be obtained as follows:
is the mean of the posterior distribution. This estimatisn iTheorem 3. Suppose that:
provided in general together with itsredibility region a = .
100(1 — ) credibility region for a scalar random variabtes Ex,lgl = Ex, 9] = Exo[g] :ig(xO)N(xO;wo’Po) dxo,
a regiony such thatf(I,e,y) = P(x € x) = 1 — o, where _
P(-) is the posterior distribution. When we consider sets of2x, [91Xk-1] = Ex, [9]Xk-1] = Ex, [ Xp-1]
probabilities, we deal with lower and upper expectations,an = [ g(zx)N (2k; zp—1, Q) day,
thus, with interval-valued expectatiofB(-), £(-)], leading to Er 27)
the problem of (_deC|S|o_n_ma_k|ng under imprecision [21]. '5_E~A[h|Xk] — By [hX4] = By [hX)] is defined as in(26)
consequence of imprecision is that, when the lower and UpRE aE@A(g) it g(Gk)k. Assume that variable,
expectations are substantially different, we must abariden k 0r€[0L,0V]
idea of choosing a unique value for the estimate. andY;, for eachk = 1,...,¢ satisfy the epistemic irrelevance
With this in mind, the path followed in this paper is thaassumptions given by Eqgl1) and (12). Furthermore, sup-
of extending Bayesian decision making to the IP framewogose that©' is irrelevant to X;, given X*~1 and Y*~! for



eachk =1,...,t, and that®’ is irrelevant toY;, given X*,
Or andY* 1 forall j ke {1,...,t},j #k, ie.

EXk[h1|9t7xk_17gk_1] = EXk[hlka_lagk_l]? (28)

By, [hol0, 2", 5" = By, [hol0k, 2", 5", (29)

Vhy € LX< YF1) hy € L(XFxYF), 08, 551, 2. Assume

also that®7 is irrelevant to ©;, for eachk < t and j =
L...,k—=1k+1,...,<tie, Eg (h¢?) = Eg, (h) for
each®’ = ¢ andh € L(OY).

Then, given the set of observatiofis = {71, 7, . .-
and a gambleg :
Ex,lgly"] is given by:

agt}

E j'] = i <&, —M,[0%, ) d
_Xt[9|y] o eté%LﬁU] /g(xt)/\f(xt,xt 1[0°], P) dx
b (30)
with
t t
M1 =>"| [ @ -L,0)A| Lo, (31)
i=1 | j=i+1

and wherez,, P; and L; are given by the standard equations

of the KF. ]

Proof: Equation(30) can be derived from the results of Sec.

IV. First of all, notice that, with the assumptions of Theorg,

we can regardi, for eachk <t as a prior information, i.e.,
all other CLPs in our model are defined w.r.t. conditions of

epistemic irrelevance fro®¢. Thus, from(28)~(29), it follows

X, — R, the target conditional CLP

10

0. From Corollary 1 and, in particular, from(24), we can
rewrite Ex« y«[I15:y(g — 1)|©"] as follows:

Exer g g1y 1071):

Ex, . |Ex, [Ef/t[l{gt”Xt,@t] XH} 71 ot-1].
Ex, , |Ex, [gEﬁ[I{yjt”Xta@t]‘Xt—l} g1, et !
m
Ex, | Ex, [E{,t T3 1 X, Gt]‘Xt—l} ji-1, o1
(35)

where, since the measurements have been assumed to be

“discrete and using26), we have thatE ., g [[{51|0F] >

0 and, thus,(35)) is well-defined (i.e., the denominator is
positive). Thus, because of the expectations in the first row
of (35) are positive, from(34) and (35) it follows that the
unique valuey which solvesti x y« o« [I{5¢1(g — p1)] = 0 is:

= E [gl7t] = inf
n= Ex,[g]7'] B
Ex, || Ex, |:9E{/t[1{g,,}|Xt;®t] Xt—l} gjt*17@t71
Ex, , |Ex, {Eﬁ [I{gt}|Xt,®t]‘Xt_1} j-1,ot-1

(36)

that, given©?, the joint in Lemma 1 in this case becomes: Finally, we can use(25) to derive (30) from (36). To see

Extyi[Igy (g — p)|0©'] = Ex, [Ex, [Ey,[. ..
Ex,[Eg, [Iigiy (9 — )1 Xe, 04| X 1] ... [ X1, ©1]| Xo]].

this, note first of all that when the discretisation st&y;)
in g: = By, d(yx)) is small enough, the integral if26)
can be approximated ag(d(yx))N (y; Cxy + 6;, R) where

(32) p(d(yx)) > 0 is the Lebesgue measure Bfy;, 6(yx)), which

Note that (32) is a linear prevision becausé26), (27)

and Ey, [h|Xj] are linear previsions. Since by assumption

Eg, (h|07) = Eg, (h) for each®’ = ¢/ and h € L(6"),
we can obtain the overall joint y: y+ o:[[{51(9 — p)] as
follows:
Exiyiolligy(g—mw] =
Eo,..-Eo,[Ex y [l (g — )] ...
Note that we only have imprecision ovEg,, for eachk and

(33)

that, because the assumptions of epistemic irrelevancangmo

©', the joint in(33)is invariant if we exchang&, andEg,
for i,j < t. Thus, sincellg, (9) = Oke%gffﬁlf]
k=1,...,t, (33) becomes:

Ext,yt,et [I{yt}(g — )]

B ele[iélbf,ev] @e%{glf,ev] N 'ete[i(?Lf,eU] Exeylliyy (9 = m)|®7]

Extyt[Igyey (9 — p)|©7].
(34)

Thus, the target conditional CLE . [¢|7] corresponds to the

value . which solves the equatiafl v« y+ o« [[{501(g — 1)] =

"The subsequent derivations would hold, in a more complicéiem, also

if we only assumed thatx, [h|0%, a8~ §*~1] = Ex, [hlaF~1 gF—1]
andEf/k [h|'9k7 mkv gk—l} = E)_/k [hwkv xk,gk—l].

g(0y) for each

has been assumed to be independent,ofHence,

Eg, (hlw:) ~ p(S(y)) D h(@i) N(yi; Cae + 04, R),

7
where the prime iry;, is used to denote the summation variable
which defines the neighborhoogls= B(y;, é(yx)). Thus, for
h = Iy, we haveEy (Iggylze) o< Ny Cry + 04, R).
Then, using(25) and standard results from Kalman filtering,
we conclude that

EXt71 gt—17®t—1

Ex, [QE{Q U531 X, 91&]‘&:-1}

Ex, ., |Ex, {Eﬁ | Xt @t]‘Xt_l} j-1,ot-1

= f g(ZCt)N(ZEt;i’t — Mt[Bt], Pt) dl’t

where M, [0"] is given in(31) and, thus(30) follows straight-
forwardly from (36). |

Equation (30) says that if we knew the value of the lflgs
for eachk, i.e., 0L = 0V = 0,,, we could use the KF to derive
the optimal solution of the estimation problem (providedtth
the shifted observationg, — 6, are used). In fact, in this
case, it is well-known that the optimal estimatetijs— M, [0t]
wherez; is the standard KF estimate derived from the biased
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measurements)’, i.e., Ex,[g|7"] = [, g(z)N(ve;d — VI. LINEAR-VACUOUS MIXTURE MODEL

M,[6"], P,)dx,. Conversely, when no other information about Assume now that the knowledge on the initial state and state
01 thang” < 6, < 6V is availabile, we can only give a lowereyolution process is modeled lipear-vacuous mixtures

(or upper) bound ofE, [¢]7']; this lower bound is exactly

the CLP in (30). From (30), we can thus derive lower anfl v (g9) = ew/g(xo) N (zo; %0, Po) dzg+ (1 —¢;) inf g(xg),
upper bounds for any gamblg For instance, by selecting o

o

g(x) = x;, we can compute the lower mean (38)
o= [N - MR Ex ol = o [ o) N Az @) de
01,...0,€[00,0U] 2 (39)
t t .
= j’t — Z [ H (1 — LJC)A Lz maX(HL, eU) + (1 B ew) lilkfg(lﬂk),
i=1 | j=it+1

where the scalarg,, and e, belong to[0,1]. Furthermore,
assume that discrete measurements of the state are awailabl
and that the uncertainty on the measurement process can be
L; min(6*,0"). represented with bnear previsiof Ey. (h|zy) as in (26) (but
with 6, = 0). This generalizes the model given in (4) to
The differencer, — z, models the imprecision in the estimatehe linear-vacuous mixtures and can be used for example to
of z;, which is proportional to the width of the interv&? — model the imprecision of the linear time-invariant systef (
9% and does not depend afy. Note that in this example but where the process noiseus, = e, wy, + (1 — €,,)ns and
the imprecision does not converge @owhent — oo. This zg ~ €, N (&9, Py) + (1 — €, )ex, and the noise terms;, and
behaviour is due to the fact that the imprecision is pereasiv, are assumed to have unknown distributions (not necessarily
in the measurement process. However, for this examplenit ceonstant w.r.t time). Note that the model for bath andz is
be verified that, assuming that the p&id, C'} is observable, the so-calledt-contaminationmodel which has been defined
this condition yields the existence of a steady-state wiut in Sec. Ill-A. The correspondence between this system and
for the KF filter (i.e., for the covariance matrix and the gainEgs. (38)—(39) follows from the following statements:
and, thus, also the convergencefot, [x+|7] — E y, [x:]7'] to 1) Thee-contamination model fow;, implies that [21, Sec.
a finite value. Consider now the gambler:) = I (., c(zo 0]} 2.9.2]:
wherezx,, x, € R. Its lower prevision is

and the upper mean

@@§[ﬁ<lLﬂM

i=1 |j=i+1

. Ewglgl = inf [ [ glwn)enN(wi;0,Q) duy
min f N(.ﬁEt; LIA?t — Mt[0t], Pt) dl’t e TWE
P e A , + (1= ew)Enlg(ne)]]
. Ty — Tt + Mt[0 ]
- 01 ,,,,g?e%aeu] 0.5 erf ( 2P, ) = €y f g(wk) N(wk§0, Q) dwy,
W
05 erf (‘"’“’ i Mt[eq) , + (- e)infglwp),
2P, * (40)
whereer f(z) = (2//7) [, exp(—t*)dt is the error function. whereE,,, denotes the expectation w.r.t. any distribution

The solution can be found numerically by solving the above  which characterizes the noise.® See also Example 2.
minimisation (or maximisation for the upper prevision) pro  2) Hence, we can exploit a result from [30, Sec. 6] to prove

lem. Thus, the IP credibility region is computed by seekimgy t that the knowledge oﬁwg and the factey 1 = Az +
smallest intervalx,, vs] such thatE(Ii,e(z, ,)3) = 1 — - wj, together imply Eq. (39) wherz,, is assumed to be
Finally, given the gamble(z;) = (x;—v)?, its lower prevision known. This can also be derived from the fact that the
is contamination onv§, induces a contamination imy,. 1,
. 2 A t i.e.,
- GIIIEI%L oo i{(mt — )2 N(we; 80 — M[0'], Py) dy . 1
' R . ) Tpyr = Az +epwr + (1 — €w)np
= oA oo (& — My[0°] — v)* + Py = ep(Azg +wi) + (1 — €)(Azg + ng).
(37) Hence, we can apply again Eq. (40) to derive (39). This

The minimum of (37) w.r.tv, which is P;, corresponds to the holds also forz, and extends to CLPs the well-known

minimum variance. This is the variance of the KF when the  “change of variables result” for expectations.
_bias of the measurement noise is known. The upper variangsie that, ife, = ¢,, = 1, we obtain the linear Gaussian case

IS in Eq. (4). Furthermore, note that in (38) the epsilons and
t ¢ QU — gL 8 . ) P
7. ) We are assuming here a precise probabilistic model for thesorement
ST (=L)AL + P, . lere a " thes
=1 | =it 2 process instead of an imprecise one, such as the ones faritiaé state and

the state evolution process, in order to simplify the deigve in this section.

which depends on the width of the interv{sﬂL, eU] (see We remark however that the model presented in Sec. IV is geaed allows
also for imprecise measurements.

[29] fc_)r issues related to the computation of lower and uppefeo e sake of notation, we have used the variaflealso for the second
covarlances). integral in (40). The correct integration variable wouldbg.
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the covariance matrices of the Gaussians have been assusmdition can be rewritten as follows:

to be time-invariant. The generalisation to the time-varia

case is straightforward. When the discretisation step) in Ge—1(xi—1, 1) = Le[ge(me, p)] + Me[ge (e, )], (44)
Ur = B(yk,0(yr)) is small enough, the last integral can be

approximated ag(d(yx))N (yx; Cxr, R) wherep(d(y,)) > 0 and, thus, at the time— 1:

is the Lebesgue measure 8y, d(yx)), which has been

assumed to be independentigf. Hence, gr—2(t—2, 1) = L1 [Ht [9¢ (e )] + Milge (a2, “)]}
By, (hlew) ~ p(3()) 3 (i) Nyhs Con, R). (1) + Wi [Blgu(on, 0] + Melgs (o, )]

U = Le—1[Le[ge (e, w)]] + Le—1 [1]Me [g¢ (¢, )]
Recall that our aim is to obtain the conditional (updated) +Mt_1|:ﬂt[gt(xt )] + M [ge (¢ M)]}

prevision, for which we need to solve Eq. (10). Applying
the results in Theorem 2, the target conditional CLP can
calculated as follows:

Theorem 4. Let/ y [, Ex, [[|Xk-1] and Ey. [-|X}] be given
by Egs.(38), (39) and (41), respectively, and assume they sat- 0= E [ ( )}
isfy the epistemic irrelevance assumptions given by Edk. Lo [J0T0, 1

and (12) Givengt = {gl, Y2, - - ,:ljt} and a gambl@ X — = HQ[Hl [ .. Ht[]]] + HQ[l]Ml[] + ]Io[Hl [1]]M2H—|—
R, then By, [g]y"] is the unique valug: such that: + oA To[Ia [ . Ty [1]]] ML [-] 4 Mo {Hl [ L[]

0=E,,(9) M [+ I [ M[-] 4+ - - + Ty [. . . T, [1]]M, [-
~ e [ go(wo, 1) N(zo: 2o, Po) + (1= ex) inf go (o, ), + M)+ LAMe[] + -+ L ML,

v (42) where, for the sake of notation, the arguments of the opesrato

(45)
lB@ing the linearity ofl and the fact thatV;[g:(x:, )] is a
function of i only. Hence, (42) can be decomposed as

(46)

where go(zo, ) can be obtained recursively by have not been made explicit, but can be recovered from
Egs. (44)—(45). Note that the operatdgsand M, are slightly
Gk—1(Tk—1, 1) different from I, and My, for £k > 0, as we can see from
= p(0(yx))ew | 2 Ligy (00) gk (@n, N (23 Azg—1, Q) (42). Let us give some comments on Eq. (46). The term
z g, Io[I:[. .. I[-]] is equal to
- N (y}; Cxg, R)dxy, t
+p(0(yx)) (1 — €w) inf gr(wr, 1) 3 Ligyy (9) N (i Cn, R) p(6(yr))tenet, TI N(yn; CAZr_1,Sk)
k A k=1 (47)
= P((S(yk))ﬁw f gk(xk7M)N($k,Al’k—hQ)N(yky C.I'k,R)dCCk . f gt(IEt,M) N(ZEt;Z]ACt,Pt),

Ty Tt
+P(5(yk))(1 - ew) inf gk(-rka ,U/)N(yk, C.I'k, R)7
Tk (43) where Sy = R + CPy—1C", &k, P, and Pyj_y =
AP,_1 AT 4+ @ can be calculated by using the KF from the
prior N (zo; Zo, Py). This gives the solution of the estimation

Proof: Eq. (43) follows by applying Theorem 2 to the cLp/OPlem in the precise case, i€, = e, = 1. The product
(38), (39) and (41). The only difference is that, i(43), it (1) in Eqg. (47) represents the marginal w.r.t the measure-
has also been exploited thats [[X] = Eo [|X4] is a ments. In the precise case, this term vanishes in the normal-
Ly, — Y feati ; ;

linear prevision and thus satisfies E@1). MolFeover, since 'sation constant. Thle generic te?nﬂi+1<[' : 'Hjii[arg]]] with
Ex,[], Ex,[|Xs_1] and Ey, [X,] are linear Gaussian - argunlenqarg] equa tOgt(lxt,/L), orl1<i<j=t,ortol,
vacuous mixtures and the measurements have been assuffiled =7 <7 <1 Is equal to
to be discrete (whencéy [I51|Xx] > 0), we have that i j—i . .
ExiyItzy] > 0 and then it follows from the results POlye))™ el lf 'Ij[l[arg] Nwis Azie1, QN (yis Ci, R)
me_ntloned in Section Il that the solutign of Eq. (42) is N (@13 Azj—z, QUN (yj—1; Cai, R).
unique. u (48)

By exploiting the properties of the Gaussian PDFs, we caRote that, by applying the matrix inversion lemma, it follw
further specialize the result in (42)—(43). We see from B8) ( that
that the valuegi_1 (zx—1, 1) is the sum of two terms. The
first one is the expected value of (zx, 1) w.r.t. a Gaussian N (zi; Azi—1, Q) N(yi; Cxi, R) = N (ys; CAzi—1, Wa)
and the second is the infimum of (z, 1), also weighted by N(zi; WoQ Az 1 + W,C'R™ 1y, Why),
a Gaussian. The first term can also be regarded as a linear (49)
operatorl[-] which operates on the functiog) (), ) and where W, = R+ CQCT and W, ' = Q=1 + CTR™C.
produces a function af;_; and u. The second term can beWe can see the second factor in the right-hand side of this
seen as an operatdfy[-] on the functiong(zx, 1), but it equation N'(z;; W,Q 1t Ax;_1 + W,C' R~ ty;, W,), as a prior
produces a function of. only. Hence, at time, the previous distribution for the subsequent steps1, ..., j. Then, we can

fork =1,...,t, with the final conditiory, (x;, u) = g(z)—p.
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use KF to simplify Eq. (48) as follows: wheredy, is 1 when the time is equal tok and0 otherwise and

j—1 po = 0.2. In the cases 1-3, the trajectory undergoes a jump of

p(8(yr))? TN (yi; CAzi— 1, Wa) T1 N(yx; CAZE 1, S5)5 units at the time instant= 7. This can be interpreted as an
k=it1 unmodeled manoeuvre. For these cases, the simulatiorisresul
J [arg] N(ijlﬁ}lupﬁl) drj1, are shown in Figures 1-3 for a fixed trajectory, i.e., Monte

Tj—1

5oy Carlo runs have been performed only w.r.t the measurement's
wherei?, P, S; are calculated by using the KF starting fronoise realisations. The figures report the true traject®s)(

the prior A (z:; WoQ~ ' Azi_y + WoCTR-1y;, W;). Again the averaged KF’s estimate (KF) and the relafi9é; credibil-

the product[](-) in (50) represents the marginal w.r.t thd®y Interval (Cred KF), the averaged lower (LP) and upperYUp

measurements. Féarg] = 1 the integral in (50) marginalises M€ans z_ind the IP version of credibility interval (Cred I_P) as
to 1. The termslo[L,[. .. I[;[1]]], with 0 < j < ¢, are equal to defined in Sec. IV-A. From Figure 1, we see that from tiine

. to time6 the KF and the LGVM provide more or less the same
p(8(y) ) ewed, ﬁ N (y; CAZ:_,,S). (51) credibility interval and the upper and lower means are atmos
k=1 equal and coincide with the KF estimate. At the jump’s instan
Comparing Eqgs. (50) and (51), we remark that the terfn= 7. the KF estimate is wrong, since t98% credibility
N(y;; CAz;_y, W,) is absent from (51). In faci,, represents interval does not include the true state. This shows that the
the prior information, i.e. there is no measuremgnt Note KF is not robust to large model errors. On the other hand,
that the constants(d(y,)) can be dropped out to solve (46)the LGVM correctly detects the jump and it is able to enlarge
In the sequel, we refer to the algorithm presented in Thearenthe credibility interval in order to include the true stal¢e
and implemented as described in Egs. (44)—(51) asithear differenceE(z;) — E(x) is related to the imprecision present

Gaussian-Vacuous Mixtur@.GVM) filter. in the system. From the instant= 8 to the end, the true
trajectory enters again inside the KF credibility regioimce
VIl. NUMERICAL EXAMPLE no more jumps occur. We see also that the LGVM converges

We have performed Monte Carlo simulations in order twards the true state as can be seen from the reduction of the

show the basic features of the LGVM filter presented in ttze of the credibility interval. However, the convergenate
previous section. These simulations compare the perfazenafs slower than that of the KF and depends on the variance-

of the LGVM with the KF, considering non-Gaussian situat@tio r/¢, as can be seen comparing Figures 1-2, and on
tions. We have considered the following model: the value ofe,,, as can be seen comparing 1 and 3. These

. results thus show that the LGVM filter outperforms the KF
Ter1 = Az + wp .

I performance when a small value (small w.r.t th ratio) of

) jgft b (52) ¢, is selected. In fact, in these cases, LGVM is still robust to

A= [ 01 } , C= [ 1 0 } , unmodeled errors and its convergence rate is fast. Obyiousl
as we increase,, towardsl there is a value o€,, for which

whereT" = 1 is the sampling intervaty; = e, wy+(1—€,)n:, LGVM and KF almost coincide. In case 4, the contaminating
wy ~ N(0,Q), z0 = & (i.€., e, = 1), &g ~ N(0, ), v ~ termis a Gaussian with zero mean and variaritie Thus, the

N(0,R), noisew* is normally distributed with zero mean and variance
o 0 0 Quw = 2Q + (1 — €,)?125 ~ 0.4. The width of the IP
P = | Po Q=11 R=r : it
0 0 po |’ 0 ¢ | ; version of the99% credibility interval has been compared

with the true99% credibility interval based o)., = 0.4. The

with po,¢,r > 0. It has also been assumed that the Wverage ratio between the size of the two intervalg.4§23

components of the state are constrained to li¢-imh00, 100] or t — 1, 1.008(t = 2), 1.0027(t = 3) and it converges to
and, _respectivel;{,f?,(), 30]. Sim_ulations hav_e been p_erform_ec£ fter ¢ > 3. Thus, altf,mugh the LGVM does not know the
cons_ldgrlng hoth the system in (52) and _|ts On?'d'me,ns'orHﬁ\taminating term, it is able to correctly determine thdtivi
restriction, i.e., A = 1, C' = 1 etc. Note that, in all simulations

' of the credibility interval, while the KF can only underestite

both LGVM and KF were de_'slgned without assuming thﬁ’s size. For the two-dimensional system, the followingecas
knowledge of the contaminating terms. The aim is to has been simulated:

investigate the relative sensitivity of the KF and the LGV t
(heavy tailed) disturbances of the nominal Gaussian densit Case  ew PDF for n q r/q
The performance of the filters has been investigated comside 5 09999 [0,567/(1—e,)]” 01 1

ing different values of epsilon and different distributsofor

h S A trai 15 i q This can be interpreted as an unmodeled manoeuvre which
the contaminating term,. A trajectory of15 time steps and g only on the second component of the state. For these

3. Mont_e Calrlo size th10f0 ”run_s are cons:]dere?). For t_r:morb(?i'ses, the simulation results are shown in Figure 4. Thisdigu
Imensional system, the following cases have been si aY‘%ports the true trajectory (TS), the averaged KF's estmat

Case €w PDF for n q r/q (KF) and the averaged lower (LP) and upper (UP) means for
1 095 547/(1—€,) 01 1 both components of the state. From Figure 4, upper plothit ca
2 095 567/(1—€,) 0.1 0.1 be noticed that the behaviour of KF and LGVM is similar to
3 0.9999 567/(1—€,) 0.1 1 that discussed above for the one-dimensional system. $n thi
4 0.95 N(0,125) 01 1 plot, we have shown only the fir$d time instants, since after




that all filters converge to the same value. The only diffeeen
w.r.t. the one-dimensional system is that LGVM filter desect
the manoeuvre with a delay of one time instant (i.e., at time
t = 8); this is because the manoeuvre is made on the second
component of the state, which is not directly observablés It
perhaps more interesting to remark the difference betwden K
and LGVM in the lower plot of Figure 4. We can see there that
at timet = 8 the upper mean goes 8% which is the upper
bound for the second component of the state (remember that
we have assumed that this component is constrained to lie in
[—30,30]). This means that the upper mean is vacuous. This
behaviour is due to the lack of observability for the second
component of the state. In fact, the manoeuvre is so stratg th,
the second term in the last equation in (43) becomes dominan
Since this term depends only on the measurement equation
the second component of the state is unobservable and, thus
free to vary during the optimisation. In practice, becaudb®
manoeuvre, the information on the second component carried
by the prior estimate:, is lost at timet = 8, and the LVGM
filter has to estimate it again from the measurements. Thus, i
one sense, the LGVM filter performs a re-initialisation afte
the manoeuvre.

8

Time
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Fig. 4. Case 5&, = 0.9999, r/q = 1.

VIIl. CONCLUSIONS

“ : 0 s In this paper, we have proposed an extension of the classical

filtering problem that allows for imprecision in our knowgs
Fig. 1. Case le, = 0.95, r/q = 1. about the elements of the model, and which is arguably
more realistic in real situations. We have also shown, in a
practical case, that our extension outperforms the Kalman
Software availability filter when modelling errors are present in the system. With

The software implementing the LGVM filter has bee
realized in Matlab. Sources and documentation are availa
at http://www.idsia.chlalessio/.

jespect to future prospects, we can devise at least thres diin
mvestigation. The first might be concerned with deepentieg t
comparison with the classical results. The second mighifoc
on investigating the extension of LGVM to the case where

the contaminating distributions are unimodal and/or syinicie

-+ -Up |4
I TS !
—*—KF 1
i

i

1

i

i

1

i

¢ Cred IP
O Cred KF

‘o ‘ ‘ [31], and also how our filter evolves @s— oo, and which

§ are the conditions for its convergence [32]. We envisagg tha
= under some assumptions similar to those in [21, Sec. 6.10],
our results will hold also for continuous observations, athis
equivalent to assuming infinite precision for the measuréme
instruments. Finally, the third line might be an extensidn o
our approach to model the predictive control of constrained
linear systems affected by stochastic disturbances whieh a
characterized by-contaminated distributions.
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