
Credible classification for environmental

problems

Marco Zaffalon 1

IDSIA, Galleria 2, CH-6928 Manno (Lugano), Switzerland

Abstract

Classifiers that aim at doing credible predictions should rely on carefully elicited
prior knowledge. Often this is not available so they should start learning from data
in condition of near-ignorance. This paper shows empirically, on an agricultural
data set, that established methods of classification do not always adhere to this
principle. Traditional ways to represent prior ignorance are shown to have an over-
whelming weight compared to the information in the data, producing overconfident
predictions. This point is crucial for problems, such as environmental ones, where
prior knowledge is often scarce and even the data may not be known precisely.
Credal classification, and in particular the naive credal classifier, are proposed as
more faithful ways to cope with the ignorance problem. With credal classification,
conditions of ignorance may limit the power of the inferences, not the credibility of
the predictions.

Key words: Credal classification; imprecise probabilities; naive credal classifier;
imprecise Dirichlet model; agricultural data.

1 Introduction

Classification is one of the most important techniques for knowledge discovery
in databases (Duda et al., 2001). It permits learning, from data, the relation-
ship between a set of attributes (or features), describing an object, and the
object’s predefined class. Classifiers are used for predicting the unknown class
of new objects, with applications that range from recognition to diagnosis, and
forecasting. The methods, being largely independent of the domain, impact
on nearly every field where a convenient database is available (see Section 2.1
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for a brief introduction to classification, and Section 2.4 for an introduction
to empirical methods used in classification).

Severe limitations to applying classification arise when the database contains
scarcely or vaguely informative data. This is the case of small and incom-
plete data sets (i.e., data sets with missing values), which are unfortunately a
commonplace of real applications. In particular, Reichert (1997) raises some
concerns that are very relevant to the present discussion, about the difficulty of
modelling environmental problems (see also Kriegler and Held (2003)). He ar-
gues that many environmental problems are characterized both by vague prior
knowledge and by imprecise knowledge of the data. In these conditions, there
is the need of models capable of relying on weaker assumptions than common
models (e.g., Bayesian models), because strong assumptions may severely bias
the results, producing unreliable predictions. Reichert identifies such models
with imprecise probability methods (Walley, 1991). Imprecise probability is a
generic term for the many mathematical or statistical models which measure
chance or uncertainty without sharp numerical probabilities. The present work
uses sets of probability distributions (or credal sets, after Levi (1980)), a very
general imprecise probability model.

This paper presents an empirical analysis of real agricultural data in Section
4. The machine learning objective is to qualitatively predict the grass grub
quantity (grass grubs are one of the major insect pests of pasture in Canter-
bury, New Zealand) based on characteristics of the paddock and on farming
practice. The data set (Section 3) contains 155 complete observations and its
being small is shown to pose difficult problems for common machine learning
techniques.

This work proposes the new paradigm of credal classification to obtain credible
predictions even under such difficult conditions (Section 2.2). Credal classifi-
cation is closely related to imprecise probability, being based on sets of proba-
bility distributions. Credal classifiers are more general than common classifiers
in that an object can be assigned to more than one class: they recognize that
the available knowledge may not justify the choice of a single class, and in this
case they give rise to a set of alternative classes. In the experiments I used the
naive credal classifier (NCC, see Zaffalon (2001, 2002b)), which extends the
well-known naive Bayes classifier (NBC, see Duda and Hart (1973)) to credal
sets (see Section 2.3). The NCC copes with small and incomplete data sets in
a way that the classifications are robust to a wide set of unknown prior states
of knowledge and to all the possible mechanisms responsible for the missing
data. To date, the NCC is the only classifier with both these characteristics.

By empirically analyzing the results of the classification from several view-
points, this work points out that the traditional prior assumptions are strong,
and lead to unjustified conclusions for the presented case. It also shows that

2



the weaker requirements of the NCC provide more reasonable, though less
determinate, answers when only little information is available. This evidence
suggests that credal classifiers are more suitable to cope with domains where
knowledge is imprecise.

2 Background

2.1 Classification

Each object under study in a classification problem is characterized by a vector
of attribute variables (A1, . . . , Ak) and by a class variable C. The generic
variable Ai takes values in a set of attributes Ai. C takes values in a set of
classes C. In this paper attribute variables are assumed to be categorical (or
discrete), i.e. the sets Ai (i = 1, . . . , k) have finitely many elements. C must
be categorical for the problem to be of classification. The purpose of attribute
variables is to describe objects, while C serves the purpose of grouping (i.e.,
categorizing) objects.

To make this description more concrete, consider two possible applications.
In a medical application, objects could be identified with patients. Their at-
tributes would report information about the patient (such as age, gender, life
style, etc.) and the results of medical tests. The patients could then be grouped
according to the status of a given disease (e.g., “no disease”, “moderate”, “se-
vere”). In the environmental domain, objects could be some type of plants
under study, the vector of attributes describing characteristics of the plants
(e.g., sepal/petal length and width), and the classes describing which plants
are considered (e.g., iris setosa, iris versicolor, iris virginica).

Classification is related to the issue of learning (or inference, in statistical
terms) in the following respect. In the typical classification setting, some ob-
jects are entirely known, which means that for each of them both the attributes
and the class variables are in a known state. The problem is then to infer, from
the known objects, what relates the attributes to the classes, in order to be
able to predict the class of new objects for which only the attributes are known.
The set of entirely known objects is called learning set. In the preceding exam-
ple on plants, from observing the differences in sepal/petal length and width,
across the classes in the learning set, one might infer a rule that allows a new
plant to be placed in the right category (usually with a certain probability of
error) only on the basis of its specific values of sepal/petal length and width.
Similarly, in the medical example above, past examples of patients correctly
diagnosed can be regarded as implicitly representing knowledge on the diag-
nostic process. This knowledge, once made explicit, could be used to diagnose
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new patients.

Strated in a different way, classification methods are algorithms that take data
(the learning set) in input and output a model of the relationship between the
attributes and the classes. Such a model is called classifier : a classifier is a
function that maps a vector of attributes to a class. There exist many possible
classifiers, such as Bayesian models (of which Bayesian networks are an im-
portant special case), neural networks, support vector machines, classification
trees, and many others (Duda et al., 2001).

Let us stress that the usefulness of classification and its wide application to a
variety of real domains is basically due to the availability of methods to infer
classifiers by looking only at the learning set. This is also what makes clas-
sification different from other scientific investigations, i.e. that the modelling
of a phenomenon heavily relies on algorithms. This nevertheless, the role of
the human analyst is very important. Prior to the inference, the analyst se-
lects the attribute and the class variables, and preprocesses the data in order
to prepare the learning set. At this stage the analyst also selects the type of
classifier to be used, and incorporates possible prior knowledge on the phe-
nomenon under study. After the inference, the analyst’s tasks involve doing
sensitivity analysis and model validation (usually by testing the model on new
data). In many cases the analyst also decides to repeat the entire process by
changing attributes, classifiers, and other parameters, until the final model
produced is acceptable. The pre- and post-inference phases will be described
in some detail in Section 2.4.

In the following the focus will be on the inferential part with respect to a
special Bayesian model called naive Bayes classifier, and to its extension to
sets of probability distributions.

2.2 Imprecise probabilities and credal classification

In some cases, the task of inferring a classifier must be achieved without sub-
stantial knowledge on a phenomenon, because data are the only source of in-
formation one has. In other cases, one may simply want to “let the data speak
for themselves,” because other forms of knowledge are too weak or vague to
be useful, or because they are difficult to incorporate in the model.

Observe that in these conditions, being able to model ignorance in the most
appropriate way becomes a fundamental issue. Basically, ignorance arises for
two reasons. When data are the only source of information, one starts learning
from them in a state of near-ignorance. Modelling prior ignorance is a long-
standing and difficult problem. The Bayesian literature (Bernardo and Smith,
1996) proposes models based on so-called noninformative prior distributions
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(or priors). This method, however, is very controversial (Walley, 1991, pp.
226–235). Many people use noninformative priors because the effects of a given
prior are severe only for small samples and will disappear in the limit of an
infinite sample, no matter which prior is used. However, data sets are often
small. Furthermore, “small” and “large” are always relative to the sample
space; also a data set with, say, 106 records (or units) is small if the sample
space is sufficiently complex.

The second type of ignorance is related to incomplete samples. These are data
sets in which some values have been turned into missing data. In such cases the
mechanism responsible for the missing data should not be ignored if one aims
to obtain credible conclusions, unless data are subject to a condition known as
“missing at random” (Little and Rubin, 1987). Unfortunately, such condition
cannot be tested statistically (Manski, 1993, pp. 73–74) and hence it does not
seem to be suited when data are the only source of information. More gener-
ally speaking, missing data prevent us from having complete knowledge of the
likelihood, i.e. there exists partial ignorance about the likelihood (or likelihood
ignorance, for short). Of course, likelihood ignorance can produce effects for
any size of the data set. Likelihood ignorance is a serious problem for knowl-
edge discovery applications, among others, for which established methods do
not provide a widely accepted solution.

Recently, there has been a great development of innovative proposals to model
ignorance. ? presents strong arguments that support the use of sets of prior
densities to model prior ignorance. A number of contributions show that
also likelihood ignorance can be modelled satisfactorily by sets of measures
(Horowitz and Manski, 1998, 2001; Manski, 2003; Ramoni and Sebastiani,
2001b; Zaffalon, 2002a). The underlying idea of these modern approaches to
prior and likelihood ignorance is the same: the body of all the possible states
of knowledge is the model of ignorance. For example, all possible mecha-
nisms responsible for the missing data, taken as a whole, are a model for
likelihood ignorance. Overall, sets of probability distributions appear as a
well-founded framework suited to model ignorance. Sets of probability dis-
tributions belong to the theory of imprecise probabilities (Walley, 1991) (see
http://www.sipta.org for up-to-date information).

Two major consequences stem from adopting imprecise probabilities in classi-
fication problems. On the one hand, there is much greater modelling flexibility
and realism. On the other, classifications can be partially indeterminate: an
object is generally mapped to a set of classes. In general, the output classes
should be all interpreted as candidates for the actual class, since there is
no way to rank them. In other words, the different types of ignorance may
limit the strength of the conclusions. Precisely determinate classifications, i.e.
strong conclusions, are a special case achieved only when the conditions justify
precision.
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This more general way to address classification problems is called credal classi-
fication. Credal classification was introduced in Zaffalon (1999) and discussed
more widely in Zaffalon (2002b). A credal classifier is defined as a function
that maps a vector of attributes to a set of classes. A credal classifier is not
only a new classifier, it implements a new way to perform classification.

Credal classification can be explained more clearly by focusing on the spe-
cial case of sequential learning tasks (here assume that data are complete).
The classifier starts in condition of prior ignorance. Every new instance (an
instance is a known state of the vector of the attributes) is first classified
and only then stored in the knowledge base together with the actual class,
which is unknown at the classification stage. The classifier’s knowledge grows
incrementally, so that its predictions become more reliable as more units are
collected. A credal classifier naturally shows this behavior. Initially it will
produce all the classes (i.e., complete indeterminacy); with more instances,
the average output set size will decrease approaching one in the limit. If one
compares this behavior with that of common classifiers that always produce
a single class, even when very few units have been read, these will appear to
be overconfident.

2.3 The naive credal classifier

This section introduces the credal classifier called naive credal classifier. This
is an extension of the well-known naive Bayes classifier to sets of probability
distributions. For details about the model, please refer to Zaffalon (2001).

Definition of the model. As before, let C denote the classification variable
and (A1, . . . , Ak) denote the attribute variables. Let the classes and attributes
be denoted by lowercase letters.

Let us assume the N units of the learning set, each with known values of the
attributes and the class (for the moment, consider the case of complete data),
are generated from an unknown multinomial process. Let the unknown chances
of the multinomial distribution be denoted by θc,a ((c, a) ∈ C×A1×· · ·×Ak).
Denote by θai|c the chance that Ai = ai conditional on c; similarly, let θa|c
be the chance that (A1, . . . , Ak) = (a1, . . . , ak) conditional on c. Let n(c) and
n(ai, c) be the observed frequencies of class c and of the joint state (ai, c) in
the N observations, respectively.

Both the naive Bayes classifier and the naive credal classifier are based on the
assumption of probabilistic independence of the attributes conditional on the
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class:

θa|c =
k∏

i=1

θai|c ∀ (c, a) ∈ C ×A1 × · · · × Ak. (1)

Based on this assumption and imposing a Dirichlet prior over the chances, it
is possible to obtain a Dirichlet posterior distribution:

P (θ|n) ∝ ∏
c∈C


θst(c)+n(c)−1

c

k∏
i=1

∏
ai∈Ai

θ
st(ai,c)+n(ai,c)−1
ai|c


 , (2)

where n is the sample, t(c) and t(ai, c) are hyperparameters corresponding to
n(c) and n(ai, c), respectively, and s > 0 is a constant representing the prior
weight (also known as the number of virtual units).

So far I have presented a traditional Bayesian learning approach for the NBC.
The extension to imprecise probabilities and the NCC is achieved by modelling
prior ignorance by a set of Dirichlet prior densities. Consider the set of all
Dirichlet priors, and, consequently, posteriors of the form (2), that are obtained
by letting the t-hyperparameters vary in the following region:

∑
c

t(c) = 1 (3)

∑
ai∈Ai

t(ai, c) = t(c) ∀(i, c) (4)

t(ai, c) > 0 ∀(i, ai, c). (5)

These constraints resemble the structural constraints to which the counts n(c)
and n(ai, c) naturally obey. The model obtained in this way is a special ver-
sion of the imprecise Dirichlet model (?) and is coherent in the strong sense
of Walley (1991, Section 7.8). In this framework s is interpreted as a degree of
caution. Recall that the choice of the weight of the Bayesian prior is arbitrary,
as it happens usually with Bayesian models. The NCC inherits this character-
istics from the IDM, though Walley gives reasonable motivations to choose s
in the interval [1, 2]. The effect of s on the NCC classifications follows easily
under the interpretation of s as caution parameter: the larger s, the larger in
general the output sets of classes for a given instance. Notably, the sets related
to larger s’s will always include those following from smaller ones.

Classification procedure. Let E[U(c)|a,n, t] denote the expected utility
with respect to (2) from choosing class c, given a, the previous data n and
a vector t of hyperparameters. Since t belongs to a region, there are many
such expected utilities for every class c, so that we cannot always compare
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two classes: generally, there is a partial order on the classes that only allows
us to discard the dominated ones. Indeed, the output of a credal classifier is
the set of classes that are not dominated. Note that the partial order depends
on the chosen dominance criterion. I use credal dominance, defined below.

The class c′ is said to credal-dominate class c′′ if and only if E[U(c′)|a,n, t] >
E[U(c′′)|a,n, t] for all values of t in the imprecise model.

Credal dominance is a special case of strict preference justified by Walley
(1991, Sect. 3.7.7) on the basis of rationality (behavioral) arguments. It was
previously proposed by Seidenfeld in the commentary of Kyburg (1983, p. 260,
P-III′).

In the following I consider 0-1 valued utility functions, i.e., we receive utility
1 if we choose the correct class c and 0 if we do not, so E[U(c)|a,n, t] =
P (c|a,n, t). With the NCC, credal dominance reduces itself to the following
nonlinear optimization problem:

inf




[
n(c′′) + st(c′′)
n(c′) + st(c′)

]k−1 ∏
i

n(ai, c
′)

n(ai, c′′) + st(c′′)


 (6)

t(c′) + t(c′′) = 1 (7)

t(c′), t(c′′) > 0. (8)

The optimum value of the problem is greater than 1 if and only if c′ credal-
dominates c′′.

The extension to incomplete samples is straightforward. Let us limit ourselves
to the common case when the class is never missing. Everything is unchanged
in the classification procedure except that the counts n(ai, c

′) and n(ai, c
′′) in

(6) are replaced by n(ai, c
′) and n(ai, c

′′), respectively. These are the minimum
value of n(ai, c

′) and the maximum value of n(ai, c
′′) achieved by replacing the

missing values of the attribute variable i with the values in Ai in all the
possible ways.

Implementation of the naive credal classifier. This section is intended
as a brief guide for interested readers to make their own implementation of the
naive credal classifier. 2 Please refer to Zaffalon (2001) for proofs and further
details.

The basic issue is the implementation of a procedure called “CD” that tests
credal dominance by solving the optimization problem in (6)–(8). The pro-
cedure takes as input the bivariate counts 3 n(ai, c

′) and n(ai, c
′′) for each

2 To date, there are no freely available implementations of the naive credal classifier.
3 As obtained from the learning set.
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i = 1, . . . , k (k ≥ 1), and the counts n(c′) and n(c′′). Here ai denotes the value
of the i-th attribute for the particular instance to classify, and c′ and c′′ are
two classes. The output of the procedure is a Boolean value indicating whether
or not c′ credal-dominates c′′.

In order to show how to solve the optimization problem, let us first re-write it
by the following notation, for short: αi = n(ai, c

′), βi = n(ai, c
′′), α = n(c′), β =

n(c′′) and x = st(c′′). The problem becomes:

inf h(x) = inf




[
β + x

α + s − x

]k−1 ∏
i

αi

βi + x


 (9)

0 < x < s. (10)

The first and second logarithmic derivatives of h(·) are (ln h(x))′ = k−1
β+x

+
k−1

α+s−x
−∑

i
1

βi+x
, and (ln h(x))′′ = − k−1

(β+x)2
+ k−1

(α+s−x)2
+

∑
i

1
(βi+x)2

, respectively.

The following algorithm computes the global minimum of h(x), subject to
0 < x < s.

(1) If there exists i such that n(ai, c
′) = 0, let inf h(x) := 0. Stop.

(2) If there exists i such that n(ai, c
′′) = 0, let (ln h(x))′|x=0 := −∞, else

compute (ln h(x))′|x=0.
(3) Compute (ln h(x))′|x=s.
(4) If (ln h(x))′|x=0 ≥ 0, let inf h(x) := h(0). Stop.
(5) If (ln h(x))′|x=s ≤ 0, let inf h(x) := h(s). Stop.
(6) If (ln h(x))′|x=0 < 0 and (ln h(x))′|x=s > 0, approximate the minimum

numerically. Stop.

On the basis of the value inf h(x) as computed by the algorithm above, the
procedure “CD” outputs 0 if inf h(x) ≤ 1 and 1 in the opposite case.

With reference to the numerical approximation mentioned in point (6) above,
I recall that h(·) is convex, whence any steepest descent algorithm will find
its global minimum. One of the fastest options in this respect appears to
be Newton-Raphson’s method because the first and second derivatives are
available. There is a problem of convergence with the basic Newton-Raphson
algorithm, but the algorithms always converges when it is combined with
bracketing, as in Press et al. (1993, p. 366). 4

4 Note that the limitation of machine precision may prevent the test of credal
dominance to be carried out; in fact, if the minimum of lnh(·) is within machine
precision from zero, it will not be possible to determine its actual sign. It seems
reasonable to adopt a conservative approach defining that c′′ is not dominated in
this case (this follows naturally by treating the zero of the machine as the actual
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Now recall that the output of the NCC is the set of classes that are not dom-
inated. To produce this set, it suffices to take the classes one by one, and test
each of them by “CD” against all the others. If any of the latter classes domi-
nates the former, this is discarded. The classes left at the end of this procedure
are those that are not dominated. Note that “CD” is invoked |C|(|C|−1) times
at most. “CD” works in time linear in the number of attributes, so the overall
computational complexity to credal-classify an instance is O(k|C|2).

The extension to incomplete samples is straightforward by feeding the proce-
dure “CD” with the lower and upper counts n(ai, c

′) and n(ai, c
′′), for each

i = 1, . . . , k, in the place of n(ai, c
′) and n(ai, c

′′), as mentioned in the preced-
ing section. The frequencies n(ai, c

′) and n(ai, c
′′) can be computed in linear

time in the size of the data set, so that the extension to incomplete samples
does not increase the computational complexity to learn the NCC with respect
to the NBC.

Comparison with other models. The NCC allows us to model prior and
likelihood ignorance under very weak assumptions, so that the classifications
are inherently robust to small sample sizes and missing data. These are ben-
efits of the innovative ideas brought by credal classification. Credal classifica-
tion is a promising field and new credal classifiers have already been proposed
(Abellán and Moral, 2001, 2003; Zaffalon and Fagiuoli, 2003; Nivlet et al.,
2001), although the NCC is still the only one that deals with both prior and
likelihood ignorance. It is also important to mention the robust Bayes classi-
fier from Ramoni and Sebastiani (2001a). Although developed independently,
the NCC and the robust Bayes classifier share many characteristics. Both are
generalizations of the NBC to sets of distributions, and the treatment of likeli-
hood ignorance of the robust Bayes classifier is much in the same spirit of the
NCC. However, the robust Bayes classifier uses the traditional model of non-
informative priors for prior ignorance. This makes it generally overconfident
when only small data sets are available, a problem that is more successfully
addressed by the NCC implementation of the imprecise Dirichlet model (see
Zaffalon et al. (2003) for a thorough comparison).

2.4 Experimental methods

Classification is focused on the core problem of inferring a classifier from a
data set. However, the pre- and post-inference phases, mentioned in Section
2.1, also play a very important role so that the overall process is successful.
Here I briefly summarize some main tasks that can be carried out in the two
phases (I consider the case of prior ignorance). Please refer to Witten and
Frank (1999) for more details.

zero).
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Pre-inference phase. The purposes of the pre-inference phase are to prepare
the learning data for the analysis and to select a classifier. The following list
reports typical activities prior to the inference.

• Attribute selection. The data preparation involves the selection of the at-
tribute variables. Often, all the attribute variables that are deemed to be
relevant to predict the classes are initially included in the analysis. Some
effort is usually done then, to select a subset of attribute variables that is
best suited to predict the class variable. This activity is called feature selec-
tion. Feature selection employs different techniques to help the analyst to
select the subset of features.

• Data cleaning. Real data often contain wrong information, duplicated units,
inconsistencies, etc. The purpose of this activity is to correct the data as
much as possible in order to produce a clean data set.

• Data transformation. It can be useful to transform the data, by changing
measurement units, grouping values, applying mathematical functions, etc.

• Discretization. Some classifiers can only deal with categorical variables,
therefore it is important to be able to turn continuous (or numerable) at-
tributes to categorical ones, by a discretization method. A common choice
in this respect is the entropy-based discretization of Kohavi et al. (1994).

• Choice of the classifier. There are several reasons that can favor the appli-
cation of a classifier to a particular domain. Yet, it is often the case that
there is no real preference and many classifiers are tested in order to select
the best of them for the application under consideration.

Post-inference phase. After the classifier has been inferred, it should be
validated. This is usually done empirically, by testing the classifier on new
data (i.e. the so-called test set). The classes predicted by the classifier for the
test set are compared with the actual ones, providing indexes of predictive
performance. A common index is the prediction accuracy : i.e., the relative
frequency of successfully predicted classes. Another method that tests the
ability of a classifier to predict probabilities of classes is described in Section
4.3.

There are different empirical schemes to test the classifier on new data. A
popular method is tenfold cross-validation (Kohavi, 1995). In this case D
represents all the data we have; part of them will have to be used for learning,
and the rest for testing. According to tenfold cross-validation, D is partitioned
at random into ten subsets (the folds) D1, . . . ,D10 of approximately equal
size. The classifier is inferred and tested ten times; each time t it is inferred
from D \ Dt and tested on Dt. The statistics for the quantities of interest,
like prediction accuracy, are computed each time on the test set Dt, and are
collected over the ten folds. In order to produce better estimates, tenfold cross
validation is also repeated ten times and the results are averaged over the
repetitions.
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I only mention that the above methods can be elaborated in many ways,
for example by considering costs on wrong classifications other than 0-1, by
providing more robust estimates of performance via confidence intervals, or
by comparing classifiers by statistical tests.

3 The data set

The agricultural data set used in this work was made publicly available by R.
J. Townsend, from Lincoln, New Zealand (see the web page of Weka, 5 which
is a free software for machine learning).

The data set describes the relationship between grass grub population and
pasture damage levels, in order to provide objective estimates of the annual
losses caused by grass grubs. Grass grubs can indeed cause severe pasture
damage and economic loss. Grass grub populations are often influenced by
biotic factors (diseases) and farming practices (such as irrigation and heavy
rolling). The machine learning objective is to find a relationship between grass
grub numbers, irrigation and damage ranking for the period between 1986 to
1992.

The data sets contains 155 complete instances. The attributes are the following
(the possible values are in parentheses).

• Year zone: the years of the period under consideration, divided into three
zones, f, m, c (6f, 6m, ..., 2c).

• Year: the years of the period under consideration (86, 87, ..., 92).
• Strip: a strip of paddock sampled (integer).
• Pdk: a paddock sampled (integer).
• Damage rankRJT: R. J. Townsend’s damage ranking (0, 1, ..., 5).
• Damage rankALL: other researchers’ damage ranking (0, 1, ..., 5).
• Dry or irr: indicates if the paddock was dry or irrigated (d: “dryland”, o:

“irrigated overhead”, b: “irrigated border dyke”).
• Zone: position of the paddock (f: “foothills”, m: “midplain”, c: “coastal”).
• GG new: class variable, based on grass grubs per square metre (l: “low”, a:

“average”, h: “high”, v: “very high”).

The empirical distribution of the classes is (0.316, 0.264, 0.297, 0.123), for
“low”, “average”, “high” and “very high”, respectively.

5 http://www.cs.waikato.ac.nz/ml/weka/
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4 Experimental analysis

The following sections present the experimental analysis carried out on the
agricultural data set presented in Section 3.

4.1 Preprocessing

Initially the data set was discretized by the default entropy-based discretiza-
tion utility of MLC++ (Kohavi et al., 1994). As a by-product of this step, the
attributes “strip” and “pdk” were deemed irrelevant to predicting the class
and were discarded. The remaining six attributes were tested for relevance in
predicting the class by the feature selection option of Weka, and all of them
were eventually kept for the analysis.

Subsequently, I tested seven classifiers on the data set. The classifiers were
inferred and tested using Weka, with tenfold cross-validation. The classifiers
involved in the comparison were: Decision Table, IB5 (an instance-based clas-
sifier), J48 (an implementation of Quinlan’s C4.5 ), Naive Bayes, OneR (a
one-rule classifier), PART (a rule-induction classifier) and SMO (an imple-
mentation of support vector machines). These were all used with default op-
tions. (See Witten and Frank (1999) for a thorough description of the above
classifiers.)

Table 1
The cross-validated prediction accuracy for several classifiers available in Weka on
the grass grub data. The accuracies are given as percentages ± their standard
deviations. The NBC achieves the best performance.

Classifier Accuracy %

Decision Table 40.00 ± 3.93

IB5 45.16 ± 3.99

J48 42.58 ± 3.97

Naive Bayes 49.03 ± 4.01

OneR 45.16 ± 3.99

PART 36.77 ± 3.87

SMO 40.64 ± 3.94

Table shows 1 the result of the comparison. It appears that the data set carries
only limited information about the domain. Indeed all the classifiers do not
capture strong relationships between the attributes and the class. However,
some predictions are significantly higher than what the simple majority rule
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achieves (i.e., 31.6%). In particular, the NBC appears to be a good candidate
method for the data set.

4.2 NBC vs NCC

From now on, I focus on the NBC and its extension to credal sets, the NCC
(with caution parameter s=1). The following discussion will show that, despite
the good performance, the NBC makes random predictions for a large fraction
of the instances. This is due to the overwhelming weight of the precise prior
distribution over the knowledge carried by the data, which makes the NBC
overconfident. In contrast, the NCC starts from much weaker assumptions, and
is able to suspend the judgment on the instances for which the information in
the data does not allow strong conclusions to be drawn.

I ran tenfold cross-validation using both the NCC and the NBC. The NCC
produced a precise classification (i.e., a single class) for about 60% of the 155
instances, with an accuracy 52.01%=:C1. In the remaining 40%=:S, it pro-
duced 2.36=:Z classes, on average, out of the possible 4. This set of classes
contained the actual class with probability 0.82=:Cs. The most relevant out-
put here is S: the NCC states that in about 40% of the instances, the available
knowledge is not sufficient to produce a single class, but only a set of alterna-
tive classes.

Table 2
Experimental results for the NBC. Each row reports the result for an NBC in-
ferred according to a different noninformative priors. The columns report per cent
accuracies.

N Ns Rs

Perks 48.21 42.74 44.47

Uniform 48.83 44.24 44.47

Jeffreys 48.58 43.65 44.47

Table 2 reports the results related to the NBC. Each row refers to an NBC
inferred according to a different prior. There are three cases, according to three
well-known proposals to model prior ignorance within the precise probability
framework. These are the Perks (Perks, 1947), Uniform (Laplace, 1812) and
Jeffreys priors (Jeffreys, 1983). The column N is the accuracy of the NBCs on
the entire test set. Ns is the accuracy of the NBCs on the subset of instances (S)
for which the NCC produces more than one class. Finally, Rs is the prediction
accuracy of a random predictor on the same subset of instances (S). The
random guesser randomly chooses one of the classes in the subset of classes
produced by the NCC.
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The comparison of Ns and Rs shows that every NBC is simply doing random
predictions on the subset related to S, their performance being almost identi-
cal. This is an empirical proof that the NCC is correct in partially suspending
the judgment on such instances. In fact, the NBC is overconfident, in a way
that its predictions are not reliable in a large fraction of cases (40%). This fact
is hidden when only the overall prediction accuracy of the NBC is considered.

We can appreciate the behavior of the NCC by also noting that the NCC
isolates a subset of instances in which robust predictions are possible (C1).
Also, instead of predicting at random on the remaining instances, the NCC
produces a set of classes (Z) with a high probability (Cs) of including the
actual class: in other words, we can be confident that the discarded classes
have low chance of containing the actual one.

4.3 A deeper view

Now I analyze the behavior of the NCC and the NBC from another angle. Let
us consider the process of sequential learning, as explained at the end of Section
2.2. When learning sequentially, there is initially very little knowledge available
to make reliable determinate predictions. It is therefore interesting to compare
the behaviors of the NBC (the uniform prior is used for the experiments below)
and the NCC.

Table 3 reports the results of the experiment on the first 15 instances of the
data set. The first column reports the instance number. The second column
reports the actual class of the instance. The column “NBC” shows the classes
produced by the NBC, i.e. all the classes with maximum posterior probability
for a given instance. The next column contains the posterior probability that
the NBC assigns to the actual class (the probabilities are displayed with an
approximation at the second decimal digit). The column “loss” reports the
logarithmic score (measured in bits) related to the NBC on the instance, i.e.
the negated logarithm in base 2 of the probability in the fourth column. The
NCC column reports the classes produced by the NCC. Finally, the last column
reports the lower and the upper posterior probabilities assigned by the NCC
to the actual class (these probabilities have been approximated numerically).

Cowell et al. (1993) propose the logarithmic scoring rule as a way to evaluate
and compare classifiers based on the probability that they assign to the actual
class. The higher the probability, the smaller the loss, with the limit of zero
loss when the class is judged to be certain. By this rule, it is easy to see that
the NBC produces very unreliable predictions and consequently large losses
for the examined cases. For example, the second instance produces a loss of
4.64 bits since the NBC deems that the actual class “high” should only appear
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Table 3
Results of the sequential learning on the first 15 instances of the data set.

# c NBC P (c|a) loss NCC P (c|a), P (c|a)

1 l lahv 0.25 2.00 lahv 0.00,1.00

2 h l 0.04 4.64 lahv 0.00,1.00

3 h l 0.31 1.67 lahv 0.00,1.00

4 h h 0.75 0.41 lahv 0.06,0.94

5 l h 0.05 4.32 lahv 0.00,0.63

6 l h 0.20 2.33 lahv 0.00,0.68

7 h lh 0.49 1.02 lahv 0.00,1.00

8 l h 0.30 1.76 lahv 0.14,0.67

9 a h 0.02 5.51 lahv 0.00,1.00

10 a a 0.53 0.92 lahv 0.00,1.00

11 l a 0.30 1.75 lahv 0.00,1.00

12 h l 0.32 1.64 lahv 0.00,1.00

13 h h 0.40 1.33 lahv 0.00,1.00

14 h h 0.75 0.42 lahv 0.00,1.00

15 v h 0.00 8.38 ahv 0.00,0.96

4 times out of 100. Units 5 and 9 present similar situations. The last unit is
even worse, with a loss of 8.38 bits, i.e. the actual class should appear 3 times
out of 1000.

As far as the NCC is concerned, we see that it suspends the judgment for
all the instances except for the last one, where the amount of past examples
starts turning total indeterminacy (i.e., when all the classes are possible alter-
natives) into partial indeterminacy. In fact the class “low” is not considered
plausible for the last instance. By this behavior, the NCC informs us that
the knowledge available in the data does not allow us to make any reliable
prediction in the first 14 instances, and only a weak prediction for the last
one. This appears to be a very reasonable way to act when the information
is very scarce, as is certainly more credible than giving strong judgments, not
justified by the evidence. We can also note that the uncertainty about the ac-
tual class is confirmed by the large, sometimes complete, indeterminacy (i.e.,
the difference between the upper and the lower probability) of the intervals in
the last column.

Similarly to the preceding section, we can show that the empirical evidence
supports the behavior of the NCC by showing that the NBC acts as a random
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Fig. 1. The average number of classes produced by the NCC as a function of the
number of instances used to infer the classifier.

predictor. Cowell et al. (1993, Section III.A) suggest evaluating a classifier
by comparing it with an alternative predicting system. As alternative system,
I used a random guesser, i.e. the classifier that each time assigns uniform
probability to the classes, irrespectively of the attribute values. This, assigning
probability 0.25 to the actual class, produces a loss of 2 bits for each instance,
with an overall loss of 30 bits. By summing the losses in the fifth column of
Table 3, we see that the total loss of the NBC is 38.09. The NBC predicts
probabilities even worse than the random predictor.

Finally, we can have an idea of how credal classification works in the rest
of cases by examining Figure 1. This reports the average number of classes
produced by the NCC as a function of the number of available instances in
the sequential learning. Initially, when the NCC is fed with very few past
examples (as in Table 3), the output indeterminacy is very high: the NCC
tends to produce completely indeterminate classifications (4 classes). As more
data accumulate, the average number of classes decreases. This value is close to
2.5 when all the instances have been read. By reading more data, the average
would tend to 1.

5 Conclusions

In his recent book, Manski (2003, p. 1) states the law of decreasing credibility :
“the credibility of inference decreases with the strength of the assumptions
maintained.” There appears to be a wide agreement on this statement, but
for it to be put to practice, we need models able to produce results under very
weak assumptions. Imprecise probability methods are good candidates in this
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respect. Walley (1991) developed a very general theory of uncertainty based
on rationality arguments (much like the Bayesian theory), though relaxing
the assumptions that probabilities have to be known precisely. Relaxing the
assumption of precision is the key to allow weak assumptions to be used.

Indeed, one advantage of permitting imprecision in probability is that states
of ignorance can be modelled very faithfully. This characteristic appears to
be particularly important in the environmental domain, where knowledge on
a phenomenon can be highly vague. With regard to classification, this means
that prior and likelihood ignorance can be frequent conditions, and the present
paper shows that this is true for a specific example of agricultural data.

Credal classifiers deal with prior and likelihood ignorance by incorporating
ignorance in the model, using imprecise probabilities, so that they can be more
credible models for environmental problems. In the application under study,
the naive credal classifier is shown to provide reliable predictions also with
a small learning set. Reliability is maintained by weakening the predictions
(i.e., by providing set-based classifications) in the most difficult cases. This is a
logical consequence of the poor knowledge jointly available from the learning
data and the chosen assumptions. Of course we should aim at having deep
knowledge of a phenomenon, as this would make us draw stronger conclusions.
But this is not always possible. In these case, it is important to let scarce
knowledge show us what its logical implications are.
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Laplace, d. P. S., 1812. Théorie Analytique des Probabilités. Courcier, Paris.
Levi, I., 1980. The Enterprise of Knowledge. MIT Press, London.
Little, R. J. A., Rubin, D. B., 1987. Statistical Analysis with Missing Data.

Wiley, New York.
Manski, C., 1993. The selection problem in Econometrics and Statistics. In:

Rao, C. R., Maddala, G. S., Vinod, H. (Eds.), Handbook of Statistics, Vol.
11: Econometrics. North-Holland, Amsterdam, pp. 73–84.

Manski, C. F., 2003. Partial Identification of Probability Distributions.
Springer-Verlag, New York.

Nivlet, P., Fournier, F., Royer, J.-J., 2001. Interval discriminant analysis: an
efficient method to integrate errors in supervised pattern recognition. In:
de Cooman et al. (2001). pp. 284–292.

Perks, W., 1947. Some observations on inverse probability including a new
indifference rule. J. Inst. Actuar. 73, 285–312.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., 1993. Nu-
merical Recipes in C: The Art of Scientific Computing. Cambridge Univer-

19



sity Press, Cambridge, 2nd edition.
Ramoni, M., Sebastiani, P., 2001a. Robust Bayes classifiers. Artificial Intelli-

gence 125 (1–2), 209–226.
Ramoni, M., Sebastiani, P., 2001b. Robust learning with missing data. Ma-

chine Learning 45 (2), 147–170.
Reichert, P., 1997. On the necessity of using imprecise probabilities for mod-

elling environmental systems. Water Science and Technology 36 (5), 149–
156.

Walley, P., 1991. Statistical Reasoning with Imprecise Probabilities. Chapman
and Hall, New York.

Witten, I. H., Frank, E., 1999. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann.

Zaffalon, M., 1999. A credal approach to naive classification. In: de Cooman
et al. (1999). pp. 405–414.

Zaffalon, M., 2001. Statistical inference of the naive credal classifier. In:
de Cooman et al. (2001). pp. 384–393.

Zaffalon, M., 2002a. Exact credal treatment of missing data. Journal of Sta-
tistical Planning and Inference 105 (1), 105–122.

Zaffalon, M., 2002b. The naive credal classifier. Journal of Statistical Planning
and Inference 105 (1), 5–21.

Zaffalon, M., Fagiuoli, E., 2003. Tree-based credal networks for classsification.
Reliable Computing 9 (6), 487–509.

Zaffalon, M., Wesnes, K., Petrini, O., 2003. Reliable diagnoses of dementia by
the naive credal classifier inferred from incomplete cognitive data. Artificial
Intelligence in Medicine 29 (1–2), 61–79.

20


