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ABSTRACT
This theoretical investigation gives the first proof of conver-
gence for (radial) natural evolution strategies, on d-dimensional
sphere functions, and establishes the conditions on hyper-
parameters, as a function of d. For the limit case of large
population sizes we show asymptotic linear convergence, and
in the limit of small learning rates we give a full analytic
characterization of the algorithm dynamics, decomposed into
transient and asymptotic phases. Finally, we show why
omitting the natural gradient is catastrophic.

Categories and Subject Descriptors
F.1.2 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
black-box optimization, evolution strategies, stability the-
ory, sphere function, convergence proof, natural gradient

1. INTRODUCTION
One of the most widely used algorithm classes for contin-

uous black-box optimization are evolution strategies (ES).
Their modern variants adapt multi-variate search distribu-
tions and include covariance matrix adaptation (CMA-ES
[9]) and natural evolution strategies (NES [16]). While these
methods were widely adopted for practical applications, and
successfully so, theoretical work has lagged behind their de-
velopments, because it remained mostly focused on (1+1)
ES (and its self-adaptive variant). For a recent review of
the state of the field, see [4], and references therein. A note-
worthy (negative) result for the broader category of purely
comparison-based algorithms is that convergence can at best
be linear [15].
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The present paper aims to establish first positive conver-
gence results for a popular class of evolutionary optimiza-
tion algorithms, by studying the convergence properties of
a canonical version of NES on d-dimensional sphere func-
tions, a problem class which serves as a minimal condition
for convergence to arbitrary precision.
Our approach consists in studying the dynamics of the

algorithm as a stochastic process using tools from stabil-
ity theory (resembling the dynamic systems approach taken
in [6], and to a lesser degree related to the phi-irreducible
Markov chains used in [3]). We make use of a novel type of
utility function (section 2.2) that delivers manageable ana-
lytic expressions. Beyond establishing convergence itself, we
obtain an explicit characterization of the dynamics, and ex-
act convergence rates, in the limit cases of large populations
sizes or small learning rates. Apart from the numerous tech-
nical results, in section 3.3 we also provide the (more casual)
reader with visualizations of the dynamics, and intuitions for
why the algorithm dynamics are composed of three distinct
regimes.
Our investigation also includes a number of practical rami-

fications, giving new guidelines for hyper-parameter settings
(and validating existing heuristics) in section 6.
It is a notable strength of the NES framework that the

user may choose among many types of search distributions,
and weighting functions for the samples, properties that
were prerequisites for our explicit analysis. Nevertheless,
we expect the techniques from this paper to be applicable
to studying other, related algorithms.

2. NATURAL EVOLUTION STRATEGIES
In real-valued optimization, we call f : S ⊂ Rd 7→ R the

fitness function on some search space S, which admits an
optimum f∗ = f(z∗).
Natural evolution strategies (NES) [16] are a class of evo-

lutionary algorithms for this type of problems, which main-
tain a search distribution π and adapt the distribution pa-
rameters θ towards higher expected fitness J , that is, max-
imizing

J(θ) = Eθ[f(z)] =
∫
f(z) π(z | θ) dz (1)

Each iteration the algorithm produces n samples zi ∼ π(z|θ),
i ∈ {1, . . . , n}, i.i.d. from its search distribution, which is pa-
rameterized by θ. The gradient w.r.t. the parameters θ can
be rewritten (see [16]) as

∇θJ(θ) = ∇θ
∫
f(z) π(z | θ) dz = Eθ [f(z) ∇θ log π(z | θ)]



from which we obtain a Monte Carlo estimate

∇θJ(θ) ≈ 1
n

n∑
i=1

f(zi) ∇θ log π(zi | θ)

of the search gradient. The key step then consists in re-
placing this gradient by the natural gradient [1], defined as
F−1∇θJ(θ) where F = E

[
∇θ log π (z|θ)∇θ log π (z|θ)>

]
is

the Fisher information matrix. The search distribution is
iteratively updated using natural gradient ascent

θ ← θ + ηF−1∇θJ(θ) (2)

with learning rate parameter η.
This general formulation is applicable to arbitrary pa-

rameterizable search distributions [16, 12], including multi-
variate Gaussians [8] and Cauchy distributions [13].

2.1 Radial NES
To facilitate our study, we consider the simple but useful

case of NES with radial Gaussian distributions (as in [5]),
with search distribution πt = N (µt, σ2

t I), where I is the d-
dimensional identity matrix. The distribution parameters
are a mean vector µt ∈ Rd and a scale coefficient σt ∈ R+.
The update equations at time-step t follow from equation 2
and read:

µt+1 = µt + ηµσt

n∑
i=1

uisi

σt+1 = σt · exp

(
ησ
2

n∑
i=1

ui(‖si‖2 − d)

)
(3)

where a utility weight ui has substituted the fitness f(zi),
and where the si are standard multi-normal sample points
in the natural coordinate system, that is zi = µt + σtsi.
Operating on natural coordinates is the reason for the mul-
tiplicative update on σt (see also [8] for a more extensive
discussion of natural coordinate systems). Besides the ini-
tial distribution 〈µ0, σ0〉, the algorithm has three effective
parameters:

• the population size n,

• the two learning rates ηµ > 0 and ησ > 0, and

• the function ui, which assigns ‘utility’ weights to each
sample zi, based exclusively on the rank of its fit-
ness. It satisfies

∑n |ui| = 1, which helps disentan-
gle the effects of the learning rate from those of re-
distributing sample utility. It is also rank-preserving:
f(zi) > f(zj)⇒ ui > uj .

Using a rank-based utility function, instead of the raw fit-
ness values f , increases robustness [16, 12] and makes the
algorithm invariant under monotone transformations of the
fitness function.

2.2 Gaussian utility functions
One way to simplify the subsequent analysis, is to choose

a utility function that has the property of becoming a Gaus-
sian density in the limit of infinitely many samples.
Under the search distribution πt, the values of the sphere

function fi = f(zi) ∝ ‖zi/σt‖2 follow a noncentral χ2-
distribution with d degrees of freedom and noncentrality pa-
rameter λ = ∆2

t/σ
2
t , where ∆t = ‖µt‖. Thus, the (normal-
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Figure 1: Different utility functions. With ∆2
t/σ

2
t =

rt � 1, the utilities resemble the classical exponen-
tial decay from best to worst (dashed lines; thin
black is for d = 1, thick red is for d = 10). At
the other extreme, with rt � 1, the utilities de-
cay exponentially for large dimensions (solid thick
red, d = 10), but are very flat for d = 1 (solid thin
black). For comparison, we also show the most com-
mon utility function used in previous work, which is
proportional to log(ranki), but uses a cutoff (dashed-
dotted, green): the approximation by the Gaussian
utilities is close if rt is not too small, which is the
case as rt → r∗ ≈ d. Also note that in all cases the
plots are normalized to an area under the curve of
1; in practice this normalization constant depends
on the number of samples n.

ized) rank function rank(fi) coincides with the correspond-
ing cumulative distribution function (CDF; with value 0 for
the best point, 1 for the worst):

rank(fi) = CDF
[
χ2
ν=d,λ=∆2

t
/σ2
t

]
(fi)

In order to numerically1 compute rank−1(x), we need to es-
timate ∆t somehow. One option is to take the distance to
the currently best sample as a reasonable (but underesti-
mating) proxy: ∆t ≈ ‖µt−zb‖, where zb is the best sample
of the iteration: b = arg max1≤i≤n(fi). This requires us-
ing a utility function that changes in time, and is similar to
an existing (successful) speedup technique, called ‘distance-
weighted’ NES (DX-NES [7]), which adapts learning rates
online (which has a similar effect to adjusting the utility
function), to one of three discrete settings, based on an es-
timated value of ∆2

t/σ
2
t .

In section 3.3, we will see that the quantity ∆2
t/σ

2
t reaches

an equilibrium point near d, and we thus take that point as
default value, if a static utility function is desired.
Using this inverse rank function, we constrain ui(rank(fi))

to be approximately Half-Gaussian:

ui(rank(fi)) = 2φ〈0,1〉
(√

fi/σt

)
⇔ ui(x) = 2φ〈0,1〉

(√
rank−1(x)/σt

)
where φ〈µ,σ2〉 denotes the Gaussian density function. Now,
in the limit of many samples, ui(rank(fi)) · πt(zi) is again
1There is no closed form for the inverse, but numerical ap-
proximations can be based on [11], for example.



normally distributed. In the natural coordinates we obtain

u(z) · πt(s) ≈ φ〈−µt
σt

,I
〉(s) · φ〈0,I〉(s) = φ〈µ′,σ′2I〉(s)

where the resulting distribution has parameters

µ′t =
1 · −µt

σt
+ 0

1 + 1 = −µt
2σt

, σ′2 = 1
2 (4)

Figure 1 shows how the function ui varies with rank, for
different values of the ratio rt = ∆2

t/σ
2
t and different prob-

lem dimensions d. Note that this new utility function closely
resembles the most popularly used (and heuristically cho-
sen) utility function [8] (shown as dashed-dotted green line
on Figure 1); we expect this approximation to be sufficient
because empirical results indicate that the precise utility
function does not affect performance substantially [12].

3. CONVERGENCE ON SPHERE
The goal of any stochastic search algorithm is to find a so-

lution that is arbitrarily close in value to the optimum f(z∗).
Given the stochastic nature of algorithms with search distri-
butions, an appropriate success criterion can be formulated
as follows: For any given ε > 0, at least half of the sam-
ples z ∼ πt, drawn from the search distribution (at iteration
t = T ) have a fitness value not worse than ε from the optimal
one. Or more concisely:

Criterion 1 (Stochastic convergence).

∃T ∈ N,∀t > T, z ∼ πT ⇒ P (|f(z∗)− f(z)| < ε) > 1
2

If we further assume that the fitness function has bounded
curvature around the optimum:

|f(z∗)− f(z)| < ε⇒ |f(z∗)− f(z)|
‖z∗ − z‖ < K

for some constant K < ∞, then criterion 1 is also implied
by convergence based on distance:

∀z ∈ S, ‖z∗ − z‖ < ε′ ⇒ |f(z∗)− f(z)| < ε (5)

for any ε′ < ε
K
. That is, if the distribution is close enough

to the optimum, then the fitness will also be good enough.

3.1 Sphere functions
Let f be the simple but common sphere function, in d

dimensions:

∀z ∈ Rd, f(z) = z>z,

where the objective is to minimize it. The sphere function
is commonly used as a test function for optimization algo-
rithms, because any smooth function is locally quadratic
near its optimum, and thus convergence on the sphere func-
tion is a necessary condition for convergence on any smooth
function.
Translation invariance: For convenience of notation,

we use the sphere function centered at zero, but all our re-
sults can trivially be generalized to the translated variant
f(z) = (z− z∗)>(z− z∗).
Intrinsic one-dimensionality: The sphere function is

rotation-symmetric (around z∗ = 0), and the search dis-
tribution is also rotation symmetric (around µt). Without
loss of generality, we can therefore rotate the coordinate sys-
tem at each iteration, such that µt = (∆t, 0, · · · , 0), where

∆t = ‖µt − 0‖, the distance of the current distribution’s
center to the optimum.
We can now reformulate criterion 1 for the case of the

sphere function:

1
2 <

∫
‖z‖<ε′

1
(2πσ2

t
)d/2 exp

(
− 1

2σ2
t
‖z− µt‖2

)
dz

=
∫

‖z‖2<ε′2

1
(2πσ2

t
)d/2 exp

(
− 1

2σ2
t
‖z− µt‖2

)
dz

=
∫

‖z′‖2<ε′2/σ2
t

1
(2π)d/2 exp

(
− 1

2‖z
′ − µt/σt‖2

)
dz′

=
∫ ε′2

σ2
t

0
χ2
ν=d,λ=∆2

t
/σ2
t
(x) dx (6)

where χ2
ν,λ is the density of the noncentral χ2-distribution,

with ν = d degrees of freedom and noncentrality parameter
λ = ∆2

t/σ
2
t . In other words, the inequality holds if and

only if ε′2/σ2
t is larger than the distribution’s median mν,λ.

From [14] we know that

ν − 2 + λ < mν,λ ≤ ν + λ,

therefore the inequality 6 is verified if

d+ ∆2
t

σ2
t

<
ε′2

σ2
t

⇔ ∆2
t + σ2

t d < ε′2 (7)

Thus, we find that criterion 1 together with equations 5
and 7 lead to a simple new success criterion for the sphere
function:

Criterion 2 (Convergence on sphere).

∃T ∈ N, ∀t > T,∆2
T + σ2

T d < ε′2

In other words, both ∆t and σt must converge to zero.

3.2 Update dynamics
This section contains a number of auxiliary derivations

of the expectations of parameter updates, required for the
analysis in the subsequent sections.
Using the Gaussian utilities from section 2.2, we can rewrite

the update equations 3 as

µt+1 = µt + ηµσt

n∑
i=1

uisi = µt + ηµσt
1
n

n∑
i=1

s′i

where the samples s′i are now drawn from N (µ′, σ′2I), with
parameters from equation 4. We can decompose the sample
vectors si into their components si,j with j ∈ {1, . . . , d}:

∆2
t+1 =

∥∥µt+1

∥∥2 =

∥∥∥∥∥µt + ηµσt
1
n

n∑
i=1

s′i

∥∥∥∥∥
2

=

(
∆t + ηµσt

1
n

n∑
i=1

s′i,1

)2

+ η2
µσ

2
t

d∑
j=2

(
1
n

n∑
i=1

s′i,j

)2

So, denoting by ξk independent standard normal (1-dimensional)
samples we can explicitly separate the stochastic parts from
the deterministic ones: The intrinsic one-dimensionality gives



us si,1 = −∆t
2σt + 1√

2ξ1 and si,j = 1√
2ξj for j > 1; therefore

∆2
t+1 =

(
ηµσt

1
n

∑n

i=1

(
∆t
ηµσt

+ −∆t
2σt + 1√

2ξi

))2

+η2
µσ

2
t

∑d

j=2

(
1

n
√

2

∑n

i=1 ξjd+i

)2

= (2−ηµ)2

4 ∆2
t + ηµ(2−ηµ)σt∆t

n
√

2

∑n

i=1 ξi + η2
µσ

2
t

2n2

∑nd

j=1 ξ
2
j

giving, in expectation

E[∆2
t+1] = (2− ηµ)2

4 ∆2
t +

η2
µd

2n σ
2
t (8)

V ar[∆2
t+1] =

η2
µ(2− ηµ)2

2n σ2
t∆2

t +
η4

µd

2n2 σ
4
t (9)

Similarly, we rewrite the update of σt (from equation 3):

σ2
t+1 = σ2

t exp

(
ησ

n∑
i=1

ui(‖si‖2 − d)

)

= σ2
t exp

(
−ησd+ ησ

n

n∑
i=1

‖s′i‖2
)

= σ2
t exp

(
−ησd+ ησ

2n

n∑
i=1

[(
−∆t

σt
+ ξi

)2

+
d∑
j=2

ξ2
j

])

= σ2
t exp

(
−ησd+ ησ∆2

t

2σ2
t

− ησ∆t

nσt

n∑
i=1

ξi + ησ
2n

nd∑
j=1

ξ2
j

)
To compute the expectation, we can decompose this into a
product, because all the ξi are independent of each other.
Using the auxiliary results

E
[
exp
(
ησ
2n ξ

2)] =
(
1− ησ

n

)−1/2

E
[
exp
(
− ησ∆t

nσt
ξ + ησ

2n ξ
2)] =

(
1− ησ

n

)−1/2 exp
(

η2
σ∆2

t

2nσ2
t
(n−ησ)

)
we obtain

E[σ2
t+1] = σ2

t exp
(
−ησd+ ησ∆2

t

2σ2
t

)
·E
(
exp
[
− ησ∆t

nσt
ξi + ησ

2n ξ
2
i

])n E (exp
[
ησ
2n ξ

2
j

])n(d−1)

= σ2
t

(
1− ησ

n

)−nd/2 exp
(
−ησd+ ησ∆2

t

2σ2
t

+ η2
σ∆2

t

2σ2
t
(n−ησ)

)
≈ σ2

t exp
(
− ησ2 d+ nησ

2(n−ησ)
∆2
t

σ2
t

)
(10)

where we used log(1 − ησ
n

) ≈ − ησ
n
, with the assumption

ησ � n. Similarly, the variance of the update becomes:

V ar[σ2
t+1] = −E[σ2

t+1]2 + σ4
t exp

(
−2ησd+ ησ∆2

t

σ2
t

)
·E
(
exp
[
− 2ησ∆t

nσt
ξi + ησ

n
ξ2
i

])n E (exp
[
ησ
n
ξ2
j

])n(d−1)

= σ4
t exp

(
−2ησd+ nησ

n−ησ
∆2
t

σ2
t

)
·
[(

1− 2ησ
n

)−nd/2 − (1− ησ
n

)−nd]
≈ σ4

t exp
(
−ησd+ nησ

n−ησ
∆2
t

σ2
t

)[
exp
(

η2
σd

2n−4ησ

)
− 1
]
(11)

3.3 Phase plane analysis
The fixed points of the dynamics are those values for

which the expected update is the identity function. As a
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Figure 2: NES phase plane. Black arrows give the
directions of the expected combined update of ∆2

t

and σ2
t (magnitudes are not to scale). The settings

used are d = 10, n = 5, ηµ = 1 and ησ = 1. The dashed
red lines indicate the null clines (fixed points) for
the two variables, and at the same time delimit the
three dynamic regimes. The underlaid color gradi-
ent is corresponds to the objective from criterion
2. Visibly, regimes (1) and (3) are transient, and
all updates in (2) lead toward the optimum (at the
origin). Note also the very drastic increase of σ2

t

whenever it is much smaller than ∆2
t/d, in regime

(1).

prerequisite for our stability analysis, we thus determine the
fixed point for each variable. We have a fixed point for ∆2

t

if the equality holds in

E[∆2
t+1] ≤ ∆2

t

⇔
η2

µd

2n σ
2
t +

η2
µ − 4ηµ

4 ∆2
t ≤ 0

⇔ ∆2
t

σ2
t

≥ 2ηµ

n(4− ηµ)d (12)

Note that we only have a fixed point only if ηµ < 4, so for
larger values, we have divergence. Similarly, we have a fixed
point of σ2

t if the equality holds in

E[σ2
t+1] ≤ σ2

t

⇔ exp
(
−ησ2 d+ nησ

2(n− ησ)
∆2
t

σ2
t

)
≤ 1

⇔ ∆2
t

σ2
t

≤ n− ησ
n

d (13)

Given that the left term is positive, we only have a fixed
point for σt if ησ < n.
Thus, it is clear that under these conditions, the single

fixed point for the joint updates is where these two lines
intersect, namely at 〈∆2

t = 0, σ2
t = 0〉.

Based on the inequalities 12 and 13, we find that the dy-
namics can be divided into three distinct regimes:
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Figure 3: Additional NES phase planes. Compared
to figure 2, we varied d, n and ησ. In the top left,
we see that reducing ησ by a factor 10 smoothens
the transition between regimes (1) and (2). On the
top right, we illustrate how similar the dynamics
remain (as compared to the corresponding settings
top left), even when reducing the dimension by a
factor 10. The bottom left plot shows how increas-
ing ησ substantially changes both the borders of the
regimes, narrowing regime (2), and the dynamics
within. Finally, the bottom right plot reduces the
noise by increasing n by a factor 10; as expected,
regime (3) almost vanishes.

(1) If ∆2
t

σ2
t
≥ n−ησ

n
d, then σ2

t increases, ∆2
t decreases, so ∆2

t

σ2
t

decreases and we approach regime (2).

(2) If n−ησ
n

d >
∆2
t

σ2
t
≥ 2ηµ

n(4−ηµ)d, then σ
2
t decreases, ∆2

t de-
creases, and we approach the goal of ∆2

t +σ2
t d < ε′, and

thus converge according to criterion 2.

(3) If 2ηµ

n(4−ηµ)d >
∆2
t

σ2
t
> 0, then σ2

t decreases, ∆2
t increases

so ∆2
t

σ2
t
increases and we approach regime (2).

From this, we can deduce that regimes (1) and (3) are tran-
sient2, and that the asymptotic regime is (2). Therefore,
the algorithm will always converge according to criterion 2
in expectation.
2A technical condition is that the updates are small enough
to avoid oscillation between regimes (1) to (3), while regime
(2) is ‘over-jumped’. It can be shown that ησ < 2

d
log 4n

η2
µ(n+2)

is a sufficient condition to avoid such oscillations (assuming
ηµ ≤ 1).

The intuitive interpretations of these are that when ∆t is
much larger than σt (regime 1), the algorithm is far from the
solution, and consequently increases the scale of the search
distribution; which then allows it to reduce ∆t with increas-
ingly larger steps. On the other hand, if ∆t is much smaller
than σt (regime 3), it is so close to the optimum that the
noise effects tend to temporarily lead it further away. Oth-
erwise (regime 2), both ∆t and σt decrease to obtain con-
vergence.
The phase planes in figures 2 and 3 visualize the update

directions in the different regimes, for a number of different
dimensions and parameter settings.

3.4 Noise-free discrete dynamics
In our first limit case we study the dynamics in the ab-

sence of noise, which we can obtain by taking n → ∞. We
start by looking at the ratio rt = ∆2

t

σ2
t
, which is omnipresent

because it corresponds to the scale-invariant part of the state
variables. We have:

E
[

∆2
t+1

σ2
t+1

]
= E

[
exp
(
ησd− ησ∆2

t

2σ2
t

)[
(2−ηµ)2

4 ∆2
t

+ ηµ(2−ηµ)σt∆t
n
√

2

∑n

i=1 ξi + η2
µσ

2
t

2n2

∑nd

j=1 ξ
2
j

]
· σ−2

t exp
(
ησ∆t
nσt

∑n

i=1 ξi −
ησ
2n
∑nd

j=1 ξ
2
j

)]
which, following a derivation analogous to the one for 10,
and using n→∞ gives

E[rt+1] = E
[

∆2
t+1

σ2
t+1

]
= (2− ηµ)2

4 exp
(1

2ησ(d− rt)
)
rt

and thus the following expression for the fixed point r∗:

E[rt+1] = rt

⇔ r∗ = d− 4 log(2)− 4 log(2− ηµ)
ησ

(14)

under the constraint that

r∗ ≥ 0
⇔ ησd ≥ 4 log(2)− 4 log(2− ηµ)

⇔ (2− ηµ)2 ≥ 4 exp(−1/2ησd) (15)
⇐ ηµ ≤ 2(1− exp(−1/4ησd))

Replacing in 10, this gives the asymptotic expected update

E[σ2
t+1] = σ2

t exp
(

η2
σd

2(n− ησ) −
2n log(2)− 2n log(2− ηµ)

n− ησ

)
≈ (2− ηµ)2

4 σ2
t

Thus there exists a time τ , for which

σ2
τ+t =

(
(2− ηµ)2

4

)t
σ2
τ ≥ exp

(
−ησd2 t

)
σ2
τ

(from condition in equation 15), decay is analogously for
∆2
τ+t. In other words, in the absence of noise, we have

asymptotic linear convergence with a convergence rate exp
(
− ησd4

)
,

which could in principle be boosted to arbitrary values by
increasing ησ. However, we will see below that for finite n
the quantity ησd should be bounded.



4. CONTINUOUS-TIME DYNAMICS
Taking the learning rates to smaller values ηµ → dt · kµ

and ησ → dt · kσ while doing more iterations smoothens the
updates of the algorithm. In the limit of infinitesimal steps,
we obtain a stochastic continuous-time flow in R2 (as in [2]).
Using our calculations in section 3.2, we can express it as a
system of stochastic differential equations:

d∆2
t = −kµ∆2

tdt+ kµ

√
2
n
σt∆t dW (16)

dσ2
t = kσ

(1
2∆2

t −
d

2σ
2
t

)
dt+ kσ

√
d

2nσ
2
t dW (17)

where dW denotes standard Brownian motion. Unlike in
the discrete-time case, we can now explicitly compute the
stability matrix from the Itō drift terms:(

−kµ 0
kσ
2 − kσd2

)
which has two negative eigenvalues3, which implies that the
dynamics correspond to an asymptotically stable (i.e., ab-
sorbing) node at the origin.
The joint density p(x, y, t) at time t of the coupled stochas-

tic process (where x = ∆2
t and y = σ2

t ) is described by the
Fokker-Planck equation [10]:
∂p

∂t
= kµ

∂

∂x
[xp] + kσ

2
∂

∂y
[(yd− x)p]

+ 1
n

∂2

∂x2 [xyp] + k2
σd

2n
∂2

∂y2 [y2p]

=
[
kµ + n+ 2kσ

2n kσd
]
f +

[
kµx+ 2

n

]
∂f

∂x
+ 1
n
xy
∂2f

∂x2

+kσ
2

[
−x+ d

n+ 4kσ
n

y
]
∂f

∂y
+ k2

σd

2n y
2 ∂

2f

∂y2 (18)

These full dynamics appear to not be analytically tractable4,
but the differential equation can be numerically simulated,
which shows qualitatively that there is a transient phase
where x may grow, and after the ratio rt = x/y stabilizes
the densities converge exponentially to a δ-function above
the origin.
In the next subsections, we attempt to formally charac-

terize these dynamical properties. First, we study the ex-
ponential convergence after the transient adaptation of rt
has taken place (section 4.1). Second, we look at infinite
population sizes (i.e., noise-free dynamics as in section 3.4,
but now for the continuous case), which is a proxy for char-
acterizing the dynamics of the mean of the distribution, in
section 4.2.

4.1 Geometric Brownian motion
In the discrete (noisy) case, there is no analytical solution

for r∗ (the fixed point of rt)5, but here, with continuous
3The eigenvalues can be identical, but the node remains
asymptotically stable.
4A good candidate guess for p would be the two-dimensional
Wishart distribution where the three scale parameters and
the degrees-of-freedom parameter are a function of time.
But our attempts at identifying the explicit form failed due
to the last (y2) term in equation 18.
5It always exists, because for rt � 1, we have E[rt+1] �
0 while for rt � 1, we have E[rt+1] � 1, so they must
intersect.

dynamics, we can identify it:

∆2

σ2
t

= ∆2 + d∆2

σ2
t + dσ2

t

⇔ ∆2

σ2
t

= ∆2 − kµ∆2dt

σ2
t + kσ

2 (−σ2
t d+ ∆2) dt

⇔ kσ
2
(
−σ2

t d+ ∆2) dt = −kµσ
2
t dt

⇔ ∆2

σ2
t

= d− 2kµ

kσ
≡ r∗ (19)

which is stable, but exists only if kσ > 2
d
kµ. Under this con-

dition, we call the transient phase the early part of the run
until rt has (approximately) converged to this fixed point6.
If the adaptation of rt is transient, then there is a time

τ such that ∀t ≥ τ, rt ≈ r∗. We can study the asymptotic
dynamics by just considering the updates of σ2

t , because
∆2
t ≈ r∗σ

2
t , simply. The system of stochastic differential

equations 17 becomes a single equation

dσ2
t ≈ −kσ

d− r∗
2 σ2

t dt+ kσ

√
d

2nσ
2
t dW (20)

This has the well-known form of a geometric Brownian
motion, which is known to converge linearly to zero in ex-
pectation, if the drift term is negative (which is always true,
because r∗ < d is guaranteed by equation 19). Thus, follow-
ing [10] and replacing the value of r∗, we have

σ2
τ+t = σ2

τ exp

[
−
(
kµ + k2

σd

4n

)
t+ kσ

√
d

2ndW

]
and

E(σ2
t+τ ) = σ2

τ exp (−kµt)

V ar(σ2
t+τ ) = σ4

τ exp (−kµt)
[

exp
(
k2
σd

2n t
)
− 1
]

< σ4
τ exp

[(
−kµ + k2

σd

2n

)
t

]
Thus, we also have an exponential decrease in variance if

−kµ + k2
σd

2n < 0

⇔ kσ <

√
2nkµ

d
(21)

which is in turn a guarantee that the density p(x, y, t) will
converge to a δ-peak above the origin.

4.2 Noise-free continuous dynamics
An alternative avenue to characterize convergence explic-

itly is taking n → ∞, then the noise effects vanish, and
from equation 16 we immediately obtain the expression of
the exponential decay for ∆2

t

∆2
t = ∆2

0 exp (−kµ · t) (22)

6A possible heuristic for bypassing this transient phase, is
to initialize the algorithm with σ2

0 ≈ ∆̂2
0/d, if the user can

provide a guess ∆̂0 of the initial distance to the optimum.



which, when replacing in 17, gives the following inhomoge-
neous differential equation for σ2

t :

dσ2
t

dt
= −kσd

2 σ2
t + kσ∆2

0
2 exp (−kµ · t)

Using the method of underdetermined coefficients, and as-
suming kσd

2 6= kµ, we guess at the form

σ2
t = C1 exp(−kσd2 t) + C2 exp(−kµt)

Differentiating and identifying the coefficients, we find:

C1 = σ2
0 − C2 , C2 = kσ∆2

0
kσd− 2kµ

Otherwise, if kσd2 = kµ, we guess at the form

σ2
t = (C3 + C4t) exp(−kµt)

and identify

C3 = σ2
0 , C4 = kσ∆2

0
2

Clearly, ∆2
t converges to zero in O(e−kµt). For the con-

vergence of σ2
t we distinguish three cases: if kσd2 > kµ then

the convergence is in O(e−kµt), if we have equality it is in
O(t · e−kµt), otherwise it is in O(e−

kσd
2 t). The asymptoti-

cally best of these cases is when kσd
2 > kµ, and for which we

obtain the total convergence rate on the relevant quantity
σ2
t d+ ∆2

t of O(e−kµt). Explicitly:

σ2
t = σ2

0 exp
(
−kσd2 t

)
− kσ∆2

0
kσd− 2kµ

(
exp
(
−kσd2 t

)
− exp (−kµt)

)
(23)

Note that this holds for all t > 0, unlike the strictly
asymptotic characterization in section 3.4. We may see tran-
sient growth in σ2

t , depending on the initial ratio r0 = ∆2
0

σ2
0
,

before the dominant term takes over, and the algorithm con-
verges exponentially.

5. OMITTING THE NATURAL GRADIENT
It is not obvious at first sight that NES would perform

qualitatively differently, were one to remove the natural gra-
dient, as that would still optimize the right objective (equa-
tion 1). It is known [12] that this ‘vanilla’ version is not
scale-invariant. With the tools introduced here, we can now
characterize its contrasting convergence properties. The
vanilla update equations are

µt+1 = µt + ηµ

σt

n∑
i=1

uisi = µt + ηµ

nσt

n∑
i=1

s′i

σt+1 = σt + ησ
2σt

n∑
i=1

ui(‖si‖2 − d)

= σt −
ησd

2σt
+ ησ

2nσt

n∑
i=1

‖s′i‖2

leading to the expectations

E[∆2
t+1] = (2σ2

t − ηµ)2

4σ4
t

∆2
t +

η2
µd

2nσ2
t

(24)

E[σt+1] = σt −
ησd

4σt
+ ησ∆2

t

4σ3
t

The fixed points are

∆2
t = 2ηµd

n(ηµ + 4σ2
t )σ

2
t , σt = ∆t√

d

which hold simultaneously if

∆2
t = σ2

t d = ηµd(n− 2)
4n

As this equilibrium is not at the origin (as it is for NES),
this implies that we need to choose

ηµ <
2n

d (n− 2) ε
′2

in order for the convergence condition from criterion 2 to
hold eventually (at the equilibrium). This ηµ is an infinites-
imal quantity for any ambitious ε′, so equation 24 becomes

E[∆2
t+1] ≈

(
1− ηµ

σ2
t

)
∆2
t

which clearly shows that even if the algorithm converges
(i.e., when noise effects are sufficiently attenuated with a
large value of n), convergence must be very slow.

6. PARAMETER GUIDELINES
From the above results we can deduce guidelines for hyper-

parameter choices. Note that all of these, while useful, are
to be taken with a grain of salt, because they result from the
analysis of idealized scenarios, and not the exact algorithm.

• Section 5 justifies always using the natural gradient.

• Section 4.1 recommends the initialization σ2
0 ≈

∆̂2
0
d
.

• Section 3.3 recommends setting n > 2d+6
3d , where the

larger n is, the closer the dynamics will be to those
describes in section 3.4.

• Sections 4.1 and 4.2 recommend choosing 2
d
< ησ <√

2n
d
, and section 3.4 showed that (at least if n is

large) ησ should be as large as possible7.

• Section 3.4 recommends ηµ to be as large as possible
with ηµ ≤ 2− 2 exp(− 1

4ησd).

For example, given the often desirable choice of a minimal
n, easy to remember learning rates (that satisfy the above)
are ησ = 2√

d
and ηµ = 1.

A common choice in previous work on NES [12] has been
n = 4+b3 log(d)c, ηµ = 1 and ησ = 3+log(d)

5
√
d

. These settings
satisfy the constraint in equation 21 only for d < 1063, but
it is safe to say that includes all realistic cases.
7Note that in practice, choices of ησ < 2

d
often give robust

empirical performance (especially on problems more diffi-
cult than sphere functions, see [8]), despite the absence of a
distinct transient phase.



7. DISCUSSION AND CONCLUSIONS
This paper has established a number of novel convergence

results for natural evolution strategies. Using stability the-
ory, we determined the parameter settings for which radial
NES is guaranteed to converge on the sphere function.
For the most general case (section 3.3), we established a

qualitative decomposition into three distinct regimes. For
the limit case of large population sizes (section 3.4), we
proved asymptotic linear convergence; for the orthogonal
limit case of small learning rates (section 4.1), we deter-
mined the conditions for which both the mean and the vari-
ance of the diffusion converge linearly. Finally, combining
both limit cases (section 4.2), we gave a full characterization
of the dynamics, for both the transient and the asymptotic
phases.

7.1 Generalizations
The performance on the sphere function generalizes to any

function that is strictly monotonous in the distance to the
optimum f(z) = g(‖z− z∗‖) (i.e., that has circular contour
lines). The next milestone will be to determine whether
convergence can be proven for general quadratic functions,
or possibly even for all smooth convex functions.
All our results for the convergence or radial NES on sphere

functions also carry over to separable multivariate Gaussian
search distributions (SNES, [13]). This is because SNES
can be seen as a collection of d independent radial NES
algorithms that optimize parameters in each dimension sep-
arately; for each dimension, our convergence results hold
separately, so they must hold for the composite case.

7.2 Future work
The presented may lend themselves to an extension for

NES variants that adapt the full covariance matrix (e.g.,
xNES [8]), which must converge if none of the eigenvalues of
the normalized covariance matrix vanish, (which holds triv-
ially if ηB = 0). Other interesting cases are non-Gaussian
search distributions; here the full analysis will probably be
limited to members of the exponential family (which admit
conjugate priors).
A different direction is to develop improved algorithms

using well-founded schemes for adapting the learning rates
ησ depending on the current regime (as in [7]), or time-
dependent the population sizes nt, based on the presented
analysis.
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