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Abstract. We address the problem of autonomously learning controllers for vision-
capable mobile robots. We extend McCallum’s (1995) Nearest-Sequence Memory
algorithm to allow for general metrics over state-action trajectories. We demon-
strate the feasibility of our approach by successfully running our algorithm on a
real mobile robot. The algorithm is novel and unique in that it (a) explores the en-
vironment and learns directly on a mobile robot without using a hand-made com-
puter model as an intermediate step, (b) does not require manual discretization of
the sensor input space, (c) works in piecewise continuous perceptual spaces, and
(d) copes with partial observability. Together this allowslearning from much less
experience compared to previous methods.
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1. Introduction

The realization of fully autonomous robots will require algorithms that can learn from
direct experience obtained from visual input. Vision systems provide a rich source of
information, but, the piecewise-continuous (PWC) structure of the perceptual space (e.g.
video images) implied by typical mobile robot environmentsis not compatible with
most current, on-line reinforcement learning approaches.These environments are char-
acterized by regions of smooth continuity separated by discontinuities that represent the
boundaries of physical objects or the sudden appearance or disappearance of objects in
the visual field.

There are two broad approaches that are used to adapt existing algorithms to real
world environments: (1) discretizing the state space with fixed [20] or adaptive [15,16]
grids, and (2) using a function approximator such as a neural-network [10,5], radial basis
functions (RBFs) [1], CMAC [22], or instance-based memory [4,3,17,19]. Fixed discrete
grids introduce artificial discontinuities, while adaptive ones scale exponentially with
state space dimensionality. Neural networks implement relatively smooth global func-
tions that are not capable of approximating discontinuities, and RBFs and CMACs, like
fixed grid methods, require knowledge of the appropriate local scale.
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Instance-based methods use aneighborhoodof explicitly stored experiences to gen-
eralize to new experiences. These methods are more suitablefor our purposes because
they implement local models that in principle can approximate PWC functions, but typ-
ically fall short because, by using a fixed neighborhood radius, they assume a uniform
sampling density on the state space. A fixed radius prevents the approximator from
clearly identifying discontinuities because points on both sides of the discontinuity can
be averaged together, thereby blurring its location. If instead we use a fixed numberk
of neighbors (in effect using a variable radius) the approximator has arbitrary resolution
near important state space boundaries where it is most needed to accurately model the
local dynamics. To use such an approach, an appropriate metric is needed to determine
which stored instances provide the most relevant information for deciding what to do in
a given situation [6].

Apart from the PWC structure of the perceptual space, a robotlearning algorithm
must also cope with the fact that instantaneous sensory readings alone rarely provide
sufficient information for the robot to determine where it is(localization problem) and
what action it is best to take. Some form of short-term memoryis needed to integrate
successive inputs and identify the underlying environmentstates that are otherwise only
partially observable.

In this paper, we present an algorithm called Piecewise Continuous Nearest Se-
quence Memory (PC-NSM) that extends McCallum’s instance-based algorithm for dis-
crete, partially observable state spaces, Nearest Sequence Memory (NSM; [12]), to the
more general PWC case. Like NSM, PC-NSM stores all the data itcollects from the en-
vironment, but uses a continuous metric on the history that allows it to be used in real
robot environments without prior discretization of the perceptual space.

An important priority in this work is minimizing the amount of a priori knowledge
about the structure of the environment that is available to the learner. Typically, artifi-
cial learning is conducted in simulation, and then the resulting policy is transfered to the
real robot. Building an accurate model of a real environmentis human-resource intensive
and only really achievable when simple sensors are used (unlike full-scale vision), while
overly simplified models make policy transfer difficult [14]. For this reason, we stipulate
that the robot must learn directly from the real world. Furthermore, since gathering data
in the real world is costly, the algorithm should be capable of efficient autonomous ex-
ploration in the robot perceptual state space without knowing the amount of exploration
required in different parts of the state space (as is normally the case in even the most
advanced approaches to exploration in discrete [2,8], and even in metric [6] state spaces).

The next section introduces PC-NSM, section 3 presents our experiments in robot
navigation, and section 4 discusses our results and future directions for our research.

2. Piecewise-Continuous Nearest Sequence Memory (PC-NSM)

In presenting our algorithm, we first briefly review the underlying learning mechanism,
Q-learning, then describe Nearest Sequence Memory which extendsQ-learning to dis-
crete POMDPs, and forms the basis of our PC-NSM.

2.1. Q-learning

The basic idea ofQ-learning, originally formulated for finite discrete statespaces, is
to incrementally estimate the value of state-action pairs,Q-values, based on the reward
received from the environment and the agent’s previousQ-value estimates. The update
rule forQ-values is



Qt+1(st, at) = (1 − α)Qt(st, at) + α[rt+1 + γ max
a

Qt(st+1, a)]

whereQt(st,at) is theQ-value estimate at timet of the statest∈S and actionat∈A, α
is a learning rate, andγ∈ [0,1] a discount parameter.

Q-learning requires that the number of statesst be finite and completely observable.
Unfortunately, due to sensory limitations, robots do not have direct access to complete
state information, but, instead, receive only observations ot ∈O, whereO is the set of
possible observations. Typically,O is much smaller than the set of statesS causingper-
ceptual aliasingwhere the robot is unable to behave optimally because statesrequiring
different actions look the same.

In order to useQ-learning and similar methods under these more general conditions,
some mechanism is required to estimate the underlying environmental state from the
stream of incoming observations. The idea of using the history of all observations to
recover the underlying states forms the core of the NSM algorithm, described next.

2.2. Nearest Sequence Memory

NSM tries to overcome perceptual aliasing by maintaining a chronologically ordered
list or history of interactions between the agent and environment. The basic idea is to
disambiguate the aliased states by searching through the history to find those previous
experience sequences that most closely match its recent situation.

At each time stept the agent stores an experience triples(at,ot,Rt) of its current
action, observation, and reward by appending it to historyht−1 =〈(a1,o1,R1),...,(at−1,
ot−1,Rt−1)〉 of previous experiences, calledobservation state1.

In order to choose an action at timeT , the agent finds, for each possible action
a, thek observation states in the history that are most similar to the current situation.
McCallum [12] defines similarity by the length of the common history

n(ht, ht′) =

{
0 t = 0 ∨ t′ = 0 ∨ (at, ot, Rt) 6= (at′ , ot′ , Rt′)

1 + n(ht−1, ht′−1) (at, ot, Rt) = (at′ , ot′ , Rt′).
(1)

which counts the number of contiguous experience triples inthe two observation states
that match exactly, starting att andt′ and going back in time. We rewrite the original
n into a functionally equivalent, but more general form usingthe distance measure2

µ(ht,ht′)=[1+n(ht,ht′)]
−1 to accommodate the metric we introduce in the next section.

Thek observation statesµ-nearest tohT for each possible actiona at timeT form a
neighborhoodNhT

a that is used to compute theQ-value for the corresponding action by:

Q(hT , a) =


 1

|NhT

a |

∑

ht∈N
hT
a

q(ht)


 , (2)

whereq(ht) is a local estimate ofQ(ht,at) at the state-action pair that occurred at time
t.

After an action has been selected according toQ-values (e.g. the action̂aT with the
highest value), theq-values are updated:

1We substitute the symbolh for s in McCallum’s original notation to avoid confusion with theaccepted
definition of “state” as observation sequences do not correspond to process states.

2Note that thisµ is not a metric.



Algorithm 1 Piecewise-Continuous NSM
1: T =0
2: hT ⇐∅ // initialize history
3: loop
4: T ⇐T +1
5: hT ⇐hT−1+(aT ,oT ,RT ) // get and store action, observation, and reward
6: for eacha∈A do
7: Ha ={ht|at =a,∀t<T } // split the history into subsetsHa containing all

// observation states where actiona was taken
8: NhT

a =argmin
ht∈Ha

kµ(ht,hT ) // find thek-nearest neighbors tohT in Ha

// using metricµ from equation 4
9: Q(hT ,a)= 1

|N
hT
a |

∑

h∈N
hT
a

q(h) // =0 in case ofNhT

a =0

10: end for
11: âT =argmax

a∈A

(Q(hT ,a)) // compute action with highest value

12: ãT =argmax
a∈A

(
1

|N
hT
a |

∑

h∈N
hT
a

µ(h,hT )

)
// compute best exploration actioñaT

13: if randR(0,1)<ε then
14: performãT // select the exploratory action
15: else
16: performâT // select the greedy action
17: end if
18: for i=1 to n do
19: t=randZ(1,T−1)
20: q(ht)⇐(1−β)q(ht)+β(Rt+γmax

a
Q(ht+1,a)) // update the q-values

21: end for
22: q(hT )=Q(hT ,âT ) // initialize q-values with a nearest-neighbor estimate
23: end loop

q(hi) := (1 − β)q(hi) + β(Ri + γ max
a

Q(hT , a)), ∀hi ∈ NhT
�

aT
. (3)

NSM has been demonstrated in simulation, but has never been run on real robots. Using
history to resolve perceptual aliasing still requires considerable human programming
effort to produce reasonable discretization for real-world sensors. In the following we
avoid the issue of discretization by selecting an appropriate metric in the continuous
observation space.

2.3. Piecewise Continuous NSM

The distance measure used in NSM (equation 1) was designed for discrete state spaces.
In the continuous perceptual space where our robot must learn, this metric is inadequate
since most likely all the triples(at,ot,Rt) will be different from each other andµ(ht,ht′)
will always equal 1. Therefore, to accommodate continuous states, we replace equation 1
with the following discounted metric:

µ(ht, ht′) =

min(t,t′)∑

τ=0

λτ ||ot−τ − ot′−τ ||2, (4)



whereλ∈ [0,1]. This metric takes an exponentially discounted average of the Euclidean
distance between observation sequences. Note that, unlikeequation 1, this metric ignores
actions and rewards. The distance between action sequencesis not considered because
there is no elegant way to combine discrete actions with continuous observations, and
because our primary concern from a robotics perspective is to provide a metric that allows
the robot to localize itself based on observations. Reward values are also excluded to
enable the robot to continue using the metric to select actions even after the reinforcement
signal is no longer available (i.e. after some initial training period).

Algorithm 1 presents PC-NSM in pseudocode. The functions randZ(a,b) and
randR(c,d) produce a uniformly distributed random number in [a,b] ∈ Z and [c,d] ∈ R

respectively, andε ∈ [0,1] determines the greediness of the policy. The algorithm dif-
fers most importantly from NSM in using the discounted metric (line 8), and in the
way exploratory actions in theε-greedy policy are chosen (line 12). The exploratory ac-
tion is the action whose neighborhood has the highest average distance from the current
observation-state, i.e. the action about which there is theleast information. This policy
induces what has been calledbalanced wandering[7].

2.4. Endogenous Updates

If the q-values are only updated during interaction with the real environment, learning
can be very slow since updates will occur at the robot’s control frequency (i.e. the rate at
which the agent takes actions). One way to more fully exploitthe information gathered
from the environment is to perform updates on the stored history between normal up-
dates. We refer to these updates asendogenousbecause they originate within the learning
agent, unlike normal,exogenousupdates which are triggered by “real” events outside the
agent.

During learning, the agent selects random timest<T , and updates theq-value ofht

according to equation 3 where the maximumQ-value of the next stateht+1 is computed
using equation 2 (see lines 18–21 in Algorithm 1). This approach is similar to the Dyna
architecture [21] in that the history acts as a kind of model,but, unlike Dyna, the model
does not generate new experiences, rather it re-updates those already in the history in a
manner similar to experience replay [9].

3. Experiments in Robot Navigation

We demonstrate PC-NSM on a mobile robot task where a CSEM Robotics SmarteaseTM

robot must use video input to identify and navigate to a target object while avoiding
obstacles and walls. Because the camera provides only a partial view of the environment,
this task requires the robot to use its history of observations to remember both where it
has been, and where it last saw the target if the target moves out of view.

3.1. Experimental Setup

The experiments were conducted in the 3x4 meter walled arenashown in figure 3. The
robot is equipped with two ultrasound distance sensors (onefacing forward, one back-
ward), and a vision system based on the Axis 2100 network camera that is mounted on
top of the robot’s 28cm diameter cylindrical chassis.

Learning was conducted in a series of trials where the robot,obstacle(s), and target
(blue teapot) were placed at random locations in the arena. At the beginning of each trial,
the robot takes a sensor reading and sends, via wireless, thecamera image to avision
computer, and the sonar readings to alearning computer. The vision computer extracts



thex-y coordinates of the target in the visual field by calculating the centroid ofcp pixels
of the target color (see figure1), and passes them on to the learning computer, along with
a predicatep indicating whether the target is visible. Ifp is false,x=y=0. The learning
computer mergesx,y, andp with the forward and backward sonar readings,f andb, to
form theinputs to PC-NSM: an observation vectoro= (x,y,p,f,b), wherex andy are
normalized to[−1,1], andf andb are normalized to[0,1].

PC-NSM then selects one of 8actions: turn left or right by either22.5◦ or 45◦,
and move forward or backward either 5cm or 15cm (approximately). This action set was
chosen to allow the algorithm to adapt to the scale of environment [18]. The selected
action is sent to the robot, the robot executes the action, and the cycle repeats. When the
robot reaches the goal, the goal is moved to a new location, and a new trial begins.

The entire interval from sensory reading to action execution is 2.5 seconds, primarily
due to camera and network delays. To accommodate this relatively low control frequency,
the maximum velocity of the robot is limited to 10 cm/s. During the dead time between
actions, the learning computer conducts as many endogenousupdates as time permits.

3.2. PC-NSM parameters

PC-NSM uses anε-greedy policy (Algorithm 1, line 13), withε set to 0.3. This means
that 30% of the time the robot selects an exploratory action.The appropriate number of
nearest neighbors,k, used to select actions, depends upon the noisiness of the environ-
ment. The lower the noise, the smaller thek that can be chosen. For the amount of noise
in our sensors, we found that learning was fastest fork=3.

A common practice in toy reinforcement learning tasks such as discrete mazes is to
use minimal reinforcement so that the agent is rewarded onlywhen it reaches the goal.
While such a formulation is useful to test algorithms in simulation, for real robots, this
sparse, delayed reward forestalls learning as the agent canwander for long periods of
time without reward, until finally happening upon the goal byaccident.

Often there is specific domain knowledge that can incorporated into the reward func-
tion to provide intermediate reward that facilitates learning in robotic domains where ex-
ploration is costly [11]. The reward function we use is the sum of two components, one
is obstacle-related,Robstacle, and the other is target-related ,Rtarget:

R = −20/ max(0.01, min(f, b))︸ ︷︷ ︸
Robstacle

+ p · (500 − 50|x| − 250y + cp)︸ ︷︷ ︸
Rtarget

(5)

Rtarget is largest when the robot is near to the goal and is looking directly towards it,
smaller when the target is visible in the middle of the field ofview, even smaller when
the target is visible, but not in the center, and reaches its minimum when the target is not
visible at all.Robstacleis negative when the robot is too close to some obstacle, except
when the obstacle is the target itself, visible by the robot.It is important to note that
the coefficients in equation 5 are specific to the robot and notthe environment. They
represent a one-time calibration of PC-NSM to the robot hardware being used.

3.3. Results

After taking between 1500 and 3000 actions the robot learns to avoid walls, reduce speed
when approaching walls, look around for the goal, and go to the goal whenever it sees
it. This is much faster compared to neural network based learners, e.g. [5], where 4000
episodes were required (resulting in more than 100’000 actions) to solve a simpler task
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Figure 1. Learned Control Policy. Each row shows a different situation in the environment along with its
corresponding learned policy. In the top row the robot is positioned directly in front of the target object. The
crosses in the camera image mark detected pixels of the target color, and the circle indicates the assumed
direction towards the target. The policy for this situationis shown in terms of the visual coordinates, i.e. only
the x-y camera view coordinates of the high dimensional policy are shown. Each point in the policy graph
indicates, with an arrow, the direction the robot should move if the circle, shown in the image is at that point
in the visual field (left arrow means move left, right=right,up=forward, down=backwards, and no arrow=stand
still. For instance, in this case, the robot should move forward because the circle lies in a part of the policy with
an up arrow. In the bottom row the robot is almost touching thetarget. Here the policy is shown in terms of the
subspace spanned by the two ultrasound distance sensors found at the fore and aft of the robot. Theb-axis is
the distance from the robot to the nearest obstacle in front,thef -axis behind. When the robot is with its back
to an obstacle, and the way forward is clear (upper left corner of policy graph), it tends to go forward. When
the way forward is obstructed, but there is nothing behind the robot (lower right corner), the robot tends to turn
or move backward.

in which the target was always within the perceptual field of the robot. Neither do we
need a virtual model environment and manual quantization ofthe state space like in [14].
To our knowledge, our results are the fastest in terms of learning speed and use least
quantization effort compared to all other methods to date, though we were unable to
compare results directly on the hardware used by these competing approaches.

In the beginning of learning, corners pose serious difficulty causing the robot to
get stuck and receive negative reinforcement for being too close to a wall. When the
robot accidentally turns towards the target, it will quickly lose track of it. As learning
progresses, the robot is able to recover (usually within oneaction) when an exploratory
action causes it to turn away and loose sight of the target. The discounted metric allows
the robot to use its history of real-valued observation states to remember that it had just
seen the target in the recent past. Figure 1 shows the learnedpolicy for this task.

Since the robot state space is perception-based (notx-y coordinates on the floor as
is the case in RL textbook examples), changing the position of the obstacles or target
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Figure 2. PC-NSM learning performance. (a) The plot shows the reward the robot receives at each time-step
during learning. (b) The plot shows the reward at each time-step averaged over all previous time-steps within
the same trial. The dashed lines indicate the beginning of a new trial where the target is moved to a new
location.

does not impede robot performance. Figure 2 shows learning in terms of immediate and
average reward for a typical sequence of trials lasting a total of approximately 70 min-
utes. The dashed vertical lines in the two graphs indicate the beginning of a new trial. As
learning progresses the robot is able to generalize from past experience and more quickly
find the goal. After the first two trials, the robot starts to accumulate reward more rapidly
in the third, after which the fourth trial is completed with very little deliberation. Figure 3
illustrates two such successful trials.

4. Discussion

We have developed a instance-based algorithm for mobile robot learning and success-
fully implemented it on an actual vision-controlled robot.The use of a metric state space
allows our algorithm to work under weaker requirements and be more data-efficient com-
pared to previous work in continuous reinforcement learning [3,17,19]. Using a metric
instead of a discrete grid is a considerable relaxation of the programmer’s task, since
it obviates the need to guess the correct scale for all the regions of the state space in
advance. The algorithm explores the environment and learnsdirectly on a mobile robot
without using a hand-made computer model as an intermediatestep, works in piecewise
continuous perceptual spaces, and copes with partial observability.

The metric used in this paper worked well in our experiments,but a more powerful
approach would be to allow the algorithm to select the appropriate metric for a given
environment and task automatically. To choose between metrics, a criterion should be
defined that determines which of a set ofa priori equiprobable metrics{µ1,...,µn} fits
the given history of experimentation better. A useful criterion could be, for example, a
generalization of the criteria used in the McCallum’s U-Tree algorithm [13] to decide
whether a state should be split.

The current algorithm uses discrete actions so that there isa convenient way to group
observation states. If the action space were continuous, the algorithm lacks a natural way
to generalize between actions. A metric on the action spaceµa could be used within
the observation-based neighborhood delimited by the current metricµ. The agent could
then randomly sample possible actions at the query pointhT and obtain Q-values for
each sampled action by computing theµa-nearest neighbors within theµ-neighborhood.
Future work will explore this avenue.
Acknowledgments. This work is partially supported by CSEM Robotics Alpnach.



(a) (b)
Figure 3. Robot arena with learned trajectories. The picture shows two typical learning scenarios with the
robot, obstacle, and target (blue plastic teapot) in their initial locations. The robot must learn to find the target
using the limited visual field of its video camera, and move toit while avoiding obstacles. (a) The robot starts
the trial facing away from the target before turning to its right, and navigating around the obstacle to the goal.
Along the way it encounters two difficulties (shown by the rectangular highlights) caused first by going through
the narrow passage and then by gap in the right wall where the front sonar returns a strong signal compared
to the immediately surrounding wall because it is being specularly reflected. (b) The robot in an unoccluded
arena after learning in trial (a). Here the robot drives almost directly to the target after turning to see it, but,
again, is held up by the dark wall gap momentarily.
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