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Abstract. We address the problem of autonomously learning conteoftarvision-
capable mobile robots. We extend McCallum’s (1995) Ne&Besfuence Memory
algorithm to allow for general metrics over state-actiomjeictories. We demon-
strate the feasibility of our approach by successfully mgrour algorithm on a
real mobile robot. The algorithm is novel and unique in th&h) explores the en-
vironment and learns directly on a mobile robot without gsinhand-made com-
puter model as an intermediate step, (b) does not requireiahdirscretization of
the sensor input space, (c) works in piecewise continuouseptial spaces, and
(d) copes with partial observability. Together this allowarning from much less
experience compared to previous methods.
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1. Introduction

The realization of fully autonomous robots will require @lighms that can learn from
direct experience obtained from visual input. Vision sgsteprovide a rich source of
information, but, the piecewise-continuous (PWC) strtetf the perceptual space (e.g.
video images) implied by typical mobile robot environmeistsnot compatible with
most current, on-line reinforcement learning approachhese environments are char-
acterized by regions of smooth continuity separated byoditscuities that represent the
boundaries of physical objects or the sudden appearandsapparance of objects in
the visual field.

There are two broad approaches that are used to adapt gx@giarithms to real
world environments: (1) discretizing the state space wiedi[20] or adaptive [15,16]
grids, and (2) using a function approximator such as a ngwg&Vork [10,5], radial basis
functions (RBFs) [1], CMAC [22], or instance-based mem@ayB[17,19]. Fixed discrete
grids introduce artificial discontinuities, while adajgtiones scale exponentially with
state space dimensionality. Neural networks implemeiativelly smooth global func-
tions that are not capable of approximating discontinsijteend RBFs and CMACs, like
fixed grid methods, require knowledge of the appropriatellscale.
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Instance-based methods usesaghborhoodf explicitly stored experiences to gen-
eralize to new experiences. These methods are more suitalder purposes because
they implement local models that in principle can approxafWC functions, but typ-
ically fall short because, by using a fixed neighborhoodusdihey assume a uniform
sampling density on the state space. A fixed radius prevéetapproximator from
clearly identifying discontinuities because points onhbsides of the discontinuity can
be averaged together, thereby blurring its location. Iféad we use a fixed numbgr
of neighbors (in effect using a variable radius) the appr@tor has arbitrary resolution
near important state space boundaries where it is most deedecurately model the
local dynamics. To use such an approach, an appropriatécrigetreeded to determine
which stored instances provide the most relevant inforondtr deciding what to do in
a given situation [6].

Apart from the PWC structure of the perceptual space, a ri@aohing algorithm
must also cope with the fact that instantaneous sensoryngsadlone rarely provide
sufficient information for the robot to determine where i(lecalization problem) and
what action it is best to take. Some form of short-term meni®nyeeded to integrate
successive inputs and identify the underlying environmsttes that are otherwise only
partially observable

In this paper, we present an algorithm called Piecewise iQoois Nearest Se-
guence Memory (PC-NSM) that extends McCallum’s instarased algorithm for dis-
crete, partially observable state spaces, Nearest Seglgrmory (NSM; [12]), to the
more general PWC case. Like NSM, PC-NSM stores all the dataldcts from the en-
vironment, but uses a continuous metric on the history thatva it to be used in real
robot environments without prior discretization of theqaptual space.

An important priority in this work is minimizing the amount a priori knowledge
about the structure of the environment that is availablé&léarner. Typically, artifi-
cial learning is conducted in simulation, and then the t@sypolicy is transfered to the
real robot. Building an accurate model of a real environmshtiman-resource intensive
and only really achievable when simple sensors are useikéuall-scale vision), while
overly simplified models make policy transfer difficult [14#or this reason, we stipulate
that the robot must learn directly from the real world. Farthore, since gathering data
in the real world is costly, the algorithm should be capalflefficient autonomous ex-
ploration in the robot perceptual state space without kngwie amount of exploration
required in different parts of the state space (as is noyntlaéi case in even the most
advanced approaches to exploration in discrete [2,8], @&l i@ metric [6] state spaces).

The next section introduces PC-NSM, section 3 presents)qerienents in robot
navigation, and section 4 discusses our results and fuireetibns for our research.

2. Piecewise-Continuous Nearest Sequence Memory (PC-NSM)

In presenting our algorithm, we first briefly review the urigieig learning mechanism,
Q-learning, then describe Nearest Sequence Memory whigndsf)-learning to dis-
crete POMDPs, and forms the basis of our PC-NSM.

2.1. Q-learning

The basic idea of)-learning, originally formulated for finite discrete statpaces, is
to incrementally estimate the value of state-action péjfsalues, based on the reward
received from the environment and the agent’s previQuslue estimates. The update
rule for Q-values is



Qir1(5t,at) = (1 — @)Qy(st,at) + afrerr + 7 max Qt(s¢11,0a)]

whereQ:(s:,a:) is the@-value estimate at timeof the states; € S and action:; € A, «
is a learning rate, ande [0,1] a discount parameter.

Q-learning requires that the number of statgbe finite and completely observable.
Unfortunately, due to sensory limitations, robots do notehdirect access to complete
state information, but, instead, receive only observatigre O, whereO is the set of
possible observations. Typically, is much smaller than the set of statesausingper-
ceptual aliasingwhere the robot is unable to behave optimally because stedesring
different actions look the same.

In order to use&)-learning and similar methods under these more generaitiams
some mechanism is required to estimate the underlying @mviental state from the
stream of incoming observations. The idea of using the histd all observations to
recover the underlying states forms the core of the NSM élyor described next.

2.2. Nearest Sequence Memory

NSM tries to overcome perceptual aliasing by maintainindgieoologically ordered
list or history of interactions between the agent and emwvirent. The basic idea is to
disambiguate the aliased states by searching through ska@rito find those previous
experience sequences that most closely match its receatisit.

At each time step the agent stores an experience tripleso:,R;) of its current
action, observation, and reward by appending it to histery = ((a1,01,R1),...,(at—1,
0,—1,R;_1)) of previous experiences, callethservation state

In order to choose an action at tinffe the agent finds, for each possible action
a, the k observation states in the history that are most similar éocilrrent situation.
McCallum [12] defines similarity by the length of the commastary

0 tZO\/t/ZO\/(Gt,Ot,Rt)#(at/,Ot/,Rt/)

1)
14+ n(he, hoa)  (ar, 06, Re) = (ay, 00, Ryr).

n(ht, ht/) = {
which counts the number of contiguous experience tripléhentwo observation states
that match exactly, starting atand¢’ and going back in time. We rewrite the original
n into a functionally equivalent, but more general form usthg distance meastre
w(he,he ) =[14+n(hs,he )]~ to accommodate the metric we introduce in the next section.
Thek observation stateg-nearest tdv for each possible actiamat time7" form a
neighborhoodV/7 that is used to compute tiig-value for the corresponding action by:

1
Q(hr,a) = T hT Z q(he) | (2)
|Na | h hp
1t €N,
wheregq(h;) is a local estimate of)(h:,a.) at the state-action pair that occurred at time
t.
After an action has been selected accordin@+aalues (e.g. the actioiy with the
highest value), the-values are updated:

1We substitute the symbdi for s in McCallum’s original notation to avoid confusion with tlsecepted
definition of “state” as observation sequences do not cpored to process states.
2Note that thisu is not a metric.



Algorithm 1 Piecewise-Continuous NSM

1. T=0

2: hr<=0 [l initialize history

3: loop

4: T<T+1
hr<hr_1+(ar,or,Rr) I/ get and store action, observation, and reward
for eacha € A do

H*={h¢|lar=a,Yt<T} /I split the history into subsefg“ containing all
I/l observation states where actierwas taken

Noa

8: NIt = argmin® pu(hy,hr) /I find thek-nearest neighbors tbr in H*
hi€He /1 using metricy from equation 4
9: Q(hr,a)= ‘N—iTl > q(h)  II=0incase ofN!1=0
“ hentT
10:  end for
11:  ap=argmax(Q(hr,a)) I/l compute action with highest value
acA
12: ar=argmax +T > u(h,hr) /I compute best exploration actiéfr
a€A (lNQ ‘heN{'JT )
13:  if randR(0,1x e then
14: performar Il select the exploratory action
15:  €ese
16: performar /l select the greedy action
17:  endif

18: fori=1tondo

19: t=randZ1,7-1)

20: q(hy) <= (1—ﬂ)q(ht)Jrﬂ(memng(htH,a)) I update the g-values
21:  end for

22. q(hr)=Q(hr,ar) [/linitialize g-values with a nearest-neighbor estimate
23: end loop

q(hi) = (1= Ba(hs) + B(R; +ymax Q(hr,a)), Yh; € NJT. (3)

NSM has been demonstrated in simulation, but has never l@esmrreal robots. Using
history to resolve perceptual aliasing still requires ddesable human programming
effort to produce reasonable discretization for real-d@énsors. In the following we
avoid the issue of discretization by selecting an approgmaetric in the continuous
observation space.

2.3. Piecewise Continuous NSM

The distance measure used in NSM (equation 1) was designeistoete state spaces.
In the continuous perceptual space where our robot must,ld@ds metric is inadequate
since most likely all the triple&u;,o:, R;) will be different from each other and . ,h4)
will always equal 1. Therefore, to accommodate continutates, we replace equation 1
with the following discounted metric:

min(t,t")

/l(ht, ht/) = )\THOtfr - 0tbr||2, (4)
0

T=



where) € [0,1]. This metric takes an exponentially discounted averageeEuclidean
distance between observation sequences. Note that, eqjilaion 1, this metric ignores
actions and rewards. The distance between action sequisnoesconsidered because
there is no elegant way to combine discrete actions withigoats observations, and
because our primary concern from a robotics perspectiegisovide a metric that allows
the robot to localize itself based on observations. Rewatdes are also excluded to
enable the robot to continue using the metric to selectastwen after the reinforcement
signal is no longer available (i.e. after some initial tragperiod).

Algorithm 1 presents PC-NSM in pseudocode. The functionsdZéa,b) and
randR(c,d) produce a uniformly distributed random numbgrijb] € Z and|c,d] € R
respectively, and € [0,1] determines the greediness of the policy. The algorithm dif-
fers most importantly from NSM in using the discounted neeftine 8), and in the
way exploratory actions in thegreedy policy are chosen (line 12). The exploratory ac-
tion is the action whose neighborhood has the highest agatistance from the current
observation-state, i.e. the action about which there isehst information. This policy
induces what has been callbdlanced wanderinfr].

2.4. Endogenous Updates

If the ¢-values are only updated during interaction with the re&irenment, learning
can be very slow since updates will occur at the robot’s @fitequency (i.e. the rate at
which the agent takes actions). One way to more fully exphatinformation gathered
from the environment is to perform updates on the storeatyidietween normal up-
dates. We refer to these updategadogenoubecause they originate within the learning
agent, unlike normakxogenousipdates which are triggered by “real” events outside the
agent.

During learning, the agent selects random timeq", and updates thevalue ofh,
according to equation 3 where the maxim@yvalue of the next statk;; is computed
using equation 2 (see lines 18-21 in Algorithm 1). This applois similar to the Dyna
architecture [21] in that the history acts as a kind of moblet, unlike Dyna, the model
does not generate new experiences, rather it re-updates éready in the history in a
manner similar to experience replay [9].

3. Experimentsin Robot Navigation

We demonstrate PC-NSM on a mobile robot task where a CSEM tRsi@marteasd!
robot must use video input to identify and navigate to a taaipgect while avoiding
obstacles and walls. Because the camera provides onlyial pétv of the environment,
this task requires the robot to use its history of obsermatio remember both where it
has been, and where it last saw the target if the target mautex giew.

3.1. Experimental Setup

The experiments were conducted in the 3x4 meter walled asfeosn in figure 3. The
robot is equipped with two ultrasound distance sensors faciag forward, one back-
ward), and a vision system based on the Axis 2100 network athat is mounted on
top of the robot’s 28cm diameter cylindrical chassis.

Learning was conducted in a series of trials where the raistacle(s), and target
(blue teapot) were placed at random locations in the arertdeeginning of each trial,
the robot takes a sensor reading and sends, via wirelessathera image to gision
computer and the sonar readings tdemrning computerThe vision computer extracts



thex-y coordinates of the target in the visual field by calculatimgd¢entroid ot:, pixels
of the target color (see figurel), and passes them on to therigacomputer, along with
a predicatey indicating whether the target is visible. gfis false,x=y=0. The learning
computer merges,y, andp with the forward and backward sonar readinsndb, to
form theinputs to PC-NSM: an observation vector= (z,y,p, f,b), wherex andy are
normalized td—1,1], andf andb are normalized t¢0,1].

PC-NSM then selects one of&tions: turn left or right by either22.5° or 45°,
and move forward or backward either 5cm or 15cm (approxityafEhis action set was
chosen to allow the algorithm to adapt to the scale of enwiremt [18]. The selected
action is sent to the robot, the robot executes the actiahttancycle repeats. When the
robot reaches the goal, the goal is moved to a new locati@haarew trial begins.

The entire interval from sensory reading to action execus@.5 seconds, primarily
due to camera and network delays. To accommodate thissedigltbw control frequency,
the maximum velocity of the robot is limited to 10 cm/s. Duyitne dead time between
actions, the learning computer conducts as many endogeipolates as time permits.

3.2. PC-NSM parameters

PC-NSM uses aa-greedy policy (Algorithm 1, line 13), witl set to 0.3. This means
that 30% of the time the robot selects an exploratory aclitve. appropriate number of
nearest neighborg, used to select actions, depends upon the noisiness of titeren
ment. The lower the noise, the smaller theéhat can be chosen. For the amount of noise
in our sensors, we found that learning was fastest fes.

A common practice in toy reinforcement learning tasks sigctiscrete mazes is to
use minimal reinforcement so that the agent is rewardedwhbn it reaches the goal.
While such a formulation is useful to test algorithms in siation, for real robots, this
sparse, delayed reward forestalls learning as the agenvaader for long periods of
time without reward, until finally happening upon the goaldzgident.

Often there is specific domain knowledge that can incorgdriito the reward func-
tion to provide intermediate reward that facilitates Iéagrin robotic domains where ex-
ploration is costly [11]. The reward function we use is thensef two components, one
is obstacle-related?opstacle and the other is target-relateléarget

R = —20/max(0.01, min(f,b)) +p - (500 — 50|z| — 250y + ¢;) (5)

Ropstacle Rtarget

Riargetis largest when the robot is near to the goal and is lookingptly towards it,
smaller when the target is visible in the middle of the field/&fw, even smaller when
the target is visible, but not in the center, and reachesiitgnmam when the target is not
visible at all. RopstaclelS Negative when the robot is too close to some obstacle péexce
when the obstacle is the target itself, visible by the roltas important to note that
the coefficients in equation 5 are specific to the robot andm®tnvironment. They
represent a one-time calibration of PC-NSM to the robotWard being used.

3.3. Results

After taking between 1500 and 3000 actions the robot learasdid walls, reduce speed
when approaching walls, look around for the goal, and go ¢ogthal whenever it sees
it. This is much faster compared to neural network basechéar e.g. [5], where 4000
episodes were required (resulting in more than 100'00@as}ito solve a simpler task
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Figure 1. Learned Control Policy. Each row shows a different situation in the environment glaith its
corresponding learned policy. In the top row the robot istimeed directly in front of the target object. The
crosses in the camera image mark detected pixels of thet teofr, and the circle indicates the assumed
direction towards the target. The policy for this situatisshown in terms of the visual coordinates, i.e. only
the z-y camera view coordinates of the high dimensional policy &ix@v. Each point in the policy graph
indicates, with an arrow, the direction the robot should enifithe circle, shown in the image is at that point
in the visual field (left arrow means move left, right=righp=forward, down=backwards, and no arrow=stand
still. For instance, in this case, the robot should move &vdibecause the circle lies in a part of the policy with
an up arrow. In the bottom row the robot is almost touchingtéinget. Here the policy is shown in terms of the
subspace spanned by the two ultrasound distance sensacsdbthe fore and aft of the robot. Theaxis is
the distance from the robot to the nearest obstacle in ftbatf-axis behind. When the robot is with its back
to an obstacle, and the way forward is clear (upper left coofg@olicy graph), it tends to go forward. When
the way forward is obstructed, but there is nothing behirdtfbot (lower right corner), the robot tends to turn
or move backward.

in which the target was always within the perceptual fieldh& tobot. Neither do we

need a virtual model environment and manual quantizatidheo$tate space like in [14].

To our knowledge, our results are the fastest in terms ohiegrspeed and use least
guantization effort compared to all other methods to ddteugh we were unable to

compare results directly on the hardware used by these domg@gpproaches.

In the beginning of learning, corners pose serious difficaliusing the robot to
get stuck and receive negative reinforcement for being tosecto a wall. When the
robot accidentally turns towards the target, it will quickbse track of it. As learning
progresses, the robot is able to recover (usually withinamt®n) when an exploratory
action causes it to turn away and loose sight of the targegt.di$tounted metric allows
the robot to use its history of real-valued observatiorestéd remember that it had just
seen the target in the recent past. Figure 1 shows the lepatieg for this task.

Since the robot state space is perception-basedifgatoordinates on the floor as
is the case in RL textbook examples), changing the positfche obstacles or target
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Figure2. PC-NSM learning performance. (a) The plot shows the reward the robot receives at eachdiape
during learning. (b) The plot shows the reward at each titep-averaged over all previous time-steps within
the same trial. The dashed lines indicate the beginning afva tnial where the target is moved to a new
location.

does not impede robot performance. Figure 2 shows learnitegins of immediate and
average reward for a typical sequence of trials lastingal tdtapproximately 70 min-

utes. The dashed vertical lines in the two graphs indica®déginning of a new trial. As

learning progresses the robot is able to generalize frotrepagrience and more quickly
find the goal. After the first two trials, the robot starts to@mulate reward more rapidly
in the third, after which the fourth trial is completed witéry little deliberation. Figure 3

illustrates two such successful trials.

4. Discussion

We have developed a instance-based algorithm for mobiletdelarning and success-
fully implemented it on an actual vision-controlled robbhe use of a metric state space
allows our algorithm to work under weaker requirements achbre data-efficient com-
pared to previous work in continuous reinforcement leag1i$)17,19]. Using a metric
instead of a discrete grid is a considerable relaxation efpftogrammer’s task, since
it obviates the need to guess the correct scale for all themsgf the state space in
advance. The algorithm explores the environment and ledirastly on a mobile robot
without using a hand-made computer model as an intermestigphe works in piecewise
continuous perceptual spaces, and copes with partial\idsiéty.

The metric used in this paper worked well in our experimdmisa more powerful
approach would be to allow the algorithm to select the apjatgmetric for a given
environment and task automatically. To choose betweeniecaet criterion should be
defined that determines which of a seteopriori equiprobable metric§u;,...,u, } fits
the given history of experimentation better. A useful ¢ida could be, for example, a
generalization of the criteria used in the McCallum’s U-@@dgorithm [13] to decide
whether a state should be split.

The current algorithm uses discrete actions so that thereasvenient way to group
observation states. If the action space were continuoesitforithm lacks a natural way
to generalize between actions. A metric on the action spgceould be used within
the observation-based neighborhood delimited by the oimetrici.. The agent could
then randomly sample possible actions at the query goinand obtain Q-values for
each sampled action by computing flagnearest neighbors within theneighborhood.
Future work will explore this avenue.

Acknowledgments. This work is partially supported by CSEM Robotics Alpnach.
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Figure 3. Robot arenavS/it% learned trajectories. The picture shows two typiE:aI) learning scenarios with the
robot, obstacle, and target (blue plastic teapot) in tindiial locations. The robot must learn to find the target
using the limited visual field of its video camera, and movi twhile avoiding obstacles. (a) The robot starts

the trial facing away from the target before turning to itghti and navigating around the obstacle to the goal.
Along the way it encounters two difficulties (shown by thetaegular highlights) caused first by going through

the narrow passage and then by gap in the right wall wherertimt $§onar returns a strong signal compared
to the immediately surrounding wall because it is being sjeely reflected. (b) The robot in an unoccluded

arena after learning in trial (a). Here the robot drives atbirectly to the target after turning to see it, but,

again, is held up by the dark wall gap momentarily.
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