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Abstract

Retrospective clinical datasets are often characterized by a relatively small sample size and many missing
data. In this case, a common way for handling the missingness consists in discarding from the analysis
patients with missing covariates, further reducing the sample size. Alternatively, if the mechanism that
generated the missing allows, incomplete data can be imputed on the basis of the observed data, avoiding
the reduction of the sample size and allowing methods to deal with complete data later on. Moreover,
methodologies for data imputation might depend on the particular purpose and might achieve better results
by considering specific characteristics of the domain. The problem of missing data treatment is studied in
the context of survival tree analysis for the estimation of a prognostic patient stratification. Survival tree
methods usually address this problem by using surrogate splits, that is, splitting rules that use other variables
yielding similar results to the original ones. Instead, our methodology consists in modeling the dependencies
among the clinical variables with a Bayesian network, which is then used to perform data imputation,
thus allowing the survival tree to be applied on the completed dataset. The Bayesian network is directly
learned from the incomplete data using a structural expectation-maximization (EM) procedure in which the
maximization step is performed with an exact anytime method, so that the only source of approximation
is due to the EM formulation itself. On both simulated and real data, our proposed methodology usually
outperformed several existing methods for data imputation and the imputation so obtained improved the
stratification estimated by the survival tree (especially with respect to using surrogate splits).

Keywords: Bayesian networks, Data imputation, Missing data, Prognostic stratification, Survival tree.

1. Introduction

Retrospective clinical data are often used to identify features that can help in classifying patients into
groups of similar survival and in predicting the survival outcome of patients (i.e. a prognostic patient
stratification). The identification of classes of patients with a different clinical course or response to a specific
treatment allows the design of the most appropriate approach for the management of each individual patient.
The survival tree is a state-of-the-art method to stratify patients for predicting survival on the basis of
available clinical parameters [3]. Although several algorithms exist for its estimation [7, 20, 21, 33, 18, 15, 11],
the procedure always consists in finding, at each step, the best clinical variable able to divide the patients
(with respect to the survival), so that the final stratification of the patients assumes a tree-like structure.

In retrospective studies, clinical and survival data may contain many missing values for several reasons.
If the study includes data over a long period, some clinical parameters might not have been measured for
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some patients, because they were not systematically collected at diagnosis, and data might be missing in
individual patients due to technical issues. More importantly, data might be missing in some particular
subset of patients, causing biases in the analysis: for example, patients with a very aggressive course might
have died before performing a test, or a test might have been skipped in patients expected to have a
very good clinical course. Therefore, a retrospective study usually contains many missing covariate data,
and this can heavily affect the statistical analysis, especially when the sample size is small. This issue
worsens if the dataset contains many censored survival data. In fact, the missingness of the covariates
added to the censoring issue increases the hardness of identifying an accurate prognostic stratification of
the patients. In this work, we denote by missing data only the incomplete information happening in clinical
and biological variables that are available in the analysis, and not the incomplete lifetime information of
patients (censoring). A naive, still very used, approach to handle this issue consists in discarding all patients
with missing variables from the analysis, decreasing the power of any model, which is clearly undesirable.
Instead, survival tree procedures decide the best splits to define the tree using only the observed data for
each variable, and they resort to surrogate splitting in case of missing values, that is, they use a splitting
rule based on another variable which most resembles the behavior of the original missing one [1].

Another widely used approach to handle missing data is to impute the missing values, thus considering
a complete dataset in further analyses [22]. The data imputation problem regards completing the dataset
in some particular manner such that the important characteristics of the dataset are preserved. This is
mostly done by assuming that missing data are missing completely at random (that is, their missingness
is independent of both unobserved and observed data), which implies that data imputation can be safely
performed by analyzing each variable separately. Widely used methods, such as single expected value
imputation and single mode imputation, are based on this assumption. However, missing data in clinical
datasets can be more realistically considered as missing at random instead of missing completely at random
(that is, their missingness, conditional on the observed data, is independent of the unobserved values). In
fact, some of the examples discussed before in this introduction are missing at random, but not completely at
random. In the literature, many statistical approaches that account for the dependencies among covariates
have been used for data imputation. In case of categorical or discrete variables (which is often the case
for clinical parameters), these methods are usually based on maximum likelihood (ML) estimation of the
joint distribution of the covariates from the partially classified contingency table built using the observed
data [22]. Unfortunately, they suffer from the small sample size and tend to overfit, even with a small
number of covariates, because they consider all dependencies among all variables.

We propose to use a methodology based on Bayesian networks as a way to impute accurately the missing
data and improve the quality of the inference, especially in the application to survival tree analysis. For this
application, our imputation method is employed only for imputing the covariates (without any knowledge
about the survival data) and the survival tree is applied to the (supposedly accurate) completed dataset
so obtained. A Bayesian network is a probabilistic graphical model that relies on a directed acyclic graph
to encode the structured dependency among random variables and compactly represent a joint probability
distribution. Learning and inference in these models benefit from fast and accurate procedures [19]. More
specifically, learning a Bayesian network from data consists in searching for the structure of the network,
as well as its parameters, such that some criterion of quality is maximized. The most common criterion for
this purpose is the Bayesian Dirichlet Equivalent Uniform [14], which is based on maximizing the posterior
probability of the structure given the data. Although this is a particularly challenging problem when data
are incomplete, suitable algorithms do exist [12, 23, 36, 28, 26, 27]. These methods are mostly based on
turning the incomplete data into a complete dataset (or even directly updating the sufficient statistics),
and then recurring to particular methods for complete data. We adopt a meta-search composed of a few
distinct methods [17, 9, 4, 34] that selects the best procedure to run depending on the number of covariates
and running-time of the methods. The idea is to improve the score in the most efficient way, still with the
guarantee of achieving optimality. After the Bayesian networks is learned, data imputation is performed
by posterior expected means (and/or modes) computed from the estimated joint probability distribution
(encoded by the Bayesian network). Standard belief updating (and/or maximum probable explanation)
methods are used [19]. We use Bayesian networks in a similar way to previous studies [30, 10], but differently
from them, we implement a global structure learning method that directly works with the expected sufficient
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statistics instead of completing the data at each step of the structure learning process, thus achieving more
accurate models. Our method for data imputation is freely available online at http://code.google.com/p/csda-
dataimputation/.

The main contributions of this work are: (i) the design of a new framework that is able to capture the
dependencies among variables, which is then used to estimate in a more accurate way the values of missing
(categorical) covariates, and (ii) its comparison against other widely used methodologies to deal with missing
data for survival tree analysis using both simulated data and real data of lymphoma patients. We empirically
show that our proposed methodology may greatly improve: (i) the accuracy of data imputation (especially
in case of strong dependencies among the variables) and (ii) the quality of results of the survival tree
analysis, even in hard scenarios with a high percentage of missing and/or censoring data (which may occur
in practice).

2. Bayesian networks for data imputation

In this section we formalize the problem of data imputation and describe how we apply Bayesian net-
works to perform such task, from the model learning to the missing values’ inference. Since we aim at the
application to clinical data and often clinical variables are binary, ordinal or discrete (with few values), we
consider here only the case in which the covariates have a finite domain. In general, Bayesian networks can
also be defined and learned for continuous variables (see, for example, Koller and Friedman [19]).

Let X = (X1, . . . , Xm) be a vector of categorical or discrete random variables assuming values in ΩX =
×iΩXi

, where ΩXi
is the state space of Xi, for every i, and ΩX is the cartesian product of them. Let d ∈ ΩD

be a realization (here, called also state configuration) of a subset of components D of X. Suppose we have a
dataset D with n samples, where, for each sample u, Du represents the components of X which are observed
in the sample, and Zu the remaining missing ones. Thus, D = {d1, . . . ,dn} with du ∈ ΩDu

. We use du,i
to denote the observed value of the variable Xi in sample u, and we use zu,i to denote a completion of the
missing value for Xi in the sample u, such that (du, zu) ∈ ΩX is a complete configuration of X, for some
given value zu. We define I as the indicator function such that I{condition} = 1 if the condition is satisfied,
and zero otherwise. For example, I{x′=x} = 1 if x′ = x. As a particular case, we use I{miss Xi;u} to indicate
whether the variable Xi is missing in sample u. The data imputation problem regards completing each du
with some zu opportunely such that no missing value remains in the dataset. For instance, a single mean
(and respectively a single mode) approach would take, for every (u, i):

zu,i =

∑
u(1− I{miss Xi;u}) · du,i∑

u(1− I{miss Xi;u})
and zu,i = max

xi∈ΩXi

∑
u

I{du,i=xi}.

Note that single mode would keep the dataset discrete without changes in the variable’s domains, while single
mean would eventually introduce values that were not present before. The problem with these approaches
is that they do not consider dependencies between the missing values and the observed ones. This is an
acceptable behaviour if the missing values are assumed to be missing completely at random (or simply
MCAR). However, in many cases one cannot be sure whether the missing data are MCAR, or they might
even know that this is not the case. In such cases, the most usual assumption is that missing data are
missing at random (or simply MAR), which means that although missing, the process which generated them
may depend on the observed data (but not on the unobserved ones). Using the MAR assumption, single
mode and single mean imputations are arguably too naive: no information from the other variables has been
used in helping to estimate the missing values.

Given the MAR assumption, one can perform data imputation such that the likelihood of the observed
data, or its posterior probability (as we do here), is maximized. First, they computeM = argmaxM′ PrM′(D|M′),
where M is the model which maximizes the probability of the data, and then they use the model M to
compute the expected values (or the mode) for the imputation of the missing data. For every u, i:

zu,i = EM[Xi|du] or zu = max
zu∈ΩZu

PrM(zu|du),
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where EM and PrM are, respectively, the expectation and the probability with respect to M. However,
when the number of variables in X is large, any direct approach that must handle MAR data becomes
intrinsically exponential, because even the specification of the joint probability distribution is prohibitive.
This situation would happen, for instance, with a direct application of either expectation-maximization or
data augmentation, as well as any other method that deals with a full specification of the joint distribution
[22]. In such cases, one can resort to more compact representations of the joint distribution, such as the
Bayesian networks, which can be learned from the data.

We point out that, in general, when the data imputation is based on the conditional distribution of
one variable with respect to the others, often only some variables are considered in the conditioning. In
that case, when the imputation is performed with the conditional expected value, the resulted imputed
dataset may present altered associations among the variables, especially with those not considered in the
conditional distribution. One way to overcome this issue would be to impute the data with a random draw
from the conditional distribution, but the imputation with a single sampling would not reflect the sampling
variability. Thus, usually multiple imputations are preferable, but they require a method for combining the
inference across the imputed datasets [22]. Instead, in our methodology, we estimate the joint distribution
among all variables, thus the associations among the variables should not be affected by such issue.

2.1. Bayesian network definition

A Bayesian networkM is a probabilistic graphical model that relies on a structured dependency among
random variables to represent a joint probability distribution in a compact and efficient manner. It represents
a joint probability distribution PrM over a collection of discrete random variables X. It can be defined as a
tripleM = (G,X,P), where G = (VG , EG) is a directed acyclic graph (DAG) with VG a collection of m nodes
associated to the random variables X (a node per variable), and EG a collection of arcs; P is a collection
of conditional probabilities PrM(Xi|PAi) where PAi denotes the parents of Xi in the graph (PAi may be
empty), corresponding to the relations of EG . In a Bayesian network, the Markov condition states that
every variable is conditionally independent of its non-descendants given its parents. This structure induces
a joint probability distribution by the expression PrM(X1, . . . , Xm) =

∏
i PrM(Xi|PAi). We define ri ≥ 2

as the number of values in ΩXi
, rPAi

as the number of possible configuration of the parent set, that is,
rPAi

=
∏
Xl∈PAi

rl, and θ as the entire vector of parameters such that θijk = PrM(Xi = xi,k|PAi = pai,j),
where xi,k ∈ ΩXi and pai,j ∈ ΩPAi , for i ∈ {1, . . . ,m}, k ∈ {1, ..., ri}, j ∈ {1, ..., rPAi}.

Given a dataset D with n samples, the structure learning problem in Bayesian networks is to find a
DAG G that maximizes a given score function, that is, we look for G∗ = argmaxG∈G sD(G), with G the
set of all DAGs over node set X. In this paper, we consider the score function sD to be the Bayesian
Dirichlet Equivalent Uniform (BDeu) criterion [2, 4]. As done before in the literature, we assume parameter
independence and modularity [14]. The idea is to compute a score based on the posterior probability of the
structure Pr(G|D). For that purpose, the following score function is used:

sD(G) = log

(
p(G) ·

∫
p(D|G,θ) · p(θ|G)dθ

)
,

where the logarithmic is often used to simplify computations, p(θ|G) is the prior of θ for a given graph G,
assumed to be a Dirichlet with hyper-parameters α = {αijk}ijk:

p(θ|G) =

m∏
i=1

rPAi∏
j=1

Γ(αij•)

ri∏
k=1

θ
αijk−1
ijk

Γ(αijk)
,

where αijk = α∗

rPAi
ri

, for all j, k, αij• = α∗

rPAi
, for all j, and α∗ is the only free hyper-parameter, usually

referred to as the Equivalent Sample Size (ESS). We assume that there is no preference for any graph, so
p(G) is uniform and vanishes in the computations. Under these assumptions and if the data are complete,
it has been shown [4] that,

sD(G) = log

m∏
i=1

rPAi∏
j=1

Γ(αij•)

Γ(αij• +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
, (1)
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where Nijk indicates how many elements of D contain both Xi = xi,k and PAi = pai,j . The values {Nijk}ijk
depend on the graph G (more specifically, they depend on the parent set PAi of each Xi), so a more precise
notation would be to use NPAi

ijk instead of Nijk, which we avoid to make things simpler. Moreover, note that
we do not really need to know each element of D to compute the score function, but it is sufficient to have
N = {Nijk}ijk.

2.2. Learning Bayesian networks

Learning the structure of these networks from data is a very challenging problem, especially when data
are incomplete. Assuming that missing values are MAR, we could marginalize missing variables to obtain a
function of the observed ones. However, this function becomes hard to evaluate, and other problems arise:
for instance, methods that build a cache of local scores based on score decomposability [8] cannot be applied
anymore. Another solution is the expectation-maximization (EM) algorithm, which was extended to work
on the structure learning problem [12]. The idea is to use the E-step to compute the expected counts (which
is an expected sufficient statistics for the data) given the current structure and parameters of the network,
and then apply such expected counts to learn a new structure. This is done iteratively until no improvement
in the structure or parameters is possible. A possible version of the algorithm is as follows:

Structure learning algorithm
Input: dataset D
Output: Bayesian network M

1. Choose an initial guess G0 and parameters θ0.

2. For t = 0, 1, . . .
(a) Set the structure ofMt to be Gt and run a parameter learning method for incomplete data D to

find new parameters θ for Mt, using its structure and the parameters θt.
(b) Compute N using Mt to deal with the missing values such that each missing zu,i is associated

to the probability mass function PrMt(Xi|du). Set s′ = sN (Gt).
(c) Run the learning method that searches for a Gt+1 that maximizes sN . In fact, we stop this step

as soon as the value of sN becomes greater than s′. If there is no Gt+1 that improves the previous
score s′, go to step 3.

3. Set M =Mt.

In order to optimize the score function over the space of possible graphs G in the step (2c) of the algorithm,
we have implemented a few algorithms available in the literature, and a meta-algorithm that is able to select
the best option according to some problem characteristics and/or running time limits. Namely, we have
implemented the K2 local search of Cooper and Herskovits [4], the branch-and-bound (BB) procedure in
de Campos and Ji [9], a pruned dynamic programming (DP) based on Silander and Myllymaki [34], and
the linear integer programming (IP) of Jaakkola et al. [17]. These methods all require the dataset to be
complete, or at least to have a way to compute the sufficient statistics of D in the step (2b) of the algorithm.
We associate to each missing value zu,i the corresponding distribution p(Zu,i), using p(Zu,i) = PrM(Xi|du),
just as if the observation for zu,i had been split into its states proportionally to PrM(Xi|du). Besides that,
we employ the properties of the BDeu score of de Campos and Ji [8] in order to reduce the search space
even before calling the structure learning methods.

Past literature experiments [6, 9, 17] indicate that DP is the fastest method for small values of m (fewer
than 15 − 20 variables), IP is the best method from 15 − 20 to a hundred, and IP and BB are anytime
algorithms, so can be run even with large datasets, and then the accuracy keeps improving with time. K2
is the only non-exact method (that is, not guaranteed to converge to a global maximum solution), but it
is very efficient, so we try to use the K2 search as much as possible, that is, we use K2 as long as it can
find an improving solution with respect to the previous run (if it cannot, then a globally optimal method is
used). Therefore, our structure learning starts by running K2 with random initial guesses until a time limit
or convergence of K2 is reached. If an improving solution is found, the method stops and returns it. If K2
fails to find an improvement, one of DP, IP or BB is run, depending on the number of variables. DP and
IP are given a certain time-limit, which if surpassed, BB is also called.

5



Because the structure learning finds an improving solution (or the computation finishes), the method
increases the score at each iteration, and so it converges. Until recently, exact methods to find the best
structure were simply prohibitive unless for toy examples, hence structural EM had been developed using
only a local search on the space of structures, that is, step (2c) had never been performed with a global
search method. As described, we can also make use of approximate methods such as the K2, but we will
never decide to stop the search prematurely if there is an improving solution, because in such case we would
have run also a global method, which would eventually decide for sure whether there is in fact an improving
solution or not. Hence, the source of approximation in this enhanced structural EM is due solely to the use
of the EM, which is intrinsic of such idea.

2.3. Completing the data

In order to perform data imputation, we use the Bayesian network learned by the procedure described
in Section 2.2. After all, the Bayesian network we learn simply represents a joint distribution for the
variables with the compromise between fitting the (incomplete) data D and keeping the description compact
(thus efficient to compute with). Data imputation can be naturally performed by using either the posterior
expected mean (for discrete or ordinal variables):

zu,i = E[Xi|du] =
∑
xi

xiPrM(xi|du), (2)

which corresponds to the belief updating query in the learned Bayesian network [19], or the posterior expected
mode (for either discrete or categorical variables):

zu = max
x∈ΩZu

PrM(x|du),

which corresponds to the most probable explanation query in the Bayesian network. In both cases, the
learned structure is used to compute the desired values in an efficient way (more precisely, their complexity
depends exponentially on the treewidth of the network, a measure of the similarity of the network’s graph
to a tree). In the particular case of missing values for binary variables, the data completion by the expected
value in Equation (2) can be used even if the variable is nominal, because it represents the preference between
categories (in terms of frequencies of choosing the category one).

We end this section by discussing on other methods to perform data imputation. Di Zio et al. [10] also
use Bayesian networks for data imputation, but they force the network (and the imputation procedure)
to follow a pre-defined order among the variables in the domain. This constraint is known to restrict the
learning to sub-optimal Bayesian networks. Romero and Salmerón [30] use an imputation method that
resembles the learning procedure of Section 2.2. The main difference is their use of k-best most probable
explanation sequences [24] (for each sample in the dataset) to fill in the missing values at each iteration
(they sample an instantiation from the k best according to their probabilities, which is done to mimic a joint
data augmentation approach, while keeping the computational complexity low), instead of working with the
(expected) sufficient statistics computed from the data. Riggelsen and Feelders [28] propose ideas to learn
Bayesian networks using imputation, but adopt a data augmentation procedure [37] where the missing data
are imputed with an importance sampling approach. These ideas seem well suitable when the number of
samples are over a thousand [27], which is rarely the case of most medical datasets. Finally, to the best
of our knowledge, all previous attempts have used local search methods to deal with the structure learning
problem [10, 30, 26, 28, 27], while we use a globally optimal procedure.

3. Survival tree for prognostic patient stratification

Let us consider the right-censored survival data of n patients. The observed time of patient u is denoted
by Yu = min{Tu, Cu}, where Tu is the failure time (or event time) and Cu is the censoring time of that
patient. The censoring indicator is denoted by δu = I{Tu≤Cu}, that is, δu = 1 when the event time is
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observed (i.e. Yu = Tu). Hence, for each patient u in the dataset, his/her survival information is represented
by the pair (Yu, δu). As usual, we assume censoring to be independent of the observations.

In survival analysis, it is of interest to estimate the survival function S(t) = P (T > t), for all t ≥ 0, which
represents the probability to be event-free up to time t. More in general, this function is studied conditional
on the values of some covariates X = (X1, . . . , Xm), that is S(·|X), and in our context the covariates may
represent clinical and/or biological parameters known at diagnosis. For the definition of S, it is common to
use a proportional hazards model:

S(t|X) = e−
∫ t
0
λ(s|X)ds

= e−h(X)
∫ t
0
λ0(s)ds, t ≥ 0, (3)

by assuming that λ(s|X1, . . . , Xm) = λ0(s)h(X) (i.e. h(X) = λ(s|X)/ λ0(s)), for all s ≥ 0, where λ and λ0

are the hazard and the baseline hazard function, respectively. As example, choosing h(X) to be exp(β1X1 +
. . .+ βmXm) gives us the Cox proportional hazards model [5].

3.1. Survival tree

In clinical studies, it is often more interesting to estimate the survival function depending only on few
subsets of the space defined by the covariates (that is, few combinations of sets of values or intervals of the
covariates), instead of a full continuous model, such as the Cox proportional hazards one. In this way, the
patients can be divided in fewer subgroups based on the covariates (that is, each subset in the covariate
space correspond to a subgroup) and a more accurate estimation of S can be done for each subgroup.
Consequently, we aim at defining a set of groups of patients G = {g1, . . . , gnG

}, based on the values of
X = (X1, . . . , Xm), and at estimating S(.|G = g), ∀g ∈ G, where G is the variable representing the group
to which patients belong. By creating more homogeneous groups of patients, we obtain a better survival
prediction of a new patient, given its covariates. This problem can be called prognostic patient stratification.
For instance, such analysis allows the identification of patients with predicted poor survival, which might
therefore take advantage from experimental therapies or more intensive regimens.

A well-known and state-of-the-art method for the prognostic patient stratification is the survival tree,
which is a regression tree with a split-function that is able to deal with censored data. In this contest,
the groups are defined by combinations of the values of the covariates defined by the estimated tree-like
structure. The main advantages of such method are that: 1) it selects the covariates useful in the model,
considering their dependency; 2) it automatically defines the best cut-points for splitting the values of each
covariate in sets or intervals used to form the definition of the groups; 3) it gives a highly informative
output since the tree structure also shows a hierarchical dependency among the selected variables [3]. These
characteristics make it more appealing and powerful than more standard procedures, like stepwise Cox’s
regression and elastic net Cox’s regression [35].

Several algorithms exist for the estimation of the survival tree [7, 20, 21, 33, 18]. Most of them are
essentially based on the CART algorithm [1], but differ in the definition of the split function. Three well-
known ones are based on: the one-step full exponential likelihood deviance [20], also implemented in the
widely used R package rpart; the two-sample log-rank statistics [33]; and the least-squares with martingale
residuals [18]. In the literature it has not been proven any strong outperformance of one of them over
the others [20, 18]. Another regression tree methodology is the conditional inference tree [15], which is
implemented in the R package party. In case of a censored response variable, the procedure is based on
conditional log-rank tests [25] with multiplicity adjusted p-values. Although this method has good theoretical
properties, it has been shown that its performance is comparable with that of the algorithm implemented
in rpart, in case of categorical and numerical responses [15, 32]. As far as we know, these algorithms have
not been fully compared in survival settings where the presence of a high percentage of censored data may
increase the difficulty of the estimation. Since the comparison of different survival tree methodologies is out
of the aim of this article and none has been shown to always outperform the others, here we employ the
procedure implemented in rpart, which is the most widely used.

7



4. Results

In order to evaluate the performance of the Bayesian network for data imputation, we compare it with
other existing methods cited in Sections 1 and 2, using simulated data with characteristics similar to real
clinical data. Overall, the methodologies that we consider are:

• the imputation with the expected mean (indep E) or the mode (indep M), by estimating them, sepa-
rately for each covariate, using the corresponding available training data only for that given covariate;

• the imputation with the expected mean (FL E) or the mode (FL M), computed on the basis of the ML
estimate of the joint distribution of the covariates from the partially classified contingency table [22]
(R package cat);

• the imputation with the method of Romero and Salmerón [30], described in Section 2.3 (impute BN);

• the imputation with the posterior expected mean (BN E) or the posterior mode (BN M), computed on the
basis of the posterior joint distribution of the covariates estimated by our learned Bayesian network,
which is the methodology we propose in Section 2 (the method is freely available online at this address:
http://code.google.com/p/csda-dataimputation/).

Since our main goal is the application of data imputation to clinical studies, further to the evaluation
of the accuracy in the imputed data themselves, we use the simulated data also to assess whether data
imputation is able to improve the prognostic patient stratification obtained by the survival tree. Namely,
we compare the accuracy of the survival prediction between the model found by the survival tree using the
surrogate splits (SS) for dealing with missing values (which is the common procedure in the regression tree
algorithms, as explained in Section 1), and the model estimated by the survival tree when applied to the
dataset after the imputation. As explained in Section 3, we use the survival tree algorithm implemented in
the R package rpart [18].

Finally, we show the performance of our proposed methodology in the application to real datasets of two
diseases (diffuse large B-cell lymphoma and marginal zone lymphoma). For both of them, a separate test
dataset was available for the assessment of the results, as it will be detailed later on.

4.1. Simulation study

We have used the simulated data with two purposes: 1) to compare our method (based on Bayesian
networks) and others in the literature with respect to the accuracy in the data imputation; 2) to show
that the imputation can improve the final model estimated by the survival tree for patient prognostic
stratification. Since often clinical parameters are represented by binary variables (or, sometimes, by ordinal
or discrete variables with few values) and our focus is on the application to clinical data, our simulated
datasets consist of ten binary covariates (X1, . . . , X10) and the survival variables Y and δ (following the
notation defined in Section 3). We define the following exponential model for describing the relationship
between the covariates and the survival function:

S(t|X) = e−h(X)t, for all t ≥ 0, (4)

where

h(X) =


h1 = 0.25, if (X1 = 0, X2 = 0)
h2 = 1, if (X1 = 0, X2 = 1, X4 = 0, X6 = 0)
h3 = 1.5, if (X1 = 0, X2 = 1, X4 = 1)
h4 = 2.25, if (X1 = 1)
h5 = 2.5, if (X1 = 0, X2 = 1, X4 = 0, X6 = 1),

(5)

that is, S(t|G = g) = e−hgt, for all t ≥ 0 and g = 1,. . . , 5. According to the model defined through
Equations (4) and (5), the patients are divided into five groups, on the basis of only four out of the ten
covariates, and each group corresponds to a different h(X1, . . . , X10) in the proportional hazards model
of Equation (3). Moreover, it can be easily seen that the model for the definition of the groups can be
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Figure 1: Examples of Kaplan-Meier estimated survival functions of the five groups in the simulated data. The estimation was
done in two training datasets of model B, with the groups defined as in Equations 4 and 5, and 0% or 25% censored data,
respectively.

represented by a tree-like structure, given the particular way in which we define the conditions in the
equation. An example of Kaplan-Meier estimation of the survival function for the five groups is given in
Figure 1. As commonly assumed in the literature (e.g. Hothorn et al. [16]), the model is defined with a
censoring time C uniformly distributed on [0, γ], and then Y = min(T,C) and δ = I{T≤C}. The value
of γ is chosen depending on the distribution model of the covariates (explained below) in order to obtain
the desired percentage of censored data (see Table 1). We allow the training datasets to have 0%, 25% or
50% of censored patients, while the patients in the test datasets are all uncensored, which implies a better
evaluation of the survival prediction.

Similarly to real clinical data, the covariates are not all independent of each other and Figure 2 shows
the relationships among them. For the generation of the data, we used two specifications of conditional
probabilities (here called dependency models) that define the quantitative part of the Bayesian network of
Figure 2: the first one represents weak dependencies (called model A) and the other one strong dependencies
(called model B). The strength of the dependencies is accounted by how the conditional probability values
are defined (see Table 1).

Regarding the generation of the missing data, we use a MAR model (applied to the complete dataset),
which allows missing values only in five out of the ten covariates: X1, X2, X6, X8 and X10. The probability
of having a missing value in the variables X1, X2, X8 and X10 is defined conditionally on the observed value
in X3, X4, X9 and X7, respectively (see Table 2). These added relationships among the variables increase
the difficulty of the data imputation task. The set of probabilities for the MAR model are defined for each
dependency model, in order to obtain 15%, 25%, or 40% of missing values in each of the five covariates X1,
X2, X6, X8 and X10.

In order to resemble even more the difficulties usually encountered in the analysis of real clinical datasets,
the sample size is set to only 150 in each training dataset, but is set to 200 in each test dataset to obtain a
reasonably accurate evaluation of the performance. As for the generation of the data, we first simulated 100
training datasets of the covariates for each dependency model (models A and B). Then we applied (to each
complete training dataset) the suitable MAR models to derive other three datasets corresponding to 15,
25 and 40 percentage of missing values. The simulated survival data are obtained by applying the survival
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Figure 2: Dependency structure of the ten binary covariates in the simulated data.

Table 1: Definition of the two dependency models in the simulation data, along with the definition of their γ parameter in the
distribution of the two censoring times (corresponding to have 25% and 50% of censoring data). B and U denote the Bernoulli
and the uniform distributions, respectively.

model A model B
variable distributions in the dependency model
X1 B(0.20) B(0.20)
X2|X1 = 0 B(0.75) B(0.75)
X2|X1 = 1 B(0.26) B(0.95)
X3|(X1 = 0, X2 = 0) B(0.37) B(0.77)
X3|(X1 = 1, X2 = 0) B(0.09) B(0.07)
X3|(X1 = 0, X2 = 1) B(0.47) B(0.77)
X3|(X1 = 1, X2 = 1) B(0.75) B(0.76)
X4 B(0.10) B(0.10)
X5|X4 = 0 B(0.14) B(0.05)
X5|X4 = 1 B(0.77) B(0.75)
X6 B(0.60) B(0.60)
X7 B(0.39) B(0.96)
X8|X7 = 0 B(0.25) B(0.03)
X8|X7 = 1 B(0.36) B(0.89)
X9|X8 = 0 B(0.43) B(0.90)
X9|X8 = 1 B(0.74) B(0.18)
X10 B(0.77) B(0.90)
% censoring γ in the censoring distribution U [0, γ]
25% 0.988 0.988
50% 0.299 0.299
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Table 2: Distribution of the missing values in the variables X1, X2, X6, X8 and X10, depending on the values of X3, X4, X9

and X7. Only in two cases we needed to slightly change the definition of the distribution in other to achieve the requested
amount of missing data. pmiss denotes the percentage of missing values of the variable requested in the scenario.

variable model of the distribution of the missing values
X6 P (I{miss X6}) = pmiss
X1 P (I{miss X1}|X3 = 1) = pmiss

P (X3=1) P (I{miss X1}|X3 = 0) = 0

X2 P (I{miss X2}|X4 = 1) = pmiss

P (X4=1) P (I{miss X2}|X4 = 0) = 0

X8 P (I{miss X8}|X9 = 1) = pmiss

P (X9=1) P (I{miss X8}|X9 = 0) = 0

X8
(a) P (I{miss X8}|X9 = 1) = pmiss

4P (X9=1) P (I{miss X8}|X9 = 0) = 3pmiss

4P (X9=0)

X10 P (I{miss X10}|X7 = 1) = pmiss

P (X7=1) P (I{miss X10}|X7 = 0) = 0

X10
(b) P (I{miss X10}|X7 = 1) = pmiss

4P (X7=1) P (I{miss X10}|X7 = 0) = 3pmiss

4P (X7=0)
(a)Distribution used only in model B with pmiss = 0.40.
(b)Distribution used only in model A with pmiss = 0.40.

model explained at the beginning of this section to the corresponding complete dataset, for each desired
percentage of censored data (0%, 25%, 50%). For the evaluation of the improvement of the survival tree
estimation brought by data imputation, we generated 100 complete test datasets by each dependency model
(models A and B), with uncensored survival data. For the assessment of the performance of the methods in
the data imputation only, from these complete datasets we generated the corresponding datasets with 15,
25 and 40 percentage of missing values, by applying the same MAR models as for the training datasets.

In order to compare the accuracy of the methods in the data imputation, firstly we applied them to
the training datasets for all settings (that is, combinations of dependency model and percentage of missing
data), in order to estimate the joint distribution of the covariates. Secondly, we imputed the missing data
in the corresponding incomplete test dataset. We assessed the goodness of the estimated joint distributions
by comparing the square of the Hellinger distance,

H2(Pr, P̂ r) =
1

2

∑
x∈ΩX

(√
Pr(X = x)−

√
P̂ r(X = x)

)2

,

and the Kullback-Leibler divergence,

D(P̂ r‖Pr) =
∑

x∈ΩX

Pr(X = x) log

(
Pr(X = x)

P̂ r(X = x)

)
,

obtained with the four methods we considered in this study (see Figure 3 and Supplementary Figure 1). The
paired Wilcoxon signed-rank test was calculated for assessing whether our methodology achieved a better or
similar accuracy to the other methods with respect to the joint distribution estimation (see Supplementary
Tables 1 and 2). The test was always significant, except for model A with 25% and 40% of missing
data. In these cases, indep performed better than ours. In fact, in presence of a high amount of missing
data, learning an accurate dependency structure is very hard, also because of the small sample size of the
training set. Moreover, in model A, we have weak dependencies among the variables. Thus, any reasonably
sophisticated method (including ours) will hardly outperform a simpler method such as indep, since it
cannot obtain enough information from the data to estimate a very accurate model of the structure. The
accuracy of the joint distribution estimation reflects how close we got to the global information encoded by
the data instead of looking to the particular pointwise estimation of the missing values. To also evaluate
the accuracy of the estimation of each missing value, we employed the mean square error (MSE) between
the imputed data in the incomplete test dataset and their true values in the corresponding complete test
dataset (only considering the cells with missing values in the incomplete one and obviously the true values
were not available to the imputation methods). Figure 4 shows the boxplots of the MSE for all methods in
all scenarios. Moreover, we also computed the paired Wilcoxon signed-rank test to assess if BN E performed
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Figure 3: Boxplots of the difference between the Hellinger distance of each method with respect to our methodology based on
Bayesian network. A positive difference means that our methodology performed better than the other method.

better or similar to the other methods (see Supplementary Table 3). The methods that impute with the
mode (indep M, FL M, impute BN and BN M) performed generally poorer than the others and especially than
BN E (the MSE of BN E was always significantly lower, see Supplementary Table 3). As expected from the
results on the estimation of the joint distribution, in model A, when the dependencies between the variables
are weaker, indep E achieved always the lowest MSE. The method BN E obtained a similar MSE in the
case with 15% of missing values, while a greater error in the other cases but remaining among the best
methods (see Supplementary Table 3). Furthermore, the method FL E was always centered close to 0.25
with a variance close to 0, meaning that the missing values were mostly estimated with 0.5, which is not
helpful for further analysis. In model B, BN E generally gave a significantly more accurate imputation (only
with 40% of missing it achieved an error similar to indep E and with 25% similar to FL E), since it better
learned and employed all the information regarding the dependencies between the variables. For the sake
of completeness, we also performed imputation by using a random draw from the conditional distribution
estimated by FL and BN (data not shown). We obtained a very discouraging MSE, which was higher than
the one achieved by the corresponding imputation with the mode and thus it would potentially lead to high
errors in the survival tree estimation. Overall, BN E and indep E achieved the best performance, thus we
use only these methods to impute the data in the subsequent analysis. In particular, BN E outperformed
all other methods in the presence of strong dependencies among the covariates (which cannot be known in
advance in practice). We point out that we employed methods that impute missing data with the expected
values because in our applications we have only binary, ordinal and/or discrete variables. Obviously, in
presence of nominal variables with more than two categories, one should resort to imputation by the mode
instead.

Afterwards, we tested if data imputation had improved the estimation of the classification scheme of the
survival tree (which otherwise handles the problem of the missing data with surrogate splits, SS). In this
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Figure 4: Boxplots of the mean square error (MSE) made in the imputation by several methods, in all scenarios.
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case, we considered 18 possible scenarios for the training datasets, given by all combinations of dependency
model, percentage of missing data and percentage of censoring data. We applied the survival tree to both the
original training dataset (with the missing values) and the one obtained after imputing the data either with
BN E or with indep E. The tree models so derived were then used to stratify the samples in the complete and
uncensored test dataset corresponding to the same dependency model. For the evaluation, we employed the
widely used Brier score (BS), which is a square error for survival prediction, accounting also for censoring
observations [13]. Thus, the method with the lowest score denotes the one with the best performance. For
a fixed time t, it is defined as

BS(t) =
1

n

n∑
u=1

(
(0− Ŝ(t|Gu))2 I{Yu≤t,δu=1}

Ĝ(Yu)
+ (1− Ŝ(t|Gu))2 I{Yu>t}

Ĝ(t)

)
,

where Ĝ is the Kaplan-Meier estimate of the censoring distribution (i.e. considering as event 1 − δ) and
the other variables are defined as in Section 3. In order to account for the whole survival estimation, it is
possible to define even the integrated Brier score (IBS) by integrating the Brier score over the time with
respect to some weight function. Its specification is

IBS =
1

tmax

∫ tmax

0

BS(t)dt.

As suggested in Graf et al. [13], we compared the Brier scores at the median follow-up (i.e. median censoring
time) of the training dataset, in order to have enough uncensored patients at risk at that moment for a
reliable estimation of the survival prediction. For the same reason, the IBS was computed with tmax equal
to the median follow-up. In the specific case of all uncensored data in the training dataset, we evaluated
the Brier score at the median survival time and the IBS with tmax = maxYu. The function sbrier in
the R package ipred [16] was employed to evaluate both scores. Figures 5 and 6 show, for all scenarios,
the relative improvement of each score given by employing either BN E or indep E with respect to SS.
The relative improvement for BN E (and similarly for indep E) is defined as in [16], that is, (scoreSS −
scoreBN E)/scoreSS , where scoremethod denotes the score (BS or IBS) obtained with method. Overall,
the survival tree combined with the imputation of the data obtained better or similar results than without
the imputation. In particular, when the covariates had weak dependencies, the imputation improved the
estimation of the classification scheme (and thus the survival prediction) especially in presence of a high
percentage of missing data. Instead, when the dependencies were strong, the rate of improvement in the
survival prediction was sometimes smaller and it depended on the combination of the percentage of both
missing and censored data, since the problem is harder to solve in this case. Moreover, in case of a strong
dependency between the covariates, surrogate splits are better selected, making predictions of SS more
precise. Comparing indep E and BN E, we observe that often the latter achieved a slightly higher relative
improvement, especially in presence of 40% of missing data (which is a situation similar to the real practice).

In order to test whether the scores obtained by employing the imputation methods were usually better
than the ones resulted from SS, we performed a paired Wilcoxon signed-rank one-sided test in all scenarios.
In the same way, we also tested whether the performance of BN E was better than the one of indep E. As
shown in Supplementary Table 4, apart from four cases, we were always able to reject the null hypothesis
in favor that BN E achieved a lower score than SS. The test was not significant for BS in the case of model
A, with uncensored data and 15%–25% of missing data and with 25% of censored data and 15% of missing
data (this latter case was also the only one not significant for IBS). In these scenarios, the p-value was
not significant even in the corresponding two-sided test (thus, meaning that we cannot reject that the two
methods behaved similarly). Regarding indep E (see Supplementary Table 5), it behaved similar to SS

also in other additional four cases in model A: for BS, in presence of 40% of missing data and 0%–25% of
censored data, and for IBS, with uncensored data and 15%–25% of missing data. Even for indep E, when
the one-sided test was not significant also the corresponding two-sided test was not significant. In several
scenarios (see Supplementary Table 6), BN E achieved a significantly lower score than indep E, and in all
the other cases their scores were similar. BN E outperformed indep E especially with uncensored data and
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Figure 5: Boxplots of the relative improvement of the Brier score computed for the survival tree when applied after the
imputation (obtained with either indep E or BN E) with respect to using the original data (that is, using SS), in all scenarios. A
positive relative improvement indicates that the corresponding method performed better than SS. In the labels, I and B denote
indep E and BN E, respectively.

40% of missing data (sometimes also 15%), and with 50% of censored data and 25% of missing data (for
both models and both scores). In presence of uncensored data, the survival tree can obtain more precise
predictions, allowing us to distinguish the eventually different accuracy in the imputation methods in the
several scenarios of covariate missingness. When the percentage of missing data is low (such as 15%),
BN E can estimate the dependency model better than with high percentage, thus obtaining a missing data
imputation which can perform better or similar to the one of indep E. When the percentage of missing data
is high (such as 40%), indep E encounters great difficulties in estimating the missing values, while BN E can
rely on the more informative estimated dependency model, even if it is less accurate than in the case of a
small percentage of missing data. Obviously, in both cases, the outperformance of BN E depends also on
the type of dependency structure among the covariates (which cannot be known in advance in practice). In
case of an intermediate percentage of missing data (such as 25%), both methods show difficulties. Thus, it
is much easier to discriminate the better performance of BN E with respect to indep E in situations that are
hard for the survival tree analysis (such as the presence of a high percentage of censoring data). Finally,
overall the imputation of missing data improved significantly the estimation of the survival tree with respect
to the use of surrogate splits, and a better result was particularly obtained using BN E.

4.2. Application to real data

In order to verify the performance of our proposed methodology (BN E) in the analysis of real data, we
consider the data of two important diseases: diffuse large B-cell lymphoma (DLBCL) and marginal zone
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Figure 6: Boxplots of the relative improvement of the integrated Brier score computed for the survival tree when applied after
the imputation (obtained with either indep E or BN E) with respect to using the original data (that is, using SS), in all scenarios.
A positive relative improvement indicates that the corresponding method performed better than SS. In the labels, I and B
denote indep E and BN E, respectively.

lymphoma (MZL). For each of them, we have two separate datasets: one for the training and one for the
testing. In the case of DLBCL, the training dataset consists of 138 patients of Scandurra et al. [31] and the
test one consists of 127 patients from the Oncology Institute of Southern Switzerland (IOSI). For DLBCL,
we consider 18 binary and five discrete covariates assuming up to six distinct values each, and overall survival
(OS) as survival outcome. The percentage of censored data is 67% and 71% in the training and in the test
dataset, respectively. In the training dataset, the median and the maximum percentage of missing value
per variable are 12% and 69%, respectively (0% and 56%, respectively, in the test dataset). Regarding the
MZL data, the training dataset consists of 199 patients of Rinaldi et al. [29] and the test one consists of 180
patients of Zucca et al. [38]. In this case, we consider 15 binary and four discrete covariates assuming up to
six distinct values each, and the OS outcome. Due to the type of disease, the percentage of censored data
is 74% and 93% in the training and in the test dataset, respectively. In the training dataset, the median
and the maximum percentage of missing value per variable are 24% and 59%, respectively (0% and 63%,
respectively, in the test dataset).

For each disease, we imputed the missing values in the training data with BN E and indep E, and then
we applied the survival tree to the two complete datasets, obtaining the corresponding classification scheme
with a tree-like structure for prognostic patient stratification. We also applied the survival tree directly to
the training dataset with missing data, in order to evaluate the eventual gain in accuracy in the survival
prediction given by data imputation (with respect to using surrogate splits, SS). For this comparison,
we applied all tree models to the corresponding test dataset for the classification of the patients and we
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compared the Brier score at the median follow-up and the integrated Brier score until the median follow-up.
The results in Table 3 show that imputing the missing data with BN E in the training generally improves the
estimation of the classification scheme given by the survival tree, since it always achieved a score smaller
than SS. Unfortunately, the presence of many missing data and censored data in the test datasets affects the
evaluation given by the score, and hence sometimes this difference is not significant at the paired Wilcoxon
signed-rank test of the score computed per sample. Regarding indep E, sometimes it achieved even a greater
(that is, worse) score than SS and the score of BN E per sample was always significantly smaller (that is,
better) than indep E. Moreover, by using the imputed data, the survival tree method was able to select
important clinical variables while building the classification scheme, which were not chosen otherwise because
of the high percentage of missing values. For example, in the case of DLBCL, one of the variables chosen
in the tree, both using BN E and indep E, was hepatitis C serology. This variable is missing in 43% of the
cases in the training dataset and in 56% in the test dataset. In the case of MZL, the presence of a high level
of beta-2 microglobulin in the patient was one of the selected variables by BN E, but it was missed by both
indep E and SS. This variable is missing in 59% of the cases in the training dataset and in 63% in the test
dataset. Both variables, and especially beta-2 microglobulin, have been associated to a different outcome in
the literature, supporting the results given by our methodology. The high percentage of missing values in
these variables in the test patients turns the task of survival prediction into a very hard problem.

Table 3: BS at the median follow-up and IBS (in [0, median follow-up]) computed on the test datasets using the patient
stratification obtained in the corresponding training datasets. The same scores were also computed for the single patients in
order to perform a paired Wilcoxon signed-rank one-sided test, for testing that the corresponding score obtained by employing
the first method indicated in the comparison is lower than the one resulted from the second method.

disease score method value (median [IQR] per patient) comparison p-value
DLBCL BS SS 0.1676 (0.0364 [0;0.1921]) BN E vs SS 0.0417
DLBCL BS BN E 0.1467 (0.0042 [0;0.1615]) indep E vs SS 0.9421∗

DLBCL BS indep E 0.1754 (0.0301 [0;0.2778]) BN E vs indep E 0.0149
DLBCL IBS SS 0.1167 (0.0256 [0.0044;0.1987]) BN E vs SS 0.1029∗

DLBCL IBS BN E 0.1057 (0.03045 [0.0014;0.1668]) indep E vs SS 0.9504∗

DLBCL IBS indep E 0.1197 (0.0453 [0.0045;0.1633])) BN E vs indep E 0.0100
MZL BS SS 0.0727 (0 [0;0.0251]) BN E vs SS 0.4872∗

MZL BS BN E 0.0699 (0 [0;0.0021]) indep E vs SS 0.3369∗

MZL BS indep E 0.0664 (0 [0;0.0035]) BN E vs indep E 0.0158
MZL IBS SS 0.0298 (8.85·10−4 [8.10·10−5;0.0031]) BN E vs SS <0.0001
MZL IBS BN E 0.0278 (6.83·10−5 [0;0.0002]) indep E vs SS <0.0001
MZL IBS indep E 0.0281 (2.56·10−4 [1.84·10−5;0.0003])) BN E vs indep E <0.0001

∗nonsignificant p-value at the corresponding two-sided test.

5. Conclusion

The treatment of missing data is a crucial issue in retrospective clinical studies, due to the often relatively
small sample size. If not handled properly, it might affect results and reduce the accuracy of the analysis.
Since the way of addressing this issue may depend on the particular application, in this paper we focus our
attention on the case of prognostic patient stratification with survival trees. For this purpose, we suggest
to impute missing values in order to apply the survival tree to a complete dataset. This is achieved by a
framework that uses Bayesian networks, which are suitable for datasets where the number of missing data
is considerably high and the amount of samples small, often the case in clinical studies. The Bayesian
network is learned using a structural expectation-maximization procedure, where the maximization step is
implemented with a globally optimal method, considering only the data of the covariates. This procedure
is experimentally shown to outperform widely used techniques for data imputation on settings of simulated
clinical data.
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Using both simulated and real data of two distinct lymphomas, we also show that this methodology for
data imputation may improve the patient stratification given by the survival tree, that is, patients can be
divided in more precise groups (defined on the grounds of some clinical parameters), leading to more accurate
predictions of the survival time. Moreover, in the real application, we also point out that the survival tree
combined with our methodology for data imputation is able to select important clinical parameters even
when they have a high percentage of missing values. These variables would not be selected without the
imputation simply because of their missingness, even if it is known that they may influence the survival
outcome. Therefore, the use of data imputation using Bayesian networks in real clinical studies might lead
to an improvement in the survival prediction of patients and in the identification of prognostic factors.

Acknowledgements

The work of C. P. de Campos has been mostly done while he was affiliated with the Dalle Molle Institute
for Artificial Intelligence and the Institute of Oncology Research. The work partially supported by a research
grant from the Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Oncosuisse (OCS-02034-02-
2007, OCS-1939-8-2006); Swiss NSF grants Nos. 200021 146606 / 1 and 200020 137680 / 1.

References

[1] Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J., 1984. Classification and regression trees. Wadsworth & Brooks,
Monterey, California.

[2] Buntine, W., 1991. Theory refinement on Bayesian networks. In: D’Ambrosio, B. D., Smets, P., Bonissone, P. P. (Eds.),
UAI-92. Morgan Kaufmann, San Francisco, CA, pp. 52–60.

[3] Ciampi, A., Thiffault, J., 1986. Stratification by stepwise regression, correspondence analysis and recursive partition: a
comparison of three methods of analysis for survival data with covariates. Computational Statistics & Data Analysis 4 (3),
185204.

[4] Cooper, G. F., Herskovits, E., 1992. A Bayesian method for the induction of probabilistic networks from data. Machine
Learning 9, 309–347.

[5] Cox, D., 1972. Regression models and life-tables. Journal of the Royal Statistical Society. Series B 34 (2), 187–220.
[6] Cussens, J., 2011. Bayesian network learning with cutting planes. In: Proceedings of the Twenty-Seventh Annual Confer-

ence on Uncertainty in Artificial Intelligence (UAI-11). pp. 153–160.
[7] Davis, R. B., Anderson, J. R., 1989. Exponential survival trees. Statistics in Medicine 8, 947–961.
[8] de Campos, C. P., Ji, Q., 2010. Properties of Bayesian Dirichlet scores to learn Bayesian network structures. In: AAAI

Conference on Artificial Intelligence. AAAI Press, pp. 431–436.
[9] de Campos, C. P., Ji, Q., Mar 2011. Efficient structure learning of Bayesian networks using constraints. Journal of Machine

Learning Research 12, 663–689.
[10] Di Zio, M., Scanu, M., Coppola, L., Luzi, O., Ponti, A., 2004. Bayesian networks for imputation. Journal of the Royal

Statistical Society A 167(2), 309–322.
[11] Fana, F., Nunnb, M., Su, X., 2009. Multivariate exponential survival trees and their application to tooth prognosis.

Computational Statistics & Data Analysis 53 (4), 11101121.
[12] Friedman, N., 1998. The Bayesian structural EM algorithm. In: Cooper, G. F., Moral, S. (Eds.), Conference on Uncertainty

in Artificial Intelligence. Morgan Kaufmann, San Francisco, CA, pp. 129–138.
[13] Graf, E., Schmoor, C., Sauerbrei, W., Schumacher, M., 1999. Assessment and comparison of prognostic classification

schemes for survival data. Statistics in Medicine 18, 2529–2545.
[14] Heckerman, D., Geiger, D., Chickering, D. M., 1995. Learning Bayesian networks: the combination of knowledge and

statistical data. Machine Learning 20 (3), 197–243.
[15] Hothorn, T., Hornika, K., Zeileis, A., 2006. Unbiased recursive partitioning: A conditional inference framework. Journal

of Computational and Graphical Statistics 15 (3), 651–674.
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Supplementary tables

Table 1: P-value of the paired Wilcoxon signed-rank one-sided test, for testing the alternative hypothesis that the Hellinger
distance obtained by employing our methodology is lower than the one resulted from the other methods. The test was
performed in all scenarios.

model A model B

method 15% miss 25% miss 40% miss 15% miss 25% miss 40% miss
indep <0.0001 0.9822∗∗ 1.0000∗∗ 0.0003 <0.0001 <0.0001
FL <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

impute BN <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
∗∗significant p-value at the corresponding two-sided test.

Table 2: P-value of the paired Wilcoxon signed-rank one-sided test, for testing the alternative hypothesis that the Kullback-
Leibler divergence obtained by employing our methodology is lower than the one resulted from the other methods. The
test was performed in all scenarios.

model A model B

method 15% miss 25% miss 40% miss 15% miss 25% miss 40% miss
indep <0.0001 0.9995∗∗ 1.0000∗∗ 0.0029 <0.0001 0.0029
FL <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

impute BN <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
∗∗significant p-value at the corresponding two-sided test.

Table 3: P-value of the paired Wilcoxon signed-rank one-sided test, for testing the alternative hypothesis that the MSE of
the imputation obtained by employing BN E is lower than the one resulted from the other methods. The test was performed
in all scenarios.

model A model B

method 15% miss 25% miss 40% miss 15% miss 25% miss 40% miss
indep E 0.4774∗ 1.0000∗∗ 1.0000∗∗ <0.0001 <0.0001 0.6670∗

indep M <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001
FL E <0.0001 <0.0001 1.0000∗∗ <0.0001 0.3444∗ 0.0008
FL M <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

impute BN <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
BN M <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

∗nonsignificant and ∗∗significant p-value at the corresponding two-sided test.
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Table 4: P-value of the paired Wilcoxon signed-rank one-sided test, for testing the alternative hypothesis that the score
obtained by employing BN E is lower than the one resulted from SS. The test was performed, in all scenarios, for both the
Brier score (BS) and the integrated Brier score (IBS) as described in the text.

model A model B

score % censored 15% miss 25% miss 40% miss 15% miss 25% miss 40% miss
BS 0 0.0951∗ 0.1532∗ 0.0050 0.0010 <0.0001 0.0004
BS 25 0.1829∗ 0.0189 0.0024 <0.0001 0.0001 0.0007
BS 50 0.0081 0.0019 0.0214 0.0003 <0.0001 0.0128
IBS 0 0.0338 0.0050 0.0001 <0.0001 <0.0001 <0.0001
IBS 25 0.5272∗ 0.0040 0.0024 <0.0001 0.0004 <0.0001
IBS 50 0.0011 0.0007 0.0167 0.0001 <0.0001 0.0242
∗nonsignificant p-value at the corresponding two-sided test.

Table 5: P-value of the paired Wilcoxon signed-rank one-sided test, for testing the alternative hypothesis that the score
obtained by employing indep E is lower than the one resulted from SS. The test was performed, in all scenarios, for both
the Brier score (BS) and the integrated Brier score (IBS) as described in the text.

model A model B

score % censored 15% miss 25% miss 40% miss 15% miss 25% miss 40% miss
BS 0 0.4609∗ 0.3228∗ 0.1813∗ 0.0032 <0.0001 0.0050
BS 25 0.3579∗ 0.0318 0.0754∗ <0.0001 0.0001 0.0007
BS 50 0.0176 0.0444 0.0173 0.0004 <0.0001 0.0104
IBS 0 0.4490∗ 0.0597∗ 0.0073 0.0001 <0.0001 <0.0001
IBS 25 0.6880∗ 0.0076 0.0196 <0.0001 0.0007 0.0006
IBS 50 0.0019 0.0256 0.0269 <0.0001 <0.0001 0.0106
∗nonsignificant p-value at the corresponding two-sided test.

Table 6: P-value of the paired Wilcoxon signed-rank one-sided test, for testing the alternative hypothesis that the score
obtained by employing BN E is lower than the one resulted from indep E. The test was performed, in all scenarios, for both
the Brier score (BS) and the integrated Brier score (IBS) as described in the text.

model A model B

score % censored 15% miss 25% miss 40% miss 15% miss 25% miss 40% miss
BS 0 0.1495∗ 0.1697∗ 0.0240 0.0779∗ 0.2812∗ 0.0486
BS 25 0.2641∗ 0.4452∗ 0.0089 0.2655∗ 0.4511∗ 0.2191∗

BS 50 0.1173∗ 0.0332 0.0734∗ 0.2558∗ 0.0008 0.9137∗

IBS 0 0.0164 0.0968∗ 0.0157 0.0420 0.6947∗ 0.0358
IBS 25 0.2786∗ 0.5582∗ 0.0828∗ 0.4814∗ 0.4061∗ 0.3308∗

IBS 50 0.1286∗ 0.0238 0.0860∗ 0.2194∗ 0.0007 0.9326∗
∗nonsignificant p-value at the corresponding two-sided test.
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Supplementary figures
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Figure 1: Boxplots of the difference between the Kullback-Leibler divergence of each method with respect to our method-
ology based on the Bayesian network. A positive difference means that our methodology performed better than the other
method.
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