
1

Robust filtering through coherent lower previsions
A. Benavoli1, M. Zaffalon1, E. Miranda2

Abstract— The classical filtering problem is re-examined to
take into account imprecision in the knowledge about the
probabilistic relationships involved. Imprecision is modeled in
this paper by closed convex sets of probabilities. We derivea
solution of the state estimation problem under such a framework
that is very general: it can deal with any closed convex set
of probability distributions used to characterize uncertainty in
the prior, likelihood, and state transition models. This is made
possible by formulating the theory directly in terms of coherent
lower previsions, that is, of the lower envelopes of the expectations
obtained from the set of distributions. The general solution is
specialized to two particular classes of coherent lower previsions.
The first consists of a family of Gaussian distributions whose
means are only known to belong to an interval. The second is
the so-called linear-vacuous mixture model, which is a family
made of convex combinations of a known nominal distribution
(e.g., a Gaussian) with arbitrary distributions. For the latter case,
we empirically compare the proposed estimator with the Kalman
filter. This shows that our solution is more robust to the presence
of modelling errors in the system and that, hence, appears tobe
a more realistic approach than the Kalman filter in such a case.

Index Terms— Coherent lower previsions, epistemic irrele-
vance, robustness, Kalman filter.

I. I NTRODUCTION

This paper deals with the problem of estimating the state
of a discrete-time stochastic dynamical system on the basis
of observations. One way of approaching this problem is
to assume that the dynamics, the initial condition, and the
observations are corrupted by noise contributors withknown
distributionsand then to find the conditional distribution of the
state given the past observations. This is the so-called Bayesian
state estimation approach.

If the dynamics and observations are linear functions of the
state and the noise contributors are assumed to be Gaussian,
it is well known that the optimal solution of the Bayesian
state estimation problem is the Kalman filter (KF). In the
non-linear/non-Gaussian case, an analytic solution of Bayesian
state estimation is in general not available in closed form
and a numerical or analytical approximation is required. The
extended Kalman filter is the most known analytical approxi-
mation of the Bayesian state estimation problem for non-linear
systems. Conversely, among the numerical techniques, the
ones used most frequently are based on Monte Carlo sampling
methods, see for instance [1], [2], [3].

A common trait to these techniques is that they assume
that the distributions associated with the prior, state transition,
and likelihood functions are perfectly known. However, in
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many practical cases, our information about the system to be
modeled may not allow us to characterize these functions with
single (precise) distributions. For example, in the Gaussian
case, we may only be able to determine an interval that
contains the mean of the Gaussian distribution or, in more
general cases, we may only be able to state that the distribution
of the noise belongs to some set of distributions.

One possible solution to deal with a set of distributions is the
so-calledBayesian sensitivity analysisor Bayesian robustness
[4] approach. Its basic idea is to check the robustness of the
estimate by applying Bayes’ rule to each pair of distributions
in the set of prior and/or in the set of likelihood distributions
in order to form a set of posterior distributions and to check
whether all these posteriors lead to the same conclusions
(e.g., the same estimate or the same credible interval). When
this is the case, we declare that the model (i.e., the sets
of distributions) is robust and that the conclusions from any
particular pair of distributions are reliable. Conversely, when
this is not the case the model is unreliable, and we can devise
three possible ways to overcome the problem.

The first consists of narrowing the sets of prior and like-
lihood functions through additional elicitation or obtaining
additional data, hopefully resulting in an increased robustness.
This approach is not always possible for several reasons (cost,
time, hardness of the problem).

The second alternative consists of replacing the set of
prior/likelihood functions by a single element obtained by
some kind of criterion such as, for instance, “averaging” over
the class as in the hierarchical Bayesian approach. The basic
idea is to consider a (finite) sets of priors and/or likelihoods,
to use observations to compute the corresponding set of poste-
riors and, finally, to average them according to some criterion.
For a review of various techniques for model averaging see
[5], [6], [7]. For instance, in [7] the idea is to estimate the
averaging weights from measurements. In this way, robustness
is gained also through adaptability. Model averaging has
proven to be effective in several practical problems but it also
has some robustness problems w.r.t. the choice of model priors
and model transition probabilities.

The third path to robustness is based on a negative answer to
the following question [4]: When different reasonable priors or
likelihoods yield substantially different answers, is it reason-
able to state that there is a single answer? The idea is then to
deal with all elements of the class of priors/likelihoods. This
leads to alternative models of representation of uncertainty
based on a set of probability distributions, such asp-boxes
for instance. Ap-box [8] is an enclosure of the Cumulative
Distribution Function (CDF) of a random variable,Fl ≤
F ≤ Fu, which is used to model partial ignorance about
specifications of the CDFF , whereFl is the so-called lower



2

distribution andFu upper distribution. Also Choquet capacities
[9] and belief functions [10] can be included in this set of
alternative models, since they can be seen as special cases of
closed-convex sets of probability distributions.

These techniques have also been applied successfully in
many cases. For instance, in [11] ap-box representation of
the set of probability distributions is used for robust esti-
mation. In [12], the KF with a diffuse prior is derived in
the context of belief functions. Other approaches are the set-
valued Kalman filter [13] or the projection-based approach
[14] that model the initial state uncertainty as a convex set
of probability distributions. On the other hand, in [15], both
system and measurement noise are modeled with convex sets
of probability density functions by also assuming that these
convex sets are polytopes (here polytope means the convex
hull of a finite number of distributions). Another possibility
to deal with uncertainty is to consider a worst-case approach
(i.e., to consider the worst-case distribution in the set),leading
to minimax-estimators, as in [16], [17].

We should also like to mention here a slightly different
approach to robustness that is presented in [18], [19] for the
case of linear state models. The authors assume that the dis-
tributions of the noise terms belong to a set of unknown (non-
Gaussian) distributions with known finite second moments.
The main goal in these papers is not to solve the Bayesian
estimation by propagating this set of distributions (and this
is one of the reasons the proposed method differs from the
aforementioned ones and from the one we present in this
paper) but rather to provide a bound for the probability of
the KF estimation error exceeding certain threshold values
(this probabilistic bound is computed in a manner similar
to the Chebyshev inequality). By doing this, a tight outer
approximation of the true confidence intervals for the estimate
of the state provided by the KF can be computed. This is
another reason the proposed method differs from the one we
present in this paper which, conversely, aims to compute exact
robust confidence intervals. A similar path to [18], [19] is
followed in [20]; the method there is based on asymptotic
theory that requires that the distributions of the noise terms
become asymptotically Gaussian.

In this paper, we follow the third path to robustness using
Walley’s theory ofcoherent lower previsions[21], which is
also referred to asImprecise Probability(IP). In this context,
standard probability theory, which models uncertainty by using
a single probability distribution, is referred to asprecise
probability. The choice of Walley’s theory is motivated by the
fact that the alternative models of representation of uncertainty
discussed above can all be regarded as special cases of
coherent lower previsions[21]. A Coherent Lower Prevision
(CLP) is the lower envelope of expectations with respect to a
closed convex set of probability distributions. Thus, CLPscan
be easily interpreted in Bayesian sensitivity analysis, i.e., if
we specify a family of precise models, they determine CLPs
by taking their lower envelopes. However, it is also more
general on some aspects [21]. One important difference in
the context of this paper is related to the modelling of the
notion of independence: with the Bayesian sensitivity analysis
interpretation we must require that all the admissible models

one starts from satisfy the standard notion of independence;
with CLPs, however, there are a number of less restrictive
possibilities [22]. Among these, we shall consider in the sequel
the notion ofepistemic irrelevance. We refer to [21, Sects. 2.10
and 5.9] for a further comparison of the theory of CLPs with
the Bayesian sensitivity analysis approach.

Let us summarize the main contributions of this paper.
We study the problem of estimating the state of a dynamical
system when we do not have enough information to describe
the prior, the state transition and the likelihood models with
(single) precise probabilities. Instead, we shall model our
uncertainty about the variables of interest by means of CLPs,
and derive a solution of the state estimation problem for
the general case of CLPs. Our approach has the following
characteristics. First, we can deal with any closed convex set
of probability distributions used to characterize uncertainty
in the prior, likelihood and state transition models. This is
the main contribution of the paper and generalizes the results
in [11], [13], [14], [15], [17], [18], [19] and [20]. Second,
our solution allows us to work directly with CLPs, i.e., the
lower envelopes of the set of probability distributions. This
is an important difference between our paper and the usual
approaches in literature for state estimation with a closed
convex set of probability distributions [15], which consists
of directly processing the distributions in the set. In those
approaches, an essential assumption is to require the closed
convex set of probability distributions to be a polytope with
finite sets of vertices (in this context vertex means an extreme
point of the set of distributions). Then a Bayesian estimator is
derived by element-wise processing the vertices of the poly-
topes associated with the prior (or to the previously computed
posterior), likelihood and state transition models. A drawback
of this approach is that the number of vertices needed to
characterize the convex sets increases exponentially overthe
number of time steps [15]. This problem is overcome in our
model by working directly with lower envelopes as we do not
need to explicitly compute the vertices. This nevertheless, our
approach guarantees that the conclusions drawn are equivalent
[21] to those we should obtain by element-wise processing the
distributions in the closed convex sets.

Third, we extend the ideas behind Bayesian decision mak-
ing for state estimation to the CLP framework. Bayesian
methodology for decision making provides the estimate which
minimizes the expected posterior risk. If in particular we
consider a squared error loss risk, the Bayesian estimate is
the mean of the posterior distribution. This estimation is
provided in general together with itscredibility region (also
called confidence region), i.e., the region whose probability
of including the true value of the state exceeds a certain
threshold. By extending these ideas to CLPs, we calculate
the lower and upper mean of the state and a robust (CLP-
based) version of the credibility region. In particular, the robust
credibility region is evaluated by determining the minimum
volume region whoselower probabilityof including the true
value of the state exceeds a certain bound. This allows us
to derive more reliable inferences. In this respect, the idea
of computing a robust credibility region is similar to the
approach followed in [18], [19] for decision making. However,
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as already discussed above in this section, our approach differs
from the one in [18], [19] in the way these credibility regions
are derived.

Our general solution is then specialized for two particular
classes of CLPs. The first consists of a family of Gaussian
distributions whose means are only known to lie in an interval.
This model can be used to address estimation problems
based on measurements that are affected by an unknown but
bounded bias but, also, to describe uncertainties in the system
parameters as in [17]. The second is the so-calledlinear-
vacuous mixture[21] or ǫ-contamination model [4], which is
the family of all convex combinations of a known nominal
distribution (e.g., Gaussian) with arbitrary distributions. This
family can be used to address estimation problems in which
we take into account that our model (nominal distribution) can
be inexact and, thus, we perturb (contaminate) it to reflect this
modelling uncertainty. For thelinear-vacuous mixturemodel,
we empirically compare the proposed estimator with the KF
and show that our solution is more robust to modelling errors
and that, hence, it outperforms the KF in such a case. Some
of the preliminary results of this work can be found in [23],
and results on statistical inference with CLPs in finite spaces
can be found in [24].

II. BAYESIAN FILTERING

Let us summarize the basic principles of Bayesian filtering.
Its goal is the estimation of the state variables of a discrete-
time nonlinear system which is “excited” by a sequence of
random vectors. It is assumed that nonlinear combinations of
the state variables corrupted by noise are observed. We have
thus

{

xt+1 = f(t, xt) + wt

yt = h(t, xt) + vt,
(1)

where t is the time,xt ∈ R
n is the state vector at timet,

wt ∈ R
n is the process noise,yt ∈ R

m is the measurement
vector, vt ∈ R

m is the measurement noise andf(·) and
h(·) are known nonlinear functions. Having observed a finite
sequenceyt = {y1, . . . , yt} of measurements, we may, in
general, seek for an estimate of an entire sequence of states
xt = {x0, . . . , xt}.

In the Bayesian framework, all relevant information on
xt = {x0, . . . , xt} at timet is included in the posterior distri-
bution p(xt|yt). In general, a Markov assumption is made to
model the system, which implies the following independence
conditions:

p(xt|xt−1) = p(xt|xt−1), p(yt|xt) =

t
∏

k=1

p(yk|xk).

Using these assumptions the probability density function
(PDF) over all states can be written simply as:

p(xt|yt) = p(xt−1|yt−1)p(xt|xt−1)p(yt|xt)

p(yt|yt−1)
. (2)

In many applications, we are interested in estimatingp(xt|yt),
one of the marginals of the above PDF. This is the so-called

Bayesian filtering problem. We have

p(xt|yt) =
p(xt|yt−1)

p(yt|yt−1)
p(yt|xt)

=

∫

xt−1

dxt−1
p(xt|xt−1)p(yt|xt)p(xt−1|yt−1)

p(yt|yt−1)
.

(3)
From (2) and (3), we see that bothp(xt|yt) andp(xt|yt) can
be obtained recursively. Oncep(xt|yt) has been computed, it
is possible to compute the expected valueE[g(xt)|yt] w.r.t.
p(xt|yt) for any functiong(xt) of interest. A particular case
of Eq. (1) is given by

{

xt+1 = Atxt + wt

yt = Ctxt + vt,
(4)

with wt ∼ N (0, Qt), vt ∼ N (0, Rt), x0 ∼ N (x̂0, P0), and
where the matricesAt, Ct, Qt, Rt are assumed to be known
at each time stept. Then the conditional PDFp(xt|yt) is also
GaussianN (x̂t, Pt) wherex̂t = Atx̂t−1+Lt[yt−CtAtx̂t−1],
Pt = AtPt−1A

T
t + Qt − LtStL

T
t , St = Ct[AtPt−1A

T
t +

Qt]C
T
t + Rt, Lt = [AtPt−1A

T
t + Qt]C

T
t S

−1
t and whereT

denotes the transpose operator. These are the equations of the
Kalman filter.

III. C OHERENT LOWER PREVISIONS

In this section we give an overview of the theory of coherent
lower previsions. This is a theory of probability generalized
to handle imprecisely specified probabilities through setsof
distributions. Despite being a theory of probability, its for-
mulation may look unusual to the reader familiar with more
traditional ways to present probability, and this can make the
theory somewhat uneasy to access. Because of this fact, we
shall point out here informally some of the differences in the
formulations, in order to help the reader have a smoother start
into the theory. In particular, in this section we shall review the
main concepts of CLPs that we shall use later in the paper to
derive the solution of the filtering problem. We refer the reader
to [21] for an in-depth study of coherent lower previsions, and
to [25] for a survey of the theory.

Probability theory is most often defined, after Kolmogorov,
using a triple made of asample space, a sigma algebra, and a
probability functionP . The functions from the sample space
into the real numbers that are measurable with respect to the
sigma algebra are calledrandom variables. The expectation of
a random variable is defined on the basis of the probabilityP .
Conditional probability is also defined usingP but only when
the conditioning event is assigned positive probability byP .

The theory of CLPs has its focus on expectation rather than
probability. We still have the sample space (which is usually
referred to as thepossibility spaceΩ). We also have a set of
random variables, which are calledgambles: these are bounded
functions from the possibility space to the real numbers. The
set of gambles does not need to be concerned with measur-
ability questions, that is, it can be chosen arbitrarily. Finally,
a CLP is defined as a functional, from the set of gambles
to the real numbers, that satisfies some rationality criteria
(self-consistency). This function is conjugate to anotherthat
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is called a coherent upper prevision. The intuition behind the
notions of coherent lower and upper previsions is that of lower
and upper expectation functionals.1 When a CLP coincides
with its conjugate coherent upper prevision, it is called alinear
prevision, and it corresponds with the expectation functional
with respect to a finitely additive probability. In general,a
CLP is in a one-to-one correspondence with a set of linear
previsions, and can therefore be regarded a set of probability
distributions.

When the set of gambles where we apply the CLP are all
indicator functions of events, the CLP is called acoherent
lower probability, and its conjugate is called a coherentupper
probability. When these two functionals coincide, we obtain
the familiar notion of probability. One important remark isthat
in the precise case there is no difference between working with
events (probabilities) or gambles (expectations), and therefore
a linear prevision is always determined by its restriction to
events, which is a finitely additive probability. This is no
longer the case when imprecision enters the picture: a CLP is
not necessarily determined by the coherent lower probability
which is given by its restriction to indicators of events, and
this is why the theory is formulated in general in terms of
gambles [21].

In the conditional framework, the differences between the
precise and the imprecise theories are even more marked. For
instance, a conditional lower prevision can be defined without
any reference to an unconditional one, and it can even be
defined when the conditioning event has (lower or upper)
probability equal to zero [21, Ch. 6]. In a sense, the notion
of conditional lower prevision is the fundamental one, and
the unconditional notion can be derived as a special case.
This change of perspective originates an issue that is not
perceived in the theories that regard conditional probability
as a derived notion: that when we specify a set of conditional
lower previsions, it is not guaranteed that those conditionals
are automatically self-consistent. The theory of CLPs deals
with this problem by imposing a notion calledjoint (or strong)
coherence. This notion implies the existence of a global model
(an unconditional joint lower prevision) which is compatible
with all the CLPs. Even more strongly, joint coherence also
prevents some inconsistencies to arise when conditioning on
sets of zero lower probability [21, Ch. 7], which is not
guaranteed by the existence of the global model alone.

A. Main definitions and results

Consider variablesZ1, . . . , Zn, taking values in the sets
Z1, . . . ,Zn, respectively. For any subsetJ ⊆ {1, . . . , n} we
shall denote byZJ the (new) variableZJ = (Zj)j∈J , which
takes values in the product spaceZJ = ×j∈JZj . We shall also
use the notationZn for Z{1,...,n}. This will be our possibility
space in this paper. Note that, with this notation, we can deal
with both sets of variables or sets of vectors.
Definition 1. For any subsetJ of {1, . . . , n}, a gamblef on
ZJ is a bounded real-valued functionf : ZJ → R. The set of
all gambles onZJ is denoted byL(ZJ ). �

1The reason we use the terms previsions for expectations and gambles for
utility functions is because the theory of CLPs is based on the behavioral
subjective approach to probability (see Remark 1 later on for more details).

A gamble represents an uncertain reward which depends on
the a priori unknown valueZJ = zJ , i.e., if zJ turns out to be
the true value ofZJ , we receive an amountf(zJ) of utility.2

Definition 2. Consider two disjoint subsetsO 6= ∅, U of
{1, . . . , n}. We callEZO

(·|ZU ) a conditional linear prevision
on the set of gamblesL(ZO∪U ), if the following conditions
hold for all zU ∈ ZU , f, g ∈ L(ZO∪U ),3 andλ > 0:

• EZO
(f |zU ) ≥ infZO×{zU} f .

• EZO
(λf |zU ) = λEZO

(f |zU ).
• EZO

(f + g|zU ) = EZO
(f |zU ) + EZO

(g|zU ).
If U = ∅, this functional is called an(unconditional) linear
previsionEZO

(·).4 �

Note that linear previsions correspond to expectations.
Hence, ifEZO

is a linear prevision onL(ZO), then we can
define a mass functionpZO

on the power set ofZO as follows:
pZO

(A) = EZO
(IA), whereIA is theindicator functionof the

subsetA of ZO, given byIA(w) = 1 if w belongs toA, and
IA(w) = 0 otherwise. It turns out that the functionalpZO

thus
defined is a (finitely additive) probability measure, andEZO

is the expectation with respect topZO
. For instance, whenZO

is discrete, we have the equality

EZO
(f) =

∑

zO∈ZO

f(zO)pZO
(zO).

We can make a similar comment for conditional linear
previsions: if EZO

(·|ZU ) is a conditional linear prevision
on the set of gamblesL(ZO∪U ), then for everyzU ∈ ZU

the functionalEZO
(·|zU ) is the conditional expectation with

respect to a probabilitypZO
(·|zU ).

Definition 3. Consider two disjoint subsetsO 6= ∅, U of
{1, . . . , n}. We callEZO

(·|ZU ) a separately coherent condi-
tional lower previsionon the set of gamblesL(ZO∪U ), if it is
the lower envelope of a closed and convex set of conditional
linear previsions, which we denote byM(EZO

(·|ZU )),i.e., if
for all zU ∈ ZU it holds that

EZO
(f |zU ) = inf

{

EZO
(f |zU ) : EZO

(·|zU ) ∈ M(EZO
(·|zU ))

}

.
(5)
�

Lower previsions can be regarded aslower expectation
functionals. Conditional lower previsions can also be given
the following axiomatic characterisation:
Theorem 1.EZO

(·|ZU ) is a separately coherentconditional
lower prevision on the set of gamblesL(ZO∪U ) if and only
if the following conditions hold for allzU ∈ ZU , f, g ∈
L(ZO∪U ) andλ > 0:

(SC1) EZO
(f |zU ) ≥ infZO×{zU} f .

(SC2) EZO
(λf |zU ) = λEZO

(f |zU ).
(SC3) EZO

(f + g|zU ) ≥ EZO
(f |zU ) + EZO

(g|zU ).
�

2In the filtering problem,f can be the state variable (to compute the mean),
the quadratic-error (to compute the variance), etc.

3Note that in the domainL(ZO∪U) we can also include the gamblesf on
ZO, by making a correspondence with a gamblef ′ given byf ′(zO∪U ) :=
f(zO) for each compatiblezO ∈ ZO andzO∪U ∈ ZO∪U .

4As discussed at the beginning of this section, we can regard the notion of
conditional previsions as the fundamental one, and the unconditional notion
as a special case.
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The necessity of the conditions (SC1)–(SC3) in this theorem
can easily be established using Expression (5): for instance,
in the case of (SC3) we can use the linearity of the ex-
pectation operatorEZO

(·|zU ) to see thatEZO
(f + g|zU) =

EZO
(f |zU ) + EZO

(g|zU ) for eachf, g ∈ L(ZO∪U ). Using
now Eq. (5) together with the fact thatinf[EZO

(f |zU ) +
EZO

(g|zU )] ≥ inf EZO
(f |zU ) + inf EZO

(g|zU ), we deduce
(SC3).

The (conditional) lower prevision of a gamble can be
regarded as a lower bound for its expectation. Any con-
ditional lower prevision is conjugate to another functional,
called conditionalupper prevision, and which is given by
EZO

(f |zU ) = −EZO
(−f |zU ) for all gamblesf . A con-

ditional upper prevision is called separately coherent when
its conjugate conditional lower prevision is, and in that case
it is the upper envelope of the setM(EZO

(·|ZU )). Upper
previsions can be regarded asupper expectationfunctionals.
A conditional linear prevision corresponds to the case where a
conditional lower prevision coincides with its conjugate upper
prevision, i.e.,EZO

(f |zU ) = EZO
(f |zU ). More generally, we

have
EZO

(f |zU ) ≤ EZO
(f |zU ) ≤ EZO

(f |zU )

for anyEZO
(·|zU ) ∈ M(EZO

(·|zU )).
The representation of CLPs in terms of sets of linear pre-

visions allows us to give them aBayesian sensitivity analysis
representation. Assume that, because of lack of knowledge
about the probability of the differentf(zO) for all zO ∈ ZO,
we are not able to define the expected utility (linear prevision)
EZO

(·|zU ) for f , but only to placeEZO
(·|zU ) among a set

of possible candidates,M(EZO
(·|zU )). Then the inferences

we can make fromM(EZO
(·|zU )) are equivalent to the ones

we can make using the lower envelopeEZO
(·|zU ) of this set.

This lower envelope is a CLP. Hence, all the developments
we make with CLPs can also be made with the set of their
associated expectation operators, which are linear previsions.
In this sense, there is a strong link between this theory and
robust Bayesian analysis [4].
Remark 1. Stemming from de Finetti’s[26] work on subjective
probability, coherent lower previsions can also be given a
behavioural interpretation in terms of buying and selling
prices. Let us briefly sketch how this is done.

If we interpret a gamblef on ZJ as a random reward,
which depends on the a priori unknown valueZJ = zJ , then
the previsionEZJ

(f) represents a subject’s fair price for the
gamblef . This means that he should be disposed to accept
the uncertain rewardsf − EZJ

(f) + ǫ (i.e., to buy f at the
price EZJ

(f)− ǫ) andEZJ
(f)− f + ǫ (i.e., to sell f at the

price EZJ
(f) + ǫ) for everyǫ > 0.

More generally, the supremum acceptable buying price and
the infimum acceptable selling prices for a gamble need not
coincide, meaning that there may be a range of prices[a, b]
for which our subject is neither disposed to buy nor to sellf
at a price k ∈ [a, b]. His supremum acceptable buying price
for f is then his lower previsionEZJ

(f), and it holds that
the subject is disposed to accept the uncertain rewardf −
EZJ

(f) + ǫ for every ǫ > 0; and his infimum acceptable
selling price for f is his upper previsionEZJ

(f), meaning

that he is disposed to accept the rewardEZJ
(f) − f + ǫ

for everyǫ > 0. A consequence of this interpretation is that
EZJ

(f) = −EZJ
(−f) for every gamblef on ZJ .

Similarly, given a gamblef on ZO∪U and zU ∈ ZU ,
the conditional lower previsionEZO

(f |zU ) represents the
subject’s supremum acceptable buying price for the uncertain
reward modelled byf , if he comes to know that the variable
ZU has taken the valuezU . The conditional upper prevision
EZO

(f |zU ) is then the subject’s infimum acceptable selling
price for the uncertain reward modelled byf , if he comes
to know that the variableZU has taken the valuezU . Again,
EZO

(f |zU ) = −EZO
(−f |zU ) for any gamblef on ZO∪U

and anyzU ∈ ZU . �

As we said before, in the case of linear previsions we
have the equalityEZO

(f |zU ) = EZO
(f |zU ). This means

that the setM(EZO
(·|zU )) includes a single linear prevision

EZO
(f |zU ). In this sense, we can see the classical expectation

operatorEZO
(f |zU ) as the most informative CLP. On the

other extreme, the least informative CLP is the so-called
vacuous prevision:
Example 1. Given a subsetKO of ZO, the vacuous lower
previsionEZO

on L(ZO) is given by

EZO
(f |zU ) = inf

zO∈KO

f(zO).

It is associated to the set of linear previsionsM(EZO
) =

{EZO
: EZO

(KO) = 1}. It corresponds to the case where all
the information we have is that the probability ofKO is 1.

Similarly, we can definevacuous conditional lower previ-
sionsEZO

(·|ZU ). Here, for eachzU we can letEZO
(·|zU ) be

the vacuous CLP relative to someKzU
O ⊆ ZO, given by

EZO
(f |zU ) = inf

zO∈K
zU
O

f(zO, zU );

note thatKzU
O ⊆ ZO can vary with eachzU ∈ ZU . In this

case, the setM(EZO
(·|zU )) would be those linear previsions

satisfyingEZO
(KzU

O |zU ) = 1 for everyzU ∈ ZU . �

Linear and vacuous previsions are two examples of CLPs.
It follows from [21, Ch. 2] that we can construct CLPs by
making convex combinations of the two. This gives rise to
a special class of lower previsions that we introduce in the
following example:
Example 2. For eachzU ∈ ZU , consider a linear prevision
E∗

ZO
(·|zU ) and a subsetKO(zU ) ⊆ ZO and0 ≤ ǫ ≤ 1. Define

EZO
(·|zU ) by

EZO
(f |zU ) = ǫE∗

ZO
(f |zU ) + (1− ǫ) inf

zO∈KO(zU )
f(zO)

for any f ∈ L(ZO∪U ). The CLPEZO
(·|ZU ) we can define

in this way is called alinear-vacuous mixture. It is the lower
envelope of the so calledǫ-contamination model[4], that is
the class of the convex combinations ofE∗

ZO
(·|zU ) with any

linear previsionEZO
(·|zU ) that is associated to the vacuous

model with respect toKzU
O , or, in other words, such that

EZO
(KzU

O |zU ) = 1. �

There are three additional features of the theory of coherent
lower previsions that we shall use in our solution to the
filtering problem. The first one is called thegeneralized Bayes
rule (GBR) [21, Sect. 6.4].
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Definition 4. LetEZO∪U
be an (unconditional) coherent lower

prevision, and letEZO∪U
(·|ZU ) be a separately coherent CLP.

It is said to satisfy the generalized Bayes rule withEZO∪U

when for everyzU ∈ ZU and every gamblef ∈ L(ZO∪U ) the
valueEZO

(f |zU ) satisfies

EZO∪U
[I{zU}(f − EZO

(f |zU ))] = 0. (6)

�

When EZO∪U
(I{zU}) = EZO∪U

(I{zU×ZO}) = 0, Eq. (6)
may have an infinite number of possible solutions, the
smallest of which isinfω∈{{zU}×ZO} f(ω); however, when
EZO∪U

(I{zU}) > 0 there is only one value ofEZO
(f |zU )

satisfying Eq. (6). Hence, in that case we can use GBR to
derive a separately coherent CLP from an unconditional one.

This rule generalizes Bayes’ rule from classical probability
theory to CLPs. When it holds thatEZO∪U

(I{zU}) > 0 and
we defineEZO

(f |zU ) via the Generalized Bayes Rule, then
it is the lower envelope of the conditional linear previsions
EZO

(f |zU ) that we can define using Bayes’ rule on the
elements ofM(EZO∪U

), as we detail next:
Example 3. From Eq.(6), it follows that0 = EZO∪U

[I{zU}(f−
µ)] is equal to

inf
{

EZO∪U
[I{zU}(f − µ)] : EZO∪U

∈ M(EZO∪U
)
}

= inf
{

EZO∪U
(I{zU}f)− µEZO∪U

(I{zU})

: EZO∪U
∈ M(EZO∪U

)
}

.

Assume now that EZO∪U
(I{zU}) > 0 and thus

EZO∪U
(I{zU}) > 0 for all EZO∪I

∈ M(EZO∪U
). Then

the above infimum is equal to

inf

{

EZO∪U
(I{zU})

[

EZO∪U
(I{zU}f)

EZO∪U
(I{zU})

− µ

]

: EZO∪U
∈ M(EZO∪U

)

}

.

Hence, solving w.r.t.µ, it follows that the unique solution is:

µ = inf

{

EZO∪U
(I{zU}f)

EZO∪U
(I{zU})

: EZO∪U
∈ M(EZO∪U

)

}

= inf
{

EZO
(f |zU ) : EZO∪U

∈ M(EZO∪U
)
}

.
(7)
�

We introduced earlier in this section the notion of separate
coherence, which states that the information provided by a
CLP is self-consistent. However, when we have more than one
CLP we must verify the consistency of all the assessments
taken together. This is what we calljoint coherence, and it
is studied in much detail in [21, Ch. 7]. This notion implies
the existence of a global model (an unconditional joint lower
prevision) which is compatible with all the CLPs. Even more
strongly, joint coherence also prevents some inconsistencies
to arise when conditioning on sets of zero lower probability,
which is not guaranteed by the existence of the global model
alone. It turns out that joint coherence becomes GBR when
we have one conditional and one unconditional CLP, and when
the sample spaces are finite. The intuition of joint coherence
in that case is that, according to Eq. (7), each conditional

linear prevision inM(EZO
(·|ZU )) is obtained by applying the

classical Bayes rule on a joint linear prevision inM(EZO∪U
).

When we have hierarchical information, i.e., a finite number
of CLPs conditional on a sequence of nested variables, a
way to combine them into an unconditional coherent lower
prevision while maintaining the property of joint coherence
is by means of a procedure calledmarginal extension[21,
Theorem 6.7.2], [27]. It is a generalisation of the law of total
probability, or chain rule:
Definition 5. LetEZO1

, EZO2

(·|ZU2
), . . . , EZOm

(·|ZUm
) be

separately coherent conditional lower previsions with respec-
tive domainsL(ZO1

),L(ZO1∪U1
), . . . ,L(ZOm∪Um

), where
U1 = ∅ and Uj = ∪j−1

i=1 (Ui ∪ Oi) = Uj−1 ∪ Oj−1 for
j = 2, . . . ,m. Their marginal extensionto L(Zn) is given
by

E(f) = EZO1

(EZO2

(. . . (EZOm
(f |ZUm

)| . . . )|ZU2
)), (8)

and it is CLP. �

This procedure becomes the law of total probability in the
case of linear previsions and finite spaces. But it is applicable
in more general situations: for instance, when we are dealing
with infinite spaces or when we have lower previsions instead
of linear ones [27].

We conclude this section by recalling the notion ofepis-
temic irrelevance, which generalizes to CLPs the notion of
independence between variables [21, Sec. 9.1.1].5

Definition 6. Given the coherent lower prevision
EZi

(·|Zj , Zk), we say thatZj is epistemically irrelevant
to Zi conditional on Zk if there is EZi

(·|Zk) such that
EZi

(·|Zj , Zk) = EZi
(·|Zk). �

In other words, this means that we have the following
equality:

EZi
(f |zj, zk) = inf

{

EZi
(f(·, zj, zk)|zj , zk)

: EZi
(·|zj , zk) ∈ M(EZi

(·|zj , zk))
}

= inf
{

EZi
(f(·, zj, zk)|zk)

: EZi
(·|zk) ∈ M(EZi

(·|zk))
}

= EZi
(f |zk), (9)

for all f ∈ L(Zi × Zj × Zk), zj ∈ Zj and zk ∈ Zk.
Note that epistemic irrelevance imposes the equality between
the infima, but does not make any additional constraints on
the corresponding linear previsions inM(EZi

(·|zj , zk)) and
M(EZi

(·|zk)).

IV. GENERALISATION OF BAYESIAN STATE ESTIMATION

In this section, we generalize the Bayesian state estimation
discussed in Sec. II to Walley’s theory of coherent lower
previsions, and show that Bayesian state estimation is included
in our model as a particular case.

The aim of Bayesian state estimation is to compute the
conditional linear prevision ofXt given {Y1 = y1, Y2 =
y2, . . . , Yt = yt}, EXt

[·|Y t = yt]. Hereafter we assume

5Other possible generalisations of independence for CLPs can be found in
[21, Ch. 9]. In this paper we shall restrict our attention to epistemic irrelevance.
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Xk ∈ Xk and Yk ∈ Yk for eachk, whereXk and Yk are
bounded subsets ofRn andRm, respectively. Assume that the
available information does not allow us to specify a unique
probability measure describing each source of uncertaintyin
the dynamical system. We can then use CLPs to model the
available knowledge. Consider CLPsEX0

, EXk
[·|Xk−1] and

EYk
[·|Xk] for k = 1, . . . , t, and let us derive from them a

separately coherent conditional lower previsionEXt
[·|yt]. Let

EXt,Y t be a CLP inZO∪U = Xt ∪ Y t, g : Xt → R gamble
andyt ∈ Yt. According to GBR in Eq. (6),

EXt
[g|yt] = µ s.t. EXt,Y t [I{yt}(g − µ)] = 0 (10)

and there is a uniqueµ satisfying this equation when
EXt,Y t

[

I{yt}

]

> 0. However, in the continuous case the
probability that the random variable assumes a particular
value is zero, which in our context means that we may
haveEXt,Y t

[

I{yt}

]

= 0; this would imply that GBR does
not define a unique conditional lower prevision. A way to
overcome this problem in classical probability is to regard
the measurementsyk for any k = 1, . . . , t as idealisations
of discrete events̃yk = B(yk, δ), whereB(yk, δ) are nested
neighborhoods ofyk with positive probability and which
converge to{yk} as their radiusδ > 0 decreases to zero. For
instance, whenyk is a real variable, the neighborhoods might
have the formB(yk, δ(yk)) = {zk : |zk − yk| ≤ δ(yk)}.6

The assumption of discrete measurements also makes sense
in practice because of the finite precision of the instruments.
Having these ideas in mind, we shall assume that the sets
Yk we work with are finite (yk being in fact a representation
of B(yk, δ(yk))), and thatEXt,Y t [I{ỹt}] > 0; this allows us
to apply GBR and thus to solve (10). Furthermore, to make
things compatible with Sec. III, we assume thatg is a bounded
real-valued function.
Lemma 1. Consider the state vectorXk ∈ Xk and the
measurements vector̃Yk ∈ Ỹk for each k and assume that
the CLPsEX0

, EXk
[·|Xk−1] and EỸk

[·|Xk] are known for
k = 1, . . . , t. Furthermore, assume that, for eachk = 1, . . . , t,
Xk−2 and Ỹ k−1 are epistemically irrelevant toXk given
Xk−1 and thatXk−1 and Ỹ k−1 are irrelevant to Ỹk given
Xk, meaning that

EXk
[h1|xk−1, ỹk−1] = EXk

[h1|xk−1], (11)

EỸk
[h2|xk, ỹk−1] = EỸk

[h2|xk], (12)

∀h1 ∈ L(X k × Yk−1), h2 ∈ L(X k × Yk), xk, ỹk−1. Then,
given the sequence of measurementsỹt = {ỹ1, ỹ2, . . . , ỹt}, a
gambleg : Xt → R, and a constantµ ∈ R, it holds that:

EXt,Y t [I{yt}(g − µ)] = EX0

[

EX1

[

EỸ1

[

. . . EXt

[

EỸt

[

I{ỹt}(g − µ)
∣

∣

∣Xt,
]∣

∣

∣Xt−1

]

. . .
∣

∣

∣X1

]∣

∣

∣X0

]]

.

(13)
�

Proof: By exploiting the marginal extension defined in Eq.(8),

6In general, the precision of the neighborhood, measured here by δ(yk)
may depend also onyk.

the jointEXt,Y t [I{yt}(g − µ)] can be written as

EX0

[

EX1

[

EỸ1

[

. . . EXt

[

EỸt

[

I{ỹt}(g − µ)
∣

∣

∣Xt, Ỹ t−1
]

∣

∣

∣Xt−1, Ỹ t−1
]

. . .
∣

∣

∣X1, X0

]∣

∣

∣X0

]

.

This can be rewritten as

EXt−1,Ỹ t−1

[

EXt

[

EỸt

[

I{ỹt}(g − µ)
∣

∣

∣Xt
] ∣

∣

∣Xt−1
]

]

,

(14)
whereEXt−1,Ỹ t−1 is the joint lower prevision onL(X t−1 ×
Yt−1) which can be obtained by applying marginal exten-
sion recursively fromEỸk

[·|Xk] and EXk
[·|Xk−1] for k =

1, . . . , t − 1. By exploiting the fact thatI{ỹt} = I{ỹt}I{ỹt−1}

and that I{ỹt−1} does not depend onyt, we deduce from
[21, Prop. 6.2.6(ℓ)] that (14) is equivalent to

EXt−1,Ỹ t−1

[

I{ỹt−1}EXt

[

EỸt

[

I{ỹt}(g − µ)
∣

∣

∣Xt
] ∣

∣

∣Xt−1
]

]

.

Hence, by exploiting conditions(11)–(12) and the fact that the
gamble of interestg is a function ofxt only, we obtain that
EXt

[EỸt
[I{ỹt}(g − µ)|Xt]|Xt−1] is a function ofXt−1 only.

Hence,

EXt

[

EỸt

[

I{ỹt}(g − µ)
∣

∣

∣Xt
] ∣

∣

∣Xt−1
]

= EXt

[

EỸt

[

I{ỹt}(g − µ)
∣

∣

∣Xt

] ∣

∣

∣Xt−1

]

.
(15)

By applying the above step recursively,(13) follows. �

Note that the fact thatg depends only onxt is essential for
the equivalence between (13) and (14). If for instanceg was
instead a function ofxt−2, the lower prevision in the left-hand
side member of (15) would be equal toEXt

[

EỸt
[I{ỹt} (g −

µ)|Xt, Xt−2]
∣

∣

∣Xt−1, Xt−2

]

. An example in this sense can be
found in [28, Sec. 7].

Lemma 1 states that we can write the joint CLP
EXt,Y t [I{yt}(g − µ)] as a “nested function” of the CLPs
EX0

(prior), EXk
[·|Xk−1] (state transition) andEỸk

[·|Xk]
(likelihood). Given the joint, we can compute the target
conditional CLP EXt

[g|ỹt] as discussed in the following
theorem.

Theorem 2. Consider the same assumptions as in Lemma 1
and assume thatEXt,Y t [I{ỹt}] > 0 for any sequence of
measurements̃yt. Then, givenỹt = {ỹ1, ỹ2, . . . , ỹt} and a
gambleg : Xt → R, EXt

[g|yt] is the unique valueµ∗ such
that µ∗ = argµ

(

EX0
[g0] = 0

)

, with

gk−1(xk−1, µ) = EXk

[

gk

(

I{gk≥0}EỸk
[I{ỹk}|Xk]

+ I{gk<0}EỸk
[I{ỹk}|Xk]

)∣

∣

∣
xk−1

]

,

(16)
for k = 1, . . . , t, where I{gk≥0} is the indicator of the set
{xk : gk(xk, µ) ≥ 0}, I{gk<0} is the indicator of its
complement andgt(xt, µ) = g(xt)− µ. �
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Proof: From Eqs.(10) and (15), we obtain

0 = EXt−1,Ỹ t−1

[

I{ỹt−1} EXt

[

EỸt
[I{ỹt} gt|Xt]

∣

∣

∣Xt−1

]

]

= EXt−1,Ỹ t−1

[

I{ỹt−1} EXt

[

gt

(

I{gt≥0}EỸt
[I{ỹt}|Xt]

+ I{gt<0}EỸt
[I{ỹt}|Xt]

)∣

∣

∣Xt−1

]

]

= EXt−1,Ỹ t−1

[

I{ỹt−1} gt−1

]

,

(17)
wheregt−1 is given by

gt−1 = EXt

[

gt

(

I{gt≥0}EỸt
[I{ỹt}|Xt]

+ I{gt<0}EỸt
[I{ỹt}|Xt]

)∣

∣

∣Xt−1

]

.
(18)

Note that the second equality in(17) follows from the fact
that EỸt

[I{ỹt} gt|Xt] is equivalent toEỸt
[I{ỹt} gt(I{gt≥0} +

I{gt<0})|Xt]. Sincegt I{gt≥0} and−gt I{gt<0} are both non-
negative and constant w.r.t.̃yt, we can apply Axiom(SC2) to
deduce that

EỸt
[I{ỹt} gt(I{gt≥0} + I{gt<0})|Xt]

= gt(I{gt≥0})EỸt
[I{ỹt}|Xt] + (−gt(I{gt<0}))EỸt

[−I{ỹt}|Xt]

= gt(I{gt≥0})EỸt
[I{ỹt}|Xt] + gt(I{gt<0})EỸt

[I{ỹt}|Xt].

In fact, gt ≥ 0 implies thatgtI{gt≥0} ≥ 0 and I{gt<0} = 0,
whencegtI{gt≥0} is a positive constant and Axiom(SC2) can
be applied to obtain the first term of the above sum. Similarly,
when gt < 0 we have that−gtI{gt<0} ≥ 0 and I{gt≥0} =
0, and using the conjugate relationshipE[−g] = −E[g] for
CLPs and Axiom(SC2), the second term of the sum follows.

Now, in (18) the only unknown quantities ingt−1 areXt−1

and µ. If we proceed recursively in this way, from(17) we
obtainEx0

[g0] = 0, where

g0 = EX1

[

g1

(

I{g1≥0}EỸ1

[

I{ỹ1}

∣

∣

∣X1

]

+ I{g1<0}EỸ1

[

I{ỹ1}

∣

∣

∣X1

])∣

∣

∣X0

]

.

(19)

Finally, by solvingEx0
[g0] = 0 w.r.t. µ we can deriveµ∗ =

EXt
[g(xt)|ỹt]. �

A nice side feature of the model presented in (16) is that,
as it is shown in [23],EXt,Ỹ t is jointly coherent with all the
initial assessments and withEXt

[·|ỹt]. This means that our
model is self-consistent.

Let us show that the above derivation includes as a particular
case Bayesian state estimation, once we express the elements
of the model under the formalism of CLPs. We shall assume
thus that our inputs are linear previsionsEX0

, EXk
[·|Xk−1]

andEỸk
[·|Xk] and use their linearity to obtain a more compact

solution.
Corollary 1. Consider the same assumptions as in Theo-
rem 2 and assume moreover thatEX0

[·] = EX0
[·] =

EX0
[·], EXk

[·|Xk−1] = EXk
[·|Xk−1] = EXk

[·|Xk−1] and

EỸk
[·|Xk] = EỸk

[·|Xk] = EỸk
[·|Xk]. Then EXt

[g|ỹt] =

EXt
[g|ỹt] = EXt

[g|ỹt], where:

EXt
[g|ỹt] =

EXt−1

[

EXt

[

gEỸt
[I{ỹt}|Xt]

∣

∣

∣
Xt−1

]∣

∣

∣
ỹt−1

]

EXt−1

[

EXt

[

EỸt
[I{ỹt}|Xt]

∣

∣

∣Xt−1

]∣

∣

∣ỹt−1
] .

(20)
�

Proof: Consider Eq. (17). Since EỸk
[I{ỹk}|Xk] =

EỸk
[I{ỹk}|Xk] = EỸk

[I{ỹk}|Xk], we have

I{gk≥0}EỸk

[

I{ỹk}

∣

∣

∣Xk

]

+ I{gk<0}EỸk

[

I{ỹk}

∣

∣

∣xk

]

, (21)

is equal toEỸk
[I{ỹk}|Xk] and, replacing CLPsE with the

corresponding linear previsionsE in (17), we obtain

0 = EXt−1,Ỹ t−1

[

I{ỹt−1} EXt

[

gtEỸt
[I{ỹt}|Xt]

∣

∣

∣Xt−1

]

]

= EXt−1,Ỹ t−1

[

I{ỹt−1}gt−1

]

,

(22)
wheregt−1 = EXt

[

gtEỸt
[I{ỹt}|Xt]

∣

∣

∣Xt−1

]

. If we replace now

gt−1 with gt−1−EXt−1
[gt−1|ỹt−1]+EXt−1

[gt−1|ỹt−1] in the
last equality in(22), we obtain

EXt−1,Ỹ t−1

[

I{ỹt−1}

(

gt−1 − EXt−1
[gt−1|ỹt−1]

+ EXt−1
[gt−1|ỹt−1]

)]

= EXt−1,Ỹ t−1

[

I{ỹt−1}

(

gt−1 − EXt−1
[gt−1|ỹt−1]

)]

+ EXt−1,Ỹ t−1

[

I{ỹt−1}EXt−1
[gt−1|ỹt−1]

]

= 0 + EXt−1,Ỹ t−1

[

I{ỹt−1}EXt−1
[gt−1|ỹt−1]

]

= EXt−1,Ỹ t−1 [I{ỹt−1}]EXt−1
[gt−1|ỹt−1],

(23)
where the first equality follows by the linearity property of
linear previsions, the second is a consequence of Bayes’ rule
(GBR) and the third follows again from linearity. Hence,

0 = EXt−1,Ỹ t−1 [I{ỹt−1}]EXt−1
[gt−1|ỹt−1]

= EXt−1,Ỹ t−1 [I{ỹt−1}]

· EXt−1

[

EXt

[

gtEỸt
[I{ỹt}|Xt]

∣

∣

∣Xt−1

]

∣

∣

∣

∣

∣

ỹt−1

]

= EXt−1,Ỹ t−1 [I{ỹt−1}]

· EXt−1

[

EXt

[

gEỸt
[I{ỹt}|Xt]

∣

∣

∣Xt−1

]

∣

∣

∣

∣

∣

ỹt−1

]

− µEXt−1,Ỹ t−1 [I{ỹt−1}]

· EXt−1

[

EXt

[

EỸt
[I{ỹt}|Xt]

∣

∣

∣Xt−1

]

∣

∣

∣

∣

∣

ỹt−1

]

.

(24)

The term that multipliesµ is just EXt,Ỹ t [I{ỹt}], which has
been assumed positive by hypothesis. Thus we can solve(24)
w.r.t. µ obtaining(20). �

Assuming some regularity conditions [21, Sec. 6.10.4], as
the radiusδ(yk) of the neighborhoods̃yk = B(yk, δ(yk))
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converges to0 for k = 1, . . . , t, we obtain Bayes’ rule for
conditional PDFs, i.e.,EXt

[g|yt] is equal to:
∫

xt−1

∫

xt

g(xt) p(xt|xt−1)p(xt−1|yt−1)p(yt|xt)dxtdxt−1

∫

xt−1

∫

xt

p(xt|xt−1)p(xt−1|yt−1)p(yt|xt)dxtdxt−1
.

(25)
Hence,EXt

[g|yt] is a linear functional which is completely de-
termined by the PDFsp(xt|xt−1), p(xt−1|yt−1) andp(yt|xt).

If we compare Eqs. (17)–(19) with (20)–(23), we see that
in the imprecise case we cannot derive an expression for the
conditional lower prevision similar to (20). This is due to the
fact that CLPs are super-additive (see Axioms (SC2)–(SC3))
instead of linear and therefore we cannot reproduce steps
(20)–(23). Hence, in order to computeEXt

[g(xt)|ỹt] in the
imprecise case, it becomes necessary to go through the joint,
i.e., to propagate back in time the functionalgt until the initial
state is reached, and then to find the value ofµ which satisfies
Ex0

[g0] = 0. This means that each step can be heavy from
a computational point of view. Possible ways to overcome
this computational issue are: (i) to find classes of CLPs for
which the computation of (16) is feasible; (ii) to truncate the
recursion afterN steps in the past by finding a CLP which
approximatesEXt−N

[g|ỹt−N ]. Concerning the first point, ex-
amples of lower previsions, for which the solution of (16) is
affordable, are discussed in Sects. V–VI. The idea of trun-
cating the recursion afterN steps in the past is based on the
intuition that the influence of the past on the present decreases
at time goes by. According to this intuition, if we are able
to find an approximationQ

Xt−N
[g|ỹt−N ] of EXt−N

[g|ỹt−N ]

which, for anyg, is easier to compute thanEXt−N
[g|ỹt−N ]

and such thatQ
Xt−N

[g|ỹt−N ] ≤ EXt−N
[g|ỹt−N ], we could

use Q
Xt−N

[g|ỹt−N ] as the new priorEXt−N
from which

to start the recursion (16). Note thatQ
Xt−N

will no longer
satisfy joint coherence with the local assessments; however,
the adverse effects of this approximation will decrease as we
increaseN .

A. Decision making and estimation

We conclude this section by discussing briefly the decision
making approach to estimation, which will be used later in
the paper. The Bayesian methodology provides the estimate
which minimizes the expected posterior risk. If in particular
we consider a squared error loss risk, the Bayesian estimate
is the mean of the posterior distribution. This estimation is
provided in general together with itscredibility region: a
100(1−α) credibility region for a scalar random variablex is
a regionχ such thatE(I{x∈χ}) = P (x ∈ χ) = 1− α, where
P (·) is the posterior distribution. When we consider sets of
probabilities, we deal with lower and upper expectations and,
thus, with interval-valued expectations[E(·), E(·)], leading to
the problem of decision making under imprecision [21]. A
consequence of imprecision is that, when the lower and upper
expectations are substantially different, we must abandonthe
idea of choosing a unique value for the estimate.

With this in mind, the path followed in this paper is that
of extending Bayesian decision making to the IP framework

by calculating the lowerE(xt) and upperE(xt) means and
an IP version of the credibility region. In particular, the IP
credibility region is evaluated by seeking the minimum volume
regionχ such thatE(I{x∈χ}) > 1− α. It is easy to see that,
in the precise case, the IP credibility region coincides with the
Bayesian one and thatE(xt) = E(xt) = x̂t.

V. B IASED MEASUREMENT NOISE

Let us consider next the linear time-invariant system in
(4) but in the scalar case, i.e.,xy , yk ∈ R for each k. It
is not difficult to generalize the results in this section to
the case wherext and yt are vectors. We assume all the
hypotheses for the KF given in Sec. II apart from those of
continuous measurements and zero-mean measurement noise.
In particular, we assume that discrete measurements of the
state are available and that the uncertainty on the measurement
process can be represented with alinear prevision

EỸk
(h|xk, θk) =

∑

ỹk

h(ỹk)

∫

zk

I{ỹk}(zk)N (zk;Cxk+θk, R) dzk,

(26)
where θk is the mean of the measurement noise at timet.
Hence, the measurement noise has a non-zero bias. We assume
that the only knowledge aboutθk, for k = 1, . . . , t, is that
θL ≤ θk ≤ θU , where the known scalarsθL, θU define a
bounded interval inR. We model the lack of information about
the valueθk of the variableΘk by using a vacuous prevision
(see Example 1):EΘk

(g) = inf
θk∈[θL,θU ]

g(θk), for all gambles

g. Observe that, for the gambleg(θk) = θk, this model implies
that EΘk

(g) = θL andEΘk
(g) = θU which, thus, describes

our prior knowledge onΘk. In the derivations in Sec. IV, the
measurement process is described by the CLPEỸk

(h|Xk).
We can obtain this CLP fromEỸk

(·|xk, θk) and EΘk
(·) by

marginalisation ofθk:

EỸk
(h|Xk) = EΘk

[

EỸk
(h|Xk,Θk)

]

,

where h is a gamble inL(X k × Yk). Hence, the main
difference w.r.t. Sec. IV is that now we have additional
variables Θk for k ≤ t. Furthermore, in this case, the
imprecision is only overEΘk

while we have a precise model
for likelihood EỸk

(·|Xk,Θk), state transitionEXk
(·|Xk−1)

and priorEX0
(·). Thus, the target conditional CLPEXt

[g|ỹt]
can be obtained as follows:
Theorem 3. Suppose that:

EX0
[g] = EX0

[g] = EX0
[g] =

∫

x0

g(x0)N (x0; x̂0, P0) dx0,

EXk
[g|Xk−1] = EXk

[g|Xk−1] = EXk
[g|Xk−1]

=
∫

xk

g(xk)N (xk;xk−1, Q) dxk,

(27)
EỸk

[h|Xk] = EỸk
[h|Xk] = EỸk

[h|Xk] is defined as in(26)
and EΘk

(g) = inf
θk∈[θL,θU ]

g(θk). Assume that variablesXk

and Ỹk for eachk = 1, . . . , t satisfy the epistemic irrelevance
assumptions given by Eqs.(11) and (12). Furthermore, sup-
pose thatΘt is irrelevant toXk givenXk−1 and Ỹ k−1 for
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eachk = 1, . . . , t, and thatΘj is irrelevant toYk givenXk,
Θk and Ỹ k−1 for all j, k ∈ {1, . . . , t}, j 6= k,7 i.e.:

EXk
[h1|θt, xk−1, ỹk−1] = EXk

[h1|xk−1, ỹk−1], (28)

EỸk
[h2|θt, xk, ỹk−1] = EỸk

[h2|θk, xk, ỹk−1], (29)

∀h1 ∈ L(X k×Yk−1), h2 ∈ L(X k×Yk), θt, ỹk−1, xk. Assume
also thatΘj is irrelevant to Θk for each k ≤ t and j =
1, . . . , k − 1, k + 1, . . . ,≤ t, i.e., EΘk

(h|θj) = EΘk
(h) for

eachΘj = θj and h ∈ L(Θt).
Then, given the set of observationsỹt = {ỹ1, ỹ2, . . . , ỹt}

and a gambleg : Xt → R, the target conditional CLP
EXt

[g|yt] is given by:

EXt
[g|ỹt] = min

θ1,...,θt∈[θL,θU ]

∫

xt

g(xt)N (xt; x̂t−Mt[θ
t], Pt) dxt,

(30)
with

Mt[θ
t] =

t
∑

i=1





t
∏

j=i+1

(1− LjC)A



Liθi, (31)

and wherex̂t, Pt andLt are given by the standard equations
of the KF. �

Proof: Equation(30) can be derived from the results of Sec.
IV. First of all, notice that, with the assumptions of Theorem 3,
we can regardEΘk

for eachk ≤ t as a prior information, i.e.,
all other CLPs in our model are defined w.r.t. conditions of
epistemic irrelevance fromΘt. Thus, from(28)–(29), it follows
that, givenΘt, the joint in Lemma 1 in this case becomes:

EXt,Y t [I{ỹt}(g − µ)|Θt] = EX0
[EX1

[EỸ1
[. . .

EXt
[EỸt

[I{ỹt}(g − µ)|Xt,Θt]|Xt−1] . . . |X1,Θ1]|X0]].

(32)

Note that (32) is a linear prevision because(26), (27)
and EỸk

[h|Xk] are linear previsions. Since by assumption
EΘk

(h|θj) = EΘk
(h) for eachΘj = θj and h ∈ L(Θt),

we can obtain the overall jointEXt,Y t,Θt [I{ỹt}(g − µ)] as
follows:

EXt,Y t,Θt [I{ỹt}(g − µ)] =

EΘ1
[. . . EΘt

[EXt,Y t [I{ỹt}(g − µ)|Θt]] . . . ].
(33)

Note that we only have imprecision overEΘk
for eachk and

that, because the assumptions of epistemic irrelevance among
Θt, the joint in(33) is invariant if we exchangeEΘi

andEΘj

for i, j ≤ t. Thus, sinceEΘk
(g) = inf

θk∈[θL,θU ]
g(θk) for each

k = 1, . . . , t, (33) becomes:

EXt,Y t,Θt [I{yt}(g − µ)]

= inf
θ1∈[θL,θU ]

inf
θ2∈[θL,θU ]

. . . inf
θt∈[θL,θU ]

EXt,Y t [I{yt}(g − µ)|Θt]

= inf
θ1,...,θt∈[θL,θU ]

EXt,Y t [I{yt}(g − µ)|Θt].

(34)
Thus, the target conditional CLPEXt

[g|ỹt] corresponds to the
valueµ which solves the equationEXt,Y t,Θt [I{ỹt}(g−µ)] =

7The subsequent derivations would hold, in a more complicated form, also
if we only assumed thatEXk

[h|θk, xk−1, ỹk−1] = EXk
[h|xk−1, ỹk−1]

andE
Ỹk

[h|θk, xk, ỹk−1] = E
Ỹk

[h|θk, x
k, ỹk−1].

0. From Corollary 1 and, in particular, from(24), we can
rewrite EXt,Y t [I{ỹt}(g − µ)|Θt] as follows:

EXt−1,Ỹ t−1 [I{ỹt−1}|Θt−1]·

EXt−1

[

EXt

[

EỸt
[I{ỹt}|Xt,Θt]

∣

∣

∣
Xt−1

]

∣

∣

∣

∣

∣

ỹt−1,Θt−1

]

·












EXt−1

[

EXt

[

gEỸt
[I{ỹt}|Xt,Θt]

∣

∣

∣Xt−1

]

∣

∣

∣

∣

∣

ỹt−1,Θt−1

]

EXt−1

[

EXt

[

EỸt
[I{ỹt}|Xt,Θt]

∣

∣

∣
Xt−1

]

∣

∣

∣

∣

∣

ỹt−1,Θt−1

] − µ













(35)
where, since the measurements have been assumed to be
discrete and using(26), we have thatEXt,Ỹ t [I{ỹt}|Θt] >
0 and, thus,(35)) is well-defined (i.e., the denominator is
positive). Thus, because of the expectations in the first row
of (35) are positive, from(34) and (35) it follows that the
unique valueµ which solvesEXt,Y t,Θt [I{ỹt}(g − µ)] = 0 is:

µ = EXt
[g|ỹt] = inf

θ1,...,θt∈[θL,θU ]

EXt−1

[

EXt

[

gEỸt
[I{ỹt}|Xt,Θt]

∣

∣

∣
Xt−1

]

∣

∣

∣

∣

∣

ỹt−1,Θt−1

]

EXt−1

[

EXt

[

EỸt
[I{ỹt}|Xt,Θt]

∣

∣

∣Xt−1

]

∣

∣

∣

∣

∣

ỹt−1,Θt−1

] .

(36)
Finally, we can use(25) to derive (30) from (36). To see
this, note first of all that when the discretisation stepδ(yk)
in ỹt = B(yt, δ(yk)) is small enough, the integral in(26)
can be approximated asρ(δ(yk))N (yt;Cxt + θt, R) where
ρ(δ(yk)) > 0 is the Lebesgue measure ofB(yt, δ(yk)), which
has been assumed to be independent ofyt. Hence,

EỸt
(h|xt) ≈ ρ(δ(yk))

∑

ỹ′

t

h(ỹ′t) N (y′t;Cxt + θt, R),

where the prime iñy′k is used to denote the summation variable
which defines the neighborhoodsỹ′t = B(y′t, δ(yk)). Thus, for
h = I{ỹt}, we haveEỸt

(I{ỹt}|xt) ∝ N (yt;Cxt + θt, R).
Then, using(25) and standard results from Kalman filtering,
we conclude that

EXt−1

[

EXt

[

gEỸt
[I{ỹt}|Xt,Θt]

∣

∣

∣Xt−1

]

∣

∣

∣

∣

∣

ỹt−1,Θt−1

]

EXt−1

[

EXt

[

EỸt
[I{ỹt}|Xt,Θt]

∣

∣

∣Xt−1

]

∣

∣

∣

∣

∣

ỹt−1,Θt−1

]

=
∫

xt

g(xt)N (xt; x̂t −Mt[θ
t], Pt) dxt

whereMt[θ
t] is given in(31) and, thus,(30) follows straight-

forwardly from (36). �

Equation (30) says that if we knew the value of the biasθk
for eachk, i.e.,θL = θU = θk, we could use the KF to derive
the optimal solution of the estimation problem (provided that
the shifted observationsyk − θk are used). In fact, in this
case, it is well-known that the optimal estimate isx̂t−Mt[θ

t]
wherex̂t is the standard KF estimate derived from the biased
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measurementsyt, i.e., EXt
[g|ỹt] =

∫

xt
g(xt)N (xt; x̂t −

Mt[θ
t], Pt)dxt. Conversely, when no other information about

θk thanθL ≤ θk ≤ θU is availabile, we can only give a lower
(or upper) bound ofEXt

[g|ỹt]; this lower bound is exactly
the CLP in (30). From (30), we can thus derive lower and
upper bounds for any gambleg. For instance, by selecting
g(xt) = xt, we can compute the lower mean

xt = min
θ1,...,θt∈[θL,θU ]

∫

xt

xt N (xt; x̂t −Mt[θ
t], Pt) dxt

= x̂t −
t
∑

i=1

[

t
∏

j=i+1

(1− LjC)A

]

Li max(θL, θU )

and the upper mean

xt = x̂t −
t
∑

i=1

[

t
∏

j=i+1

(1− LjC)A

]

Li min(θL, θU ).

The differencext−xt models the imprecision in the estimate
of xt, which is proportional to the width of the intervalθU −
θL and does not depend on̂xt. Note that in this example
the imprecision does not converge to0 when t → ∞. This
behaviour is due to the fact that the imprecision is pervasive
in the measurement process. However, for this example, it can
be verified that, assuming that the pair{A,C} is observable,
this condition yields the existence of a steady-state solution
for the KF filter (i.e., for the covariance matrix and the gain)
and, thus, also the convergence ofEXt

[xt|ỹt]−EXt
[xt|ỹt] to

a finite value. Consider now the gambleg(xt) = I{xt∈[xa,xb]},
wherexa, xb ∈ R. Its lower prevision is

min
θ1,...,θt∈[θL,θU ]

xb
∫

xa

N (xt; x̂t −Mt[θ
t], Pt) dxt

= min
θ1,...,θt∈[θL,θU ]

0.5 erf

(

xb − x̂t +Mt[θ
t]√

2Pt

)

−0.5 erf

(

xa − x̂t +Mt[θ
t]√

2Pt

)

,

whereerf(x) = (2/
√
π)
∫ x

0 exp(−t2)dt is the error function.
The solution can be found numerically by solving the above
minimisation (or maximisation for the upper prevision) prob-
lem. Thus, the IP credibility region is computed by seeking the
smallest interval[xa, xb] such thatE(I{x∈[xa,xb]}) = 1 − α.
Finally, given the gambleg(xt) = (xt−ν)2, its lower prevision
is

min
θ1,...,θt∈[θL,θU ]

∫

xt

(xt − ν)2 N (xt; x̂t −Mt[θ
t], Pt) dxt

= min
θ1,...,θt∈[θL,θU ]

(x̂t −Mt[θ
t]− ν)2 + Pt.

(37)
The minimum of (37) w.r.t.ν, which isPt, corresponds to the
minimum variance. This is the variance of the KF when the
bias of the measurement noise is known. The upper variance
is

(

t
∑

i=1

[

t
∏

j=i+1

(1 − LjC)A

]

Li

(

θU − θL

2

)

)2

+ Pt,

which depends on the width of the interval[θL, θU ] (see
[29] for issues related to the computation of lower and upper
covariances).

VI. L INEAR-VACUOUS MIXTURE MODEL

Assume now that the knowledge on the initial state and state
evolution process is modeled bylinear-vacuous mixtures:

EX0
(g) = ǫx

∫

x0

g(x0) N (x0; x̂0, P0) dx0+(1−ǫx) inf
x0

g(x0),

(38)

EXk
(g|xk−1) = ǫw

∫

xk

g(xk) N (xk;Axk−1, Q) dxk

+ (1 − ǫw) inf
xk

g(xk),

(39)

where the scalarsǫw and ǫx belong to [0, 1]. Furthermore,
assume that discrete measurements of the state are available
and that the uncertainty on the measurement process can be
represented with alinear prevision8 EỸk

(h|xk) as in (26) (but
with θk = 0). This generalizes the model given in (4) to
the linear-vacuous mixtures and can be used for example to
model the imprecision of the linear time-invariant system (4)
but where the process noise iswǫ

k = ǫwwk + (1− ǫw)nk and
x0 ∼ ǫxN (x̂0, P0) + (1 − ǫx)ek, and the noise termsnk and
ek are assumed to have unknown distributions (not necessarily
constant w.r.t time). Note that the model for bothwǫ

k andx0 is
the so-calledǫ-contaminationmodel which has been defined
in Sec. III-A. The correspondence between this system and
Eqs. (38)–(39) follows from the following statements:

1) Theǫ-contamination model forwǫ
k implies that [21, Sec.

2.9.2]:

EW ǫ
k
[g] = inf

Enk

[

∫

wk

g(wk)ǫwN (wk; 0, Q) dwk

+ (1− ǫw)Enk
[g(nk)]

]

= ǫw
∫

wk

g(wk) N (wk; 0, Q) dwk

+ (1− ǫw) inf
wk

g(wk),

(40)
whereEnk

denotes the expectation w.r.t. any distribution
which characterizes the noisenk.9 See also Example 2.

2) Hence, we can exploit a result from [30, Sec. 6] to prove
that the knowledge ofEW ǫ

k
and the factxk+1 = Axk +

wǫ
k together imply Eq. (39) whenAxk is assumed to be

known. This can also be derived from the fact that the
contamination onwǫ

k induces a contamination inxk+1,
i.e.,

xk+1 = Axk + ǫwwk + (1− ǫw)nk

= ǫw(Axk + wk) + (1− ǫw)(Axk + nk).

Hence, we can apply again Eq. (40) to derive (39). This
holds also forx0 and extends to CLPs the well-known
“change of variables result” for expectations.

Note that, ifǫx = ǫw = 1, we obtain the linear Gaussian case
in Eq. (4). Furthermore, note that in (38) the epsilons and

8We are assuming here a precise probabilistic model for the measurement
process instead of an imprecise one, such as the ones for the initial state and
the state evolution process, in order to simplify the derivations in this section.
We remark however that the model presented in Sec. IV is general and allows
also for imprecise measurements.

9For the sake of notation, we have used the variablewk also for the second
integral in (40). The correct integration variable would benk.
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the covariance matrices of the Gaussians have been assumed
to be time-invariant. The generalisation to the time-variant
case is straightforward. When the discretisation stepδ(yk) in
ỹk = B(yk, δ(yk)) is small enough, the last integral can be
approximated asρ(δ(yk))N (yk;Cxk, R) whereρ(δ(yk)) > 0
is the Lebesgue measure ofB(yk, δ(yk)), which has been
assumed to be independent ofyk. Hence,

EỸk
(h|xk) ≈ ρ(δ(yk))

∑

ỹ′

k

h(ỹ′k) N (y′k;Cxk, R). (41)

Recall that our aim is to obtain the conditional (updated)
prevision, for which we need to solve Eq. (10). Applying
the results in Theorem 2, the target conditional CLP can be
calculated as follows:
Theorem 4. LetEX0

[·], EXk
[·|Xk−1] andEỸk

[·|Xk] be given
by Eqs.(38), (39) and (41), respectively, and assume they sat-
isfy the epistemic irrelevance assumptions given by Eqs.(11)
and (12). Givenỹt = {ỹ1, ỹ2, . . . , ỹt} and a gambleg : Xt →
R, thenEXt

[g|yt] is the unique valueµ such that:

0 = Ex0
(g0)

≈ ǫx
∫

x0

g0(x0, µ) N (x0; x̂0, P0) + (1− ǫx) inf
x0

g0(x0, µ),

(42)
whereg0(x0, µ) can be obtained recursively by

gk−1(xk−1, µ)

= ρ(δ(yk))ǫw
∫

xk

∑

ỹ′

k

I{ỹk}(ỹ
′
k)gk(xk, µ)N (xk;Axk−1, Q)

· N (y′k;Cxk, R)dxk

+ρ(δ(yk))(1 − ǫw) inf
xk

gk(xk, µ)
∑

ỹ′

k

I{ỹk}(ỹ
′
k) N (y′k;Cxk, R)

= ρ(δ(yk))ǫw
∫

xk

gk(xk, µ)N (xk;Axk−1, Q)N (yk;Cxk, R)dxk

+ρ(δ(yk))(1 − ǫw) inf
xk

gk(xk, µ)N (yk;Cxk, R),

(43)
for k = 1, . . . , t, with the final conditiongt(xt, µ) = g(xt)−µ.

�

Proof: Eq. (43) follows by applying Theorem 2 to the CLPs
(38), (39) and (41). The only difference is that, in(43), it
has also been exploited thatEỸk

[·|Xk] = EỸk
[·|Xk] is a

linear prevision and thus satisfies Eq.(21). Moreover, since
EX0

[·], EXk
[·|Xk−1] and EỸk

[·|Xk] are linear Gaussian -
vacuous mixtures and the measurements have been assumed
to be discrete (whenceEỸk

[I{ỹk}|Xk] > 0), we have that
EXt,Y t [I{ỹt}] > 0 and then it follows from the results
mentioned in Section III that the solutionµ of Eq. (42) is
unique. �

By exploiting the properties of the Gaussian PDFs, we can
further specialize the result in (42)–(43). We see from Eq. (43)
that the valuegk−1(xk−1, µ) is the sum of two terms. The
first one is the expected value ofgk(xk, µ) w.r.t. a Gaussian
and the second is the infimum ofgk(xk, µ), also weighted by
a Gaussian. The first term can also be regarded as a linear
operatorIk[·] which operates on the functiongk(xk, µ) and
produces a function ofxk−1 andµ. The second term can be
seen as an operatorMk[·] on the functiongk(xk, µ), but it
produces a function ofµ only. Hence, at timet, the previous

equation can be rewritten as follows:

gt−1(xt−1, µ) = It[gt(xt, µ)] +Mt[gt(xt, µ)], (44)

and, thus, at the timet− 1:

gt−2(xt−2, µ) = It−1

[

It[gt(xt, µ)] +Mt[gt(xt, µ)]
]

+Mt−1

[

It[gt(xt, µ)] +Mt[gt(xt, µ)]
]

= It−1[It[gt(xt, µ)]] + It−1[1]Mt[gt(xt, µ)]

+Mt−1

[

It[gt(xt, µ)] +Mt[gt(xt, µ)]
]

,

(45)
using the linearity ofI and the fact thatMt[gt(xt, µ)] is a
function ofµ only. Hence, (42) can be decomposed as

0 = Ex0

[

g0(x0, µ)
]

= I0[I1[. . . It[·]]] + I0[1]M1[·] + I0[I1[1]]M2[·]+
+ · · ·+ I0[I1[. . . It−1[1]]]Mt[·] +M0

[

I1[. . . It[·]]

+M1[·] + I1[1]M2[·] + · · ·+ I1[. . . It−1[1]]Mt[·]
]

,

(46)

where, for the sake of notation, the arguments of the operators
have not been made explicit, but can be recovered from
Eqs. (44)–(45). Note that the operatorsI0 andM0 are slightly
different from Ik and Mk, for k > 0, as we can see from
(42). Let us give some comments on Eq. (46). The term
I0[I1[. . . It[·]]] is equal to

ρ(δ(yk))
tǫxǫ

t
w

t
∏

k=1

N (yk;CAx̂k−1, Sk)

·
∫

xt

gt(xt, µ) N (xt; x̂t, Pt),
(47)

where Sk = R + CPk|k−1C
T , x̂k, Pk and Pk|k−1 =

APk−1A
T + Q can be calculated by using the KF from the

prior N (x0; x̂0, P0). This gives the solution of the estimation
problem in the precise case, i.e.ǫx = ǫw = 1. The product
∏

(·) in Eq. (47) represents the marginal w.r.t the measure-
ments. In the precise case, this term vanishes in the normal-
isation constant. The generic termIi[Ii+1[. . . Ij−1[arg]]] with
argument[arg] equal togt(xt, µ), for 1 ≤ i < j = t, or to 1,
for 1 ≤ i < j < t, is equal to

ρ(δ(yk))
j−iǫj−i

w

∫

xi

. . .
∫

xj−1

[arg] N (xi;Axi−1, Q)N (yi;Cxi, R)

· · · N (xj−1;Axj−2, Q)N (yj−1;Cxi, R).
(48)

Note that, by applying the matrix inversion lemma, it follows
that

N (xi;Axi−1, Q) N (yi;Cxi, R) = N (yi;CAxi−1,Wa)

·N (xi;WbQ
−1Axi−1 +WbC

′R−1yi,Wb),
(49)

whereWa = R + CQCT and W−1
b = Q−1 + CTR−1C.

We can see the second factor in the right-hand side of this
equation,N (xi;WbQ

−1Axi−1+WbC
′R−1yi,Wb), as a prior

distribution for the subsequent stepsi+1, . . . , j. Then, we can
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use KF to simplify Eq. (48) as follows:

ρ(δ(yk))
j−iǫj−i

w N (yi;CAxi−1,Wa)
j−1
∏

k=i+1

N (yk;CAx̂∗
k−1, S

∗
k)

∫

xj−1

[arg] N (xj−1; x̂
∗
j−1, P

∗
j−1) dxj−1,

(50)
wherex̂∗

k, P ∗
k , S∗

k are calculated by using the KF starting from
the prior N (xi;WbQ

−1Axi−1 + WbC
TR−1yi,Wb). Again,

the product
∏

(·) in (50) represents the marginal w.r.t the
measurements. For[arg] = 1 the integral in (50) marginalises
to 1. The termsI0[I1[. . . Ij [1]]], with 0 < j < t, are equal to

ρ(δ(yk))
jǫxǫ

j
w

j
∏

k=1

N (yk;CAx̂∗
k−1, S

∗
k). (51)

Comparing Eqs. (50) and (51), we remark that the term
N (yi;CAxi−1,Wa) is absent from (51). In fact,I0 represents
the prior information, i.e. there is no measurementy0. Note
that the constantsρ(δ(yk)) can be dropped out to solve (46).
In the sequel, we refer to the algorithm presented in Theorem4
and implemented as described in Eqs. (44)–(51) as theLinear
Gaussian-Vacuous Mixture(LGVM) filter.

VII. N UMERICAL EXAMPLE

We have performed Monte Carlo simulations in order to
show the basic features of the LGVM filter presented in the
previous section. These simulations compare the performance
of the LGVM with the KF, considering non-Gaussian situa-
tions. We have considered the following model:

{

xt+1 = Axt + wǫ
t

yt = Cxt + vt

A =

[

1 T
0 1

]

, C =
[

1 0
]

,
(52)

whereT = 1 is the sampling interval;wǫ
t = ǫwwt+(1−ǫw)nt,

wt ∼ N (0, Q), x0 = x̂0 (i.e., ǫx = 1), x̂0 ∼ N(0, P0), vt ∼
N(0, R),

P0 =

[

p0 0
0 p0

]

, Q =

[

q 0
0 q

]

, R = r,

with p0, q, r > 0. It has also been assumed that the two
components of the state are constrained to lie in[−100, 100]
and, respectively,[−30, 30]. Simulations have been performed
considering both the system in (52) and its one-dimensional
restriction, i.e.,A = 1, C = 1 etc. Note that, in all simulations,
both LGVM and KF were designed without assuming the
knowledge of the contaminating termsnt. The aim is to
investigate the relative sensitivity of the KF and the LGVM to
(heavy tailed) disturbances of the nominal Gaussian density.
The performance of the filters has been investigated consider-
ing different values of epsilon and different distributions for
the contaminating termnt. A trajectory of15 time steps and
a Monte Carlo size of 100 runs are considered. For the one-
dimensional system, the following cases have been simulated

Case ǫw PDF for n q r/q
1 0.95 5δ7/(1− ǫw) 0.1 1
2 0.95 5δ7/(1− ǫw) 0.1 0.1
3 0.9999 5δ7/(1− ǫw) 0.1 1
4 0.95 N (0, 125) 0.1 1

whereδk is 1 when the timet is equal tok and0 otherwise and
p0 = 0.2. In the cases 1–3, the trajectory undergoes a jump of
5 units at the time instantt = 7. This can be interpreted as an
unmodeled manoeuvre. For these cases, the simulation results
are shown in Figures 1–3 for a fixed trajectory, i.e., Monte
Carlo runs have been performed only w.r.t the measurement’s
noise realisations. The figures report the true trajectory (TS),
the averaged KF’s estimate (KF) and the relative99% credibil-
ity interval (Cred KF), the averaged lower (LP) and upper (UP)
means and the IP version of credibility interval (Cred IP) as
defined in Sec. IV-A. From Figure 1, we see that from time1
to time6 the KF and the LGVM provide more or less the same
credibility interval and the upper and lower means are almost
equal and coincide with the KF estimate. At the jump’s instant,
t = 7, the KF estimate is wrong, since the99% credibility
interval does not include the true state. This shows that the
KF is not robust to large model errors. On the other hand,
the LGVM correctly detects the jump and it is able to enlarge
the credibility interval in order to include the true state.The
differenceE(xt)−E(xt) is related to the imprecision present
in the system. From the instantt = 8 to the end, the true
trajectory enters again inside the KF credibility region, since
no more jumps occur. We see also that the LGVM converges
towards the true state as can be seen from the reduction of the
size of the credibility interval. However, the convergencerate
is slower than that of the KF and depends on the variance-
ratio r/q, as can be seen comparing Figures 1–2, and on
the value ofǫw, as can be seen comparing 1 and 3. These
results thus show that the LGVM filter outperforms the KF
performance when a small value (small w.r.t ther/q ratio) of
ǫw is selected. In fact, in these cases, LGVM is still robust to
unmodeled errors and its convergence rate is fast. Obviously,
as we increaseǫw towards1 there is a value ofǫw for which
LGVM and KF almost coincide. In case 4, the contaminating
term is a Gaussian with zero mean and variance125. Thus, the
noisewǫ is normally distributed with zero mean and variance
Qw = ǫ2wQ + (1 − ǫw)

2125 ≈ 0.4. The width of the IP
version of the99% credibility interval has been compared
with the true99% credibility interval based onQw = 0.4. The
average ratio between the size of the two intervals is0.8723
for t = 1, 1.008(t = 2), 1.0027(t = 3) and it converges to
1 after t > 3. Thus, although the LGVM does not know the
contaminating term, it is able to correctly determine the width
of the credibility interval, while the KF can only underestimate
its size. For the two-dimensional system, the following case
has been simulated:

Case ǫw PDF for n q r/q

5 0.9999 [0, 5δ7/(1− ǫw)]
T 0.1 1

This can be interpreted as an unmodeled manoeuvre which
acts only on the second component of the state. For these
cases, the simulation results are shown in Figure 4. This figure
reports the true trajectory (TS), the averaged KF’s estimate
(KF) and the averaged lower (LP) and upper (UP) means for
both components of the state. From Figure 4, upper plot, it can
be noticed that the behaviour of KF and LGVM is similar to
that discussed above for the one-dimensional system. In this
plot, we have shown only the first10 time instants, since after
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that all filters converge to the same value. The only difference
w.r.t. the one-dimensional system is that LGVM filter detects
the manoeuvre with a delay of one time instant (i.e., at time
t = 8); this is because the manoeuvre is made on the second
component of the state, which is not directly observable. Itis
perhaps more interesting to remark the difference between KF
and LGVM in the lower plot of Figure 4. We can see there that
at time t = 8 the upper mean goes to30 which is the upper
bound for the second component of the state (remember that
we have assumed that this component is constrained to lie in
[−30, 30]). This means that the upper mean is vacuous. This
behaviour is due to the lack of observability for the second
component of the state. In fact, the manoeuvre is so strong that
the second term in the last equation in (43) becomes dominant.
Since this term depends only on the measurement equation,
the second component of the state is unobservable and, thus,
free to vary during the optimisation. In practice, because of the
manoeuvre, the information on the second component carried
by the prior estimatêx0 is lost at timet = 8, and the LVGM
filter has to estimate it again from the measurements. Thus, in
one sense, the LGVM filter performs a re-initialisation after
the manoeuvre.
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Fig. 1. Case 1:ǫw = 0.95, r/q = 1.

Software availability

The software implementing the LGVM filter has been
realized in Matlab. Sources and documentation are available
at http://www.idsia.ch/∼alessio/.

0 5 10 15
−2

−1

0

1

2

3

4

5

6

Time

X

 

 
LP
UP
TS
KF
Cred IP
Cred KF

Fig. 2. Case 2:ǫw = 0.95, r/q = 0.1.
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Fig. 3. Case 3:ǫw = 0.9999, r/q = 1.
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Fig. 4. Case 5:ǫw = 0.9999, r/q = 1.

VIII. C ONCLUSIONS

In this paper, we have proposed an extension of the classical
filtering problem that allows for imprecision in our knowledge
about the elements of the model, and which is arguably
more realistic in real situations. We have also shown, in a
practical case, that our extension outperforms the Kalman
filter when modelling errors are present in the system. With
respect to future prospects, we can devise at least three lines of
investigation. The first might be concerned with deepening the
comparison with the classical results. The second might focus
on investigating the extension of LGVM to the case where
the contaminating distributions are unimodal and/or symmetric
[31], and also how our filter evolves ast → ∞, and which
are the conditions for its convergence [32]. We envisage that,
under some assumptions similar to those in [21, Sec. 6.10],
our results will hold also for continuous observations, which is
equivalent to assuming infinite precision for the measurement
instruments. Finally, the third line might be an extension of
our approach to model the predictive control of constrained
linear systems affected by stochastic disturbances which are
characterized byǫ-contaminated distributions.
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