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Abstract

Convex sets of probability distributions are also called credal sets. They
generalize probability theory by relaxing the requirement that probability
values be precise. Classification, i.e. assigning class labels to instances de-
scribed by a set of attributes, is an important domain of application of
Bayesian methods, where the naive Bayes classifier has a surprisingly good
performance. This paper proposes a new method of classification which in-
volves extending the naive Bayes classifier to credal sets. Exact and effective
solution procedures for naive credal classification are derived, and the re-
lated dominance criteria are discussed. Credal classification appears as a
new method, based on more realistic assumptions and in the direction of

more reliable inferences.
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1 Introduction

Classification (also known as pattern recognition, identification, or selection) is a
multivariate technique concerned with allocating new objects to previously defined
groups on the basis of observations on several characteristics of the objects; see
Giri (1996), Huberty (1994) and McLachlan (1992). Formally, a classifier is a
function that maps instances of a set of variables, called attributes or features, to
a state of a categorical class variable. Such a paradigm is very general; problems in
very different fields can be represented as classification problems. For instance, the
recognition of hand-written characters or faces, and the problem of diagnosing a
disease from symptoms, are classification problems. For that reason, classification
is important in many fields of research. Publications concerning classification can
be found in the statistical literature (e.g., in the Journal of Classification) as well
as in the literature of artificial intelligence (Fayyad et al., 1996).

Learning a classifier from a random sample is an important type of statistical
inference. After observing the attribute values and category (class) for each unit
in the sample, the problem is to define an association rule that predicts the correct
category from future instances of the attributes. An instance of the attributes is
also referred to as pattern.

Formally, let use denote the classification variable by C', taking values in the fi-
nite set C, where the possible classes are denoted by lower-case letters. We measure
n features Aq,..., A, taking generic values aq,... ,a, from the sets A;,... , A,,
which are assumed to be finite. We can define a classifier by means of the discrete

joint probability distribution P [C, Ay, ... , A,]. The classification of a new pattern



(a1,...,ay) is realized by selecting a class ¢ € C that maximizes P [c|ay, ... ,a,].
When misclassification costs are equal, this classification rule is optimal in the
sense that it minimizes the expected cost of misclassification (Johnson and Wich-
ern, 1988).

Unfortunately, without further assumptions, this theoretical approach is not
effective in practice. The number of probabilities which define the joint distribu-
tion grows exponentially with the number of attributes. Thus their estimates from
the sample are generally poor and so is the prediction accuracy of the classifier.

Duda and Hart (1973) have proposed to assume independence of the attributes
conditional on the class,

PlAy, ... AuCl =] PlAilC]. (1.1)
i=1

The resulting classification model is referred to as the naive Bayes classifier
(NBC). Now the joint distribution P [C, Ay, ..., A,] requires the specification of
a smaller number of probabilities, which can be estimated from the sample in a
more robust way. Notice that these probabilities are generally biased because as-
sumption (1.1) is strong and is not likely to hold in many domains. However, it
is well known that assumption (1.1) is not critical for classification, as shown by
Domingos and Pazzani (1997) and by Friedman (1997): the NBC is very often
accurate even when assumption (1.1) is violated substantially. In fact, the NBC
is competitive with the state-of-the-art classifiers, while often being faster and
simpler; and, despite its relatively long history in pattern recognition, the NBC is
still the subject of active research.

This paper is concerned with extending the NBC to a new and more general
method of classification which we call credal classification. A credal classifier is
a function that maps instances of attributes to a set of categories. A standard
classifier is a credal classifier that always outputs singletons.

The definition of credal classification is intimately related to the passage from



standard probability theory to imprecise probabilities (Walley, 1991). Relaxing
the requirement of a unique output class is analogous to relaxing the requirement
of a single probability measure, in favor of a set of distributions or credal set
(Levi, 1980). A credal set is defined to be the convex hull of a non-empty and
finite family of probability measures. Credal sets have great expressive power,
encompassing a number of other models for uncertainty (e.g., possibility measures,
belief functions, Choquet capacities, coherent lower probabilities), and they are
equivalent to coherent lower previsions as defined in Walley (1991). The axioms
of probability are maintained for every distribution in the set; however, the joint
behavior of the credal set determines many new characteristics of the theory, so
that credal sets cannot be seen simply as an extension of classical probability.
This paper realizes a credal classifier by extending the NBC to credal sets,
thus defining the naive credal classifier (NCC). The NCC enables imprecision to
be taken into account, as possibly generated by unobserved or rare events, small
sample sizes and missing data; and it enables this to be done efficiently. As a
consequence, for a given pattern of the attributes, imprecision in the input may
prevent a single output class from being obtained; then the result of the NCC
classification is a set of classes, all of which are candidates to be the correct
category. In other words, the NCC recognizes that the available knowledge may
not suffice to isolate a single class and thus gives rise to a set of alternatives.
This seems a very natural process of learning under partial information, but it is
currently denied to classifiers that are always required to satisfy the chimera of
precision, and to output a single class even when there is very little information.
We define the naive credal classifier in Section 2, where we discuss the model
and introduce some terminology. Then we present two procedures for classification.
Section 3 introduces the first procedure as an extension of the NBC classification
procedure. This is based on the posterior probability intervals for the class and

on a criterion of interval dominance to select the set of output classes. Section 3.1



formalizes the optimization problems that define the posterior probability inter-
vals. Section 3.2 provides two alternative algorithms to solve such problems and
analyzes their computational complexity.

The second procedure for classification is based on a strengthening of the crite-
rion of interval dominance. We discuss the motivations to refine interval dominance
and define the new criterion of credal dominance in Section 4. This section also
provides a classification procedure based on credal dominance and analyzes its
complexity. The procedure is specialized to the credal sets produced by probabil-
ity intervals in Section 4.1. Next, in Section 5 we present an example of naive
credal classification, and in Section 6 we provide a method to compute the poste-
rior probability of the proposed set of classes.

Finally, Section 7 summarizes the results of the paper and highlights the issues
to be addressed in future research, including statistical inference of the NCC from
a random sample. We present motivations supporting the choice of the imprecise

Dirichlet model in Walley (1996b) for this purpose.

2 The naive credal classifier

Let Pc denote a set of distributions P [C]. For a generic attribute A; and for each
c € C, let P4, denote a credal set of the conditional distributions P [A; [c]. We
refer to these sets also as to local credal sets. Note that we do not address the
way the local credal sets must be provided. This can be done by using statistical
inference (e.g., as discussed in the concluding section) or by subjective judgements.

In the following we assume that the local credal sets are given.

Definition 2.1 The naive credal classifier is the model characterized by the set

P of joint distributions P [C, Ay, ... , A,] that are obtained by assuming (1.1) and



making every possible combination of the distributions in the local credal sets,

P = {P[C]ﬁP[Ai]C])P[C] € Po, P[Ajlc] € Py, =1,... ,n,cec}.

i=1

The definition of the NCC emphasizes that the availability of the local credal
sets is all that is needed to build the classifier. Broadly speaking, we can specify
a credal set in two different yet formally equivalent ways. In the first case, we
provide a set of distributions and then we take its convex hull. This can always be
represented by the set of its extreme points because the convex hull of the extreme
points is the original credal set. An extreme point or extreme distribution of a
credal set is an element that cannot be expressed as convex combination of other
points in the set.

The second view characterizes a credal set by means of linear constraints. In
fact, the convex hull of a non-empty and finite number of points is by definition
a polytope and the extreme points are the vertices of the polytope. A polytope is
also a closed and bounded geometric region described by linear constraints. For
a credal set, the constraints can be imposed on the unknown probabilities of the
elementary events. For example, the polytope Pr may be specified by imposing
linear constraints on P|c|, ¢ € C.

Thus extreme points and constraints are equivalent representation of a credal
set; in the following we speak either of extreme points or of constraints according
to our convenience. In either case, observe that the probability of a generic event
lies in an interval whose extremes are the minimum and the maximum of the
probability when the distribution varies in the credal set. Such extremes are also
referred to as the lower and upper probability of the event and are denoted by P

and P, respectively.



In the next sections we derive the procedures for classification. These hold for

local credal sets which satisfy the following assumptions,

Plc] >0
_[c] forallceC,a;, € Aj,i=1...n. (2.1)
P [ai ’C] >0
Finally, let us emphasize that the definition of the NCC assumes that the
local credal sets can be specified separately (Walley, 1991), meaning that they are
logically independent. All the given procedures rely on this characteristic of the
NCC.

3 Interval-dominance classification

This section develops a procedure for naive credal classification by a straight
extension of the procedure for the NBC. The NBC classifies a generic pattern
(ay,...,a,) by computing the probability P [c|ai,... ,a,] for each ¢ € C and com-
paring them to select the class of maximum posterior probability. In the credal
case such probabilities are intervals and for this reason we must provide procedures
to compute intervals and define the way two intervals should be compared.

We address the comparison of two generic intervals by the following dominance

criterion (which is called strong dominance in Luce and Raiffa, 1957).

Definition 3.1 Let X be a discrete random variable defined over X and let
X', X" C X be two generic events. Let E represent what is known, and let the
probabilities P [X"|E] and P [X" |E] be respectively represented by the intervals
I' = [P[X'|E],P[X'|E]] and I” = [P[X"|E],P[X"|E]]. The interval I’ is
said to dominate I" if P[X’|E] > P[X"|E]; in this case X’ is said to interval

dominate X".

The rationale behind the criterion is that since each probability in I’ is greater

than each probability in I”, X’ is certainly more probable than X”. Notice also

7



that interval dominance generally implies only a partial order, because if I’ and
1" overlap, they cannot be compared.

The definition of interval dominance raises two questions. First, in order
to apply interval dominance we only need the extreme points of the intervals.
With special regard to the classification procedure, we only need to compute
Plclay,... ,a,] and Plclay,... ,a,] for each ¢ € C. These are defined by two
optimization problems,

Plela,.. o) = | min Plela... ], (3.1)

Plclay,...,a,] = max  Plclay,...,a,]. (3.2)
P[CAL,..., An]€EP

Section 3.1 solves such problems by an efficient organization of the calculations,
as shown by the computational complexity analysis given in Section 3.2.

The second point is more closely concerned with the nature of credal classi-
fication. Since interval dominance only provides us with a partial order of the
intervals, there may be no unique optimal choice for the class. This behavior is
a fundamental characteristic of a credal classifier. Credal classification does not

provide a single class unless the conditions justify one.

3.1 Computation of the interval

In this section we assume that the local credal sets satisfy the following,

{£[0]>0

forall ce C,a; € Aj,i=1...n, (3.3)
Pla;lc] >0

for ease of presentation. The derivation extends to the case (2.1) by Theorem 8.1
of Walley (1981), as also discussed at the end of this section.
Consider the computation of the lower probability (the case of the upper prob-

ability is analogous), P [c|aq,... ,a,] = minpica,,.. a,ep Plcla,... ,a,]. The



objective function (i.e. the function to optimize) can be rewritten by applying the
definition of conditional probability and using marginalization, as follows:

Ple,aq,. .., a,]
P = !
[clar, .. s an] Yo Pldar,. .. a) >

_ (1 J ezl ’a”])_l, (3.5)

Ple,aq, ...  ay)

where the passage from Eq. (3.4) to Eq. (3.5) is possible since P [¢, a4, ... ,a,] > 0
by assumption (3.3). According to (1.1), expression (3.5) is also
n -1
Zc’;éc P [Cl] Hi:l P [ai |Cl]
Plel[Ti= P lailc]

Now the minimization problem is written by replacing its objective function

Plclay, ... a,] = (1 + (3.6)

with the right side of (3.6) and by doing the minimization over the local credal

sets,

min min (1 + ZC/# PO Plei|c] ) 7 . (3.7)

PICIEPC PlA;|c [€P], ¢ €Ci=1..m Pl 1T, Pla; |c]

Let us focus on the inner minimization problem: the goal is the maximization
of the fractional function in parentheses, since this is equivalent to minimizing
the reciprocal. Notice that it is possible to minimize the denominator and to
maximize the numerator separately, since they do not share any term. This ob-
servation allows the inner optimization to be solved. Consider the denominator.
P [c] is non-negative, therefore the denominator is minimized when the product
[T, P [a;|c] is minimized. This is done by setting each P [a; |c] to its lower proba-
bility, giving [, P [a; |c]. An analogous argument holds for the numerator; P [¢]
is non-negative (V¢ # ¢), and the sum consists of terms that can be optimized sep-
arately. Hence, the numerator is maximized when the product of the conditional
probabilities is set to [, P [a; |¢'] (V¢ # ¢). Problem (3.7) becomes

S PINTT Plai ]\ ™
(” PIITT Plac ] ) |

min

3.8
P[C]G'Pc ( )



Following a similar argument, it is straightforward to obtain the formula for the

upper probability, which is

. (1 S PRI Pl |c’]> |
FICIEPo PJTTL, Plaile]

(3.9)

Observe that we can think of P [c] as prior probabilities and []_, P [a;|c] =
Play, ... ay|c], TI\, Plailc] = Play,... ,an|c] as upper and lower likelihood
functions (regarding as, ... ,a, as data and ¢ as possible parameter values). From
this point of view, problems (3.8) and (3.9) are special cases of formulae given in
Walley (1991, Section 8.5.4). (See also Walley, 1996a and Tessem, 1992, for the
case when P¢ is defined by specifying the upper and lower probabilities of each
possible class.) These previously appeared in Theorem 8.1 of Walley (1981) that
also allows (3.8) and (3.9) to be extended to the case (2.1) by rewriting them in

order to remove the reciprocal.

3.2 Solution procedures and complexity

The following sections describe two different solution methods for problems (3.8)
and (3.9), which are based on a combinatorial and a linear programming approach,
respectively. The methods are also analyzed with respect to their computational
complexity. We express the complexity by the notation O () as in Graham et al.
(1989). Given the real-valued functions f,g : N* — R, we write f (z) = O (g (z))
if there exists a constant H such that |f (z)| < H |g (z)| for each z.

3.2.1 Combinatorial procedure

We can solve problems (3.8) and (3.9) by a combinatorial approach. In fact, it
is well-known that the optimal distributions can be found in the set of extreme
distributions (Walley, 1991); in other words, it is possible to compute the optima

by examining a finite number of points.
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Let extPj. denote the finite subset of P4 consisting of its extreme points
(Ve € C,i =1...n). Analogously, let extPc be the set of extreme points of Pc.

Problems (3.8) and (3.9) are respectively equivalent to the following ones,

- Suse PIETT Plaild]\
PlCleentPe (1+ Pc] ] P lai|c] ) ; (3.10)
S PIETT Plald ]\
piefeesne (” PITIL Plarld] ) - ew

These can be solved by enumerating the extreme distributions in extPc.

Of course, we also need the lower and upper probabilities of P [a;|c'] (V¢ €
Pla;|c]
» Pla;|d] (V¢ € C,i =1...n), which can again be done by

/ ]Geazt'Pji

C,i = 1...n); these can be found by solving the problems min PlA |eeatPs,
and MaXp 4 1.
enumerating the extreme distributions in the respective feasible set.

In order to analyze the computational complexity of the procedure, we assume
that the extreme distributions of the credal sets are already available. Notice
that if the credal sets were specified by constraints, the procedure in Section
3.2.2 would be more appropriate. The present procedure might be applied as well,
after computing the extreme distributions from the constraints, but computational
problems might arise (refer to Section 3.2.2).

We denote by K the maximum of the number of extreme distributions, taken
over all the local credal sets. Hence, the combinatorial computation of the ex-
tremes of P [a; |c'] takes O (K') time in the worst case. This must be repeated for
every ¢ € Cand all i =1...n, yielding O (nK |C|). We can regard this expression
as the time required to setup the classifier, because the extrema of the conditional
probabilities are computed once for all the subsequent classifications.

With regard to formulae (3.10) and (3.11), when the values of the conditional
upper and lower probabilities are known, the expression inside parentheses is com-
puted in time O (n |C|). The latter must be repeated for each extreme distribution

in extPc, in order to evaluate the optimum, yielding O (nK |C|). By adding this
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term to the setup time we have the overall worst-case complexity, i.e.

O (nK|C]). (3.12)

3.2.2 Linear programming procedure

With reference to formula (3.12), we see that the classification of a pattern is a
well-solvable task, if K is not large. In fact, the complexity grows only linearly
with either the number of attributes or the number of classes, and these quantities
are directly under the control of the model builder.

The case of K is different. Although the complexity grows linearly with K too,
K is a potentially weak point for computational time. In fact, the number of ver-
tices of a polytope of distributions can be very large and this number can be hidden
in the definition of a credal set, in a way that it may not be immediately clear to
the model builder: the latter might define the credal sets by providing constraints
on the probability of some events; but, in this way, K can grow exponentially with
the number of constraints.

As an example, consider a set of probability intervals Iy = {[l;,u;] |0 <[; <
u; <1,4=1...t,t > 1} defining a credal set, Py , for a generic variable X defined
over {zy,...,z;}. Px 1is the set of distributions P [X] subject to the constraints
li < Pla;] <wgyt=1...t. Tessem (1992) has shown that the worst-case number
of vertices of Px , say kx, depends on ¢ according to the following formula,

o (1) = { ((ttr;)ltﬂ) %', if ¢t is odd
(t/2)§, if ¢ is even.
For instance: kx (10) ~ 1.2 x 103, kx (20) ~ 1.8 x 10° and kx (30) ~ 2.3 x 10°.
Such an exponential growth is a strong reason to search for an alternative
solution procedure which can guarantee a better worst-case complexity. Linear
programming is a basic tool for this purpose.
Let us reconsider the solution of problem (3.8), where we assume that each

local credal set of the NCC is specified by a set of linear constraints. Let L denote
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the worst-case complexity to solve a linear program (taken over all the local credal
sets).

Setting up the classifier requires solving the problems min g, . eps Pla;|c]
and max Al leps, Pla;|c] (V¢ € C,i=1...n). These are optimizations of linear
functions over linear domains (in particular, the objective function is represented
by the single optimization variable P [a; |¢']); therefore the overall setup complexity
is O (nL|C|).

Then, we compute the lower probability by maximizing the fractional function
inside parentheses in (3.8). Observe that once the conditional upper and lower
probabilities are available, such a problem is a fractional linear program. In fact,
the objective function is a linear combination of the optimization variables P [/]
(V¢ # ¢) divided by a term proportional to the optimization variable P [c]; the
feasible set of the problem is the polytope Ps. Concerning complexity, we can
compute all the products that define the objective, namely [, P[a; |¢'] (¢’ € C),
in time O (n |C|). Solving the problem itself requires O (L) time, because fractional
linear problems can be turned into linear problems (by a result in Charnes and
Cooper, 1962, also reported in Schaible, 1995, Section 2.2.2). Therefore, the overall
time is O (nL |C| + n |C| + L) which is also

O (nLC)). (3.13)

Comparing expression (3.13) with (3.12), we see that now L replaces K. For-
mally, this means that the complexity of the linear programming-based solution
procedure is polynomial; this is because linear programming can be solved in
polynomial time (Khachian, 1979). In other words, L only grows as a polyno-
mial function of the size of the linear problem (which depends on the number of
variables and on the number of constraints), even when K grows exponentially.

Thus the new solution procedure provides the user of the system with a good
theoretical bound on computational time. Observe that the procedure is also prac-

tically effective. In fact, the simplex method is well-known to efficiently solve very
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large linear problems too. Finally, note that specialized methods are available that
solve linear problems on particular credal sets (e.g., those generated by probability

intervals, as in Walley, 1996a, p. 18) in even a quicker way .

4 Credal-dominance classification

So far, our analysis has focused on computation of the uncertainty intervals for
the states ¢ € C, with the aim of comparing them using interval dominance. It is
important to observe that the information provided by credal sets is greater than
that provided by intervals. The credal set can also represent constraints between
probabilities, which disappear with the interval view. In particular, the credal
set for P[C'|ay,... ,a,], say P&, generally conveys more information than
that given by [P[c|ai,... ,a,],Plclai,... ,a,]] (c €C). Therefore, it is natural
to wonder if a comparison criterion different from interval dominance can better
exploit such information.

Consider the following example. Suppose that C = {¢/, ¢, ¢”} and that P "
has four extreme distributions: (0.40,0.35,0.25), (0.40, 0.25,0.35), (0.50,0.35,0.15)
and (0.50,0.45,0.05), where the elements of the vectors are respectively P|c|aq,

.y ay), P[day,... ,a,] and P[c"|ay,... ,a,]. The intervals that these poste-
rior probabilities belong to are [0.40, 0.50], [0.25,0.45] and [0.05, 0.35], respectively.
We have that ¢ interval-dominates ¢ (so that it can be discarded) and this is
the only interval dominance, because the intervals of the remaining states overlap;
interval dominance produces two undominated states, ¢ and ¢”. But it is easy to
see that for any distribution in the credal set, P [¢' |ay, ... ,a,] > P[c" |ay, ... ,ay]
(because this is true for all the extreme distributions), i.e. ¢’ is dominated by ¢'.
In other words, for the credal set at hand there is only a single dominant state,
but this fact is hidden when interval dominance is used. Thus, we are led to the

definition of a dominance criterion for sets of distributions.
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Definition 4.1 Let X be a discrete random variable defined over X and let
X' X" C X be two generic events. Consider the distribution P[X |E] € PL,
where E represents what is known, and P¥ is a non-empty set of distributions.

X' is said to be credal dominant as compared to X", X' = X", if for every distri-
bution P [X |E] € P4, P[X'|E] > P[X"|E].

Credal dominance is a strengthening of interval dominance to sets of distribu-
tions; it is also is a special case of strict preference as defined in Walley (1991,
Section 3.7.7). Notice that interval dominance implies credal dominance, whereas
the converse is not true as the example above shows. That is, not all credal
dominances are captured by interval dominance.

Now, we examine whether the computation of credal dominance can be realized
in an effective way. Before addressing the naive classification case, it is useful
to observe that, in general, credal dominance can be checked by combinatorial
methods. When P¥ is a polytope, X’ = X" < P[X'|E] > P[X"|FE] for all
P[X |E] € extP%.

Let us develop the particular case of the NCC. Consider two states of C, namely

¢ and ¢’. We want to check whether
Pldai,...,an] > P[c" |ay,... ,an] (4.1)

holds for all the joint distributions in P. The question is equivalent to solving the
following problem (Walley, 1991),

1 Pld n_P ! nl) - 4.2
P[C,Af?.l.r,lAn]ep( [Cvalv ) @ ] [C ) A1, @ ]) (4.2)

If the optimum of problem (4.2) is positive, the answer to the credal dominance
question is affirmative. Whenever the optimum is non-positive, the inequality
(4.1) is false and ¢ > ¢" is not verified. Notice that problem (4.2) only allows
¢ = ' to be checked; testing ¢’ > ¢ requires the minimization of the negated

objective to be solved.
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Problem (4.2) can be rewritten following an argument completely analogous

to that used for problem (3.8), thus obtaining

min (P [ T]2laild] = Pl ] Plas |c”]> : (4.3)

P[C
[ClePe i=1 i=1

Also the solution of problem (4.3) is similar to the solution of problems (3.8)
and (3.9). In particular, we can solve problem (4.3) either by a combinatorial
approach or by linear programming. In the former case, we obtain the optimum
by enumerating the extreme distributions of Pg, after similarly computing the
extremes of the conditional distributions. In the latter, we compute the extremes of
the conditional distributions by linear programming and then solve the remaining
linear problem (4.3).

From the analysis above, it also follows that checking credal dominance between
two states (i.e. checking both directions of the inequality) can be performed more
quickly than interval dominance. Two optimization problems must be solved, and
the overall time required is lower than for problems (3.8) and (3.9) together.
Compare, for instance, problem (4.3) with problem (3.8). Problem (4.3) is solved
more quickly, because it only has O(n) terms in the numerator versus the O(n |C|)
terms in problem (3.8). By symmetry, the same is true for the remaining couple
of problems.

However, it is possible that computing the set of undominated states of C
is more expensive using credal dominance than using interval dominance. With
interval dominance, 2 |C| optimizations like problem (3.8) allow all the intervals
for C' to be computed. Then, O(|C|?) interval comparisons select the interval-
undominated states. With credal dominance, O(|C|*) optimizations like problem
(4.3) are required, which are generally more expensive than O(|C|) interval com-
parisons. But notice that these complexities are the same when we use probability

intervals, as Section 4.1 shows.
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4.1 The case of probability intervals

Problem (4.3) admits a very simple and efficient solution when the credal sets of
the NCC are defined using probability intervals, which are an important special
case.

Let Ix = {[l;,u;] |0<1; <u; <1,i=1...t} be a set of probability intervals
for the variable X defined over X ={z1,... ,z;} (as in Section 3.2.2). We start by
defining proper and reachable probability intervals as in Campos et al. (1994).

Definition 4.2 [y is proper if 2;1 <1< Zle U;.

Definition 4.3 Ix is reachable if u; + 22:1 il 1<+ 22:1 iUy T =
1...¢.

These definitions are simply coherence conditions. It is possible to show (Cam-
pos et al., 1994) that [y is proper iff Px is not empty and that Iy is reachable iff
the intervals are tight, i.e. for each lower or upper bound in Ix there is a distribu-
tion in Px at which the bound is attained (notice that a set of reachable intervals
is also proper). In the following we always assume that the intervals satisfy Defini-
tion 4.3; this requirement is not restrictive: each set of proper probability intervals
can be transformed, in time O (t), into a reachable set without altering Px .

Reachable intervals can also be regarded as a special case of upper and lower
probabilities; they are Choquet capacities of order two. In this case it is well-
known (Walley and Fine, 1982) that, given two mutually exclusive events X', X" C
X, there always exists a distribution P € Px such that P[X'] = P[X’] and
P[X"] = P[X"]. When P in problem (4.3) is defined via reachable intervals,
such a property applies and the optimal value of (4.3) is

P 2losle) =PI [[Plase]. (1.4
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The latter has a positive impact on computational complexity. In fact, if all
the credal sets of the NCC are defined with reachable intervals, the extremes
of the conditional probabilities in (4.4) are, by definition, readily available and
consequently the value (4.4) is computed in time O (n). (Strictly speaking, we
should also consider the time required to turn the intervals into reachable ones;
but there are cases when the intervals, being naturally reachable, do not need
such a treatment. For instance, this is the case for the intervals produced by the
imprecise Dirichlet model in Walley, 1996b.) This also means that the computation
of the credal-undominated states of C' takes O (n |C|2). Comparing the latter with
the time required by the NBC to classify a pattern, namely O (n|C|), we see that
the advantages of naive credal classification can be achieved with only a minor
increase in computational complexity.

To find a simpler condition that is equivalent to credal dominance in the

case of intervals, observe that (4.4) is simply the difference P [/, aq,... ,a,] —

P[c",ai,... ,a,] and hence ¢ credal-dominates ¢’ if P [¢, a1, ... ,a,] > P[c",ay,...

but this is exactly the definition of interval dominance applied to the intervals
[Plc,a1,...,a,),P[c,ay,...,a,)]]and [P[c",aq,... ,a,], P[c" ay,...  a,]]. It fol-
lows that, when the NCC is defined by means of interval probabilities, we can re-
gard the tests of credal dominance as tests of interval dominance on the joint prior

probabilities of the class and the attributes. We use this observation in Section 5.

5 An example

This section presents a very simple example to show the principles of credal classi-
fication and in particular credal dominance. The example is simplified for clarity;
the probabilities are artificial.

An insurance company wants to assess the risk it incurs in selling car insurance

to a new customer. The risk (R) is classified as low, medium, or high, and is related
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to the number and type of car accidents that are expected for such a customer. The
company decides to model the risk in terms of two attributes of the customer: the
age (A, defined over {young,middle-aged,old}) and the city where the customer
lives (T, over {Venezia (VE),Treviso (TV),Milano (MI)}).

The credal sets of the NCC are based on the following assumptions. Concerning
the customer’s age, it is supposed that middle-aged persons have better behavior,
as compared to both young and old people; concerning the risk of the Italian cities,
the ranking is Venezia < Treviso < Milano. The credal sets, defined by means of

reachable probability intervals (see Section 4.1), are reported in Tables 1, 2 and 3.

ik TABLE 1 ABOUT HERE ***
0 TABLE 2 ABOUT HERE ***
0 TABLE 3 ABOUT HERE ***

For example, Table 1 expresses the fact that most of customers are known to be
low-risk, in a percentage that varies from 77% to 85%; a minority are medium-risk
people (in the range 10% — 15%), and few people (5% — 8%) are high-risk. Table 2
expresses the fact that when the risk is low, the most probable age is middle-age;
when it is medium, the three states of A have similar probabilities; whereas when

the risk is high, people are most probably young, otherwise old.
*** FIGURE 1 ABOUT HERE ***

Let us consider the case of an old person living in Venezia. Following Section
4.1, we compute the three intervals for P[R, A = old,T = V E], recalling that
PIR,A = old,T = VE| = P[R|P[A=0ld|R]P|[T =VE|R] and P[R,A =
old,T = VE] = P[R]P[A =o0ld|R] P[T = VE|R]. The intervals are shown in
Figure 1 by means of line segments; for instance, P[R = low, A = old,T = V E|
belongs to the interval [0.151,0.208] as represented by the lowest segment. By

applying interval dominance to such intervals, we obtain a total order on the states
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of R because the intervals do not overlap. In this case the customer is classified as
low-risk.

We may be interested in the posterior probability of this risk category. We
use (3.10) and (3.11) to compute P[R = low|A = old,T = VE] and P[R =
low|A = old, T = V EJ, respectively. Such formulae require the extremes of the two
conditional probabilities P[A = old |R = low] and P[T'=VE |R = low]. These
extremes are readily available from Tables 2 and 3. The formulae also require the
extreme distributions of P [R]. These can be computed from the intervals in Table
1 by simple procedures, as in Campos et al. (1994). In this way we find that the
probability P[R = low|A = old,T = V E] lies in the interval [0.922,0.975].

ek FIGURE 2 ABOUT HERE ***

Next, let us compute the risk category of a young person in Milano. Intuitively,
the subject should be high-risk, because each attribute is in the worst state. The
intervals for P[R, A = young, T = M1I| are represented in Figure 2. Now interval
dominance only implies a partial order of the states of R because the intervals
for the states low and medium overlap, but it is still possible to obtain a single
credal-dominant state, i.e., high risk. As in the preceding case, we can compute
the posterior lower and upper probabilities of the dominant class. The probability
P[R = high|A = young,T = MI] lies in the interval [0.435,0.693].

ek FIGURE 3 ABOUT HERE ***

The last case concerns a young person who lives in Treviso. This is slightly
more difficult to classify, intuitively, since there are opposite tendencies in the
attributes: being a young person makes the risk higher, but the risk should be
lowered by living in a city with moderate traffic. The intervals for the present case
are in Figure 3. This time a single credal-dominant state is not available because
state high is credal-dominated and the intervals for the other two states overlap.

The result of the classification is the set {low, medium}.
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In this case, the posterior probability of the classification is 1— P[R = high|A =
young,T = TV]. The extremes of P[R = high|A = young,T = TV] can be
computed as in the preceding examples, obtaining the interval [0.100,0.267]. It
follows that P[R # high|A = young, T = TV] lies in [0.733,0.900]. In general
we cannot apply this simple method to compute the posterior lower and upper
probabilities of a set of classes, if C has more than 3 states. Section 6 describes a

general method.

6 Posterior lower and upper probabilities of a

set of classes

This section addresses the problem of computing the probability of a set of classes
C’ C C, conditional on the observed state of the attributes. As usual, such a
probability is an interval, obtained by solving two optimization problems,
opt P[C'ay,... a,], (6.1)
P[C,Ay,..., An)EP
where opt € {min,max}. (We derive the formulae for the optimum by assum-
ing (3.3); similar considerations to those presented in Section 3.1 apply.) Con-

sider the computation of P[C'|ay,...,a,]. Observe that P[C'|ay,...,a,] =

Y e Plcla, ... ,a,] since the events are mutually exclusive. The problem be-
comes
! o .
Pl anl = o i, S Plelan. o] (6.2)
Plc,a, ... a,
= min Lece Plosar ] (6.3)
PICAL. AleP Y o Ple,ar, ... ap)

The arguments used in previous sections allow problem (6.3) to be written as

min <1+ 2 eecrre P[] H?Zlﬁ[ai]c]>_ : (6.4)

P[ClePe > eee PIA T P lai |c]
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where C’ denotes the complement of C'.
The problem related to the upper probability is derived in analogous way,

obtaining

Secere PIATT, Plaile])
REES (” > PEITTL Pl ) | 69

Finally, observe that, as usual, problems (6.4) and (6.5) can be solved by
optimizing the fractional linear functions in parentheses; this is achieved either by

linear programming or via a combinatorial approach.

7 Conclusions

This paper proposes credal classification as a generalization of standard classifica-
tion and realizes it by extending the naive Bayes classifier to credal sets. It derives
the related procedures for classification and for the computation of posterior lower
and upper probabilities. By analyzing the computational complexity of the pro-
cedures, it shows that naive credal classification is a well-solvable task. In other
words, it shows that the application of credal sets to naive classification is simple
to realize and allows imprecision about probability values to be included in the
model.

Naive credal classification preserves the advantages of the NBC approach while
adding flexibility and realism. For that reason it would be useful to extend credal
classification to more general models. That might be achieved, for instance, by
exploiting known patterns of dependence between attributes, conditional on the
class, in the direction of relaxing assumption (1.1).

To make the NCC applicable to common classification problems, the funda-
mental issue that needs to be addressed is how to learn the local credal sets from

a random sample of data. Of course, that is a problem of statistical inference.
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We can regard the data as a random sample from a multinomial distribution. We
distinguish two cases according to the absence or presence of missing values.

First consider complete data. For this case, Walley (1996b) has proposed the
imprecise Dirichlet model, which models prior ignorance through a set of Dirichlet
distributions and makes posterior inferences by combining it with the observed
likelihood function. There are a number of important properties of the model that
make it a natural candidate to infer the local credal sets; for example, inferences
are independent of the definition of the sample space. Combining the imprecise
Dirichlet model with assumption (1.1), which is specific to the NCC, seems a
well-founded and promising way to infer the local credal sets.

On the other hand, the NCC should be able to deal also with missing data,
which are a pervasive problem in applied statistical inference. That is possible
because, when no assumptions are made concerning the missingness mechanism,
incomplete data can be regarded as another source of imprecision, as in Zaffalon
(2000): the imprecision induced by missing data can be directly represented in
the local credal sets of the NCC. That paper also shows that, in some cases, it is
possible to combine the imprecision due to missing data with Walley’s imprecise
Dirichlet model. It appears that this approach will enable the NCC to be inferred

from incomplete data sets in a simple and sound way.
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Table 1: Prior probability intervals, [P [R], P [R]], of risk classes
low  [0.77,0.85]
R medium [0.10,0.15]
high  [0.05,0.08]
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Table 2: Conditional probability intervals for age given risk category
[L[A[R],P[A|R]]

R
low medium high
young [0.15,0.22] [0.27,0.32] [0.60,0.70]
A middle-aged [0.50,0.55] [0.33,0.38] [0.05,0.15]
old 0.28,0.34]  [0.34,0.38] [0.20,0.30]
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Table 3: Conditional probability
[P[T|R],P[T|R]]

intervals for city given risk category

R
low medium high
VE [0.70,0.72] [0.15,0.20] [0.02,0.06]
T TV [0.18,0.20] [0.60,0.65] [0.22,0.28]
MI [0.08,0.10] [0.20,0.25] [0.66,0.72]
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Figure 1: Joint probability intervals for risk category, age and city

[P[R,A=0ld,T=VE],P[R,A=old,T =VE]
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Figure 2: Joint probability intervals [P[R,A = young,T = MI|,P[R,A =
young, T = MI]]
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Figure 3: Joint probability intervals [P[R,A = young,T = TV], P|[R,A =

young, T = TV]]
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