
Evolving Neural Networks in Compressed Weight Space

Jan Koutník
IDSIA

University of Lugano
Manno-Lugano, CH
hkou@idsia.ch

Faustino Gomez
IDSIA

University of Lugano
Manno-Lugano, CH

tino@idsia.ch

Jürgen Schmidhuber
IDSIA

University of Lugano
Manno-Lugano, CH
juergen@idsia.ch

ABSTRACT
We propose a new indirect encoding scheme for neural net-
works in which the weight matrices are represented in the
frequency domain by sets of Fourier coefficients. This scheme
exploits spatial regularities in the matrix to reduce the di-
mensionality of the representation by ignoring high-frequency
coefficients, as is done in lossy image compression. We com-
pare the efficiency of searching in this “compressed”network
space to searching in the space of directly encoded networks,
using the CoSyNE neuroevolution algorithm on three bench-
mark problems: pole-balancing, ball throwing and octopus-
arm control. The results show that this encoding can dra-
matically reduce the search space dimensionality such that
solutions can be found in significantly fewer evaluations.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

General Terms
Algorithms

1. INTRODUCTION
Training neural networks for reinforcement learning tasks

is problematic because the non-stationarity of the error gra-
dient can lead to poor convergence, especially if the network
is recurrent. An alternative approach is to search the space
of neural networks directly via evolutionary computation.
In this neuroevolutionary framework, networks are encoded
either directly or indirectly in strings of values or genes,
called chromosomes, and then evolved in the standard way
(genetic algorithm, evolutionary strategies, etc.). Direct en-
coding schemes employ a one-to-one mapping from genes
to network parameters (e.g. connectivity pattern, synaptic
weights), so that the size of the evolved networks is propor-
tional to the length of the chromosomes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

In indirect schemes, the mapping from chromosome to net-
work can in principle be any computable function, allowing
chromosomes of fixed size to represent networks of arbitrary
complexity. The underlying motivation for this approach
is to scale neuroevolution to problems requiring large net-
works such as vision [3], since search can be conducted in
relatively low-dimensional gene space. Theoretically, the op-
timal or most compressed encoding is the one in which each
possible network is represented by the shortest program that
generates it, i.e. the one with the lowest Kolmogorov com-
plexity [8].

Unfortunately, this encoding is not computable, and ex-
isting, practical encodings [1–3, 6] often lack continuity in
the genotype-phenotype mapping, such that small changes
to a genotype can cause large changes in its phenotype.
For example, using cellular automata [1] or graph-based
encodings [6] to generate connection patterns can produce
large networks but violates this continuity condition. Hy-
perNEAT [3], which evolves weight-generating networks us-
ing Neuro-Evolution of Augmenting Topologies (NEAT; [9])
provides continuity while changing weights, but adding a
node or a connection to the weight-generating network causes
a discontinuity in the phenotype space. These discontinu-
ities occur frequently when e.g. replacing NEAT in Hyper-
NEAT with genetic programming-constructed expressions
[2]. Furthermore, these representations do not provide an
importance ordering on the constituent genes. For example,
in the case of graph encodings, one cannot not gradually cut
of less important parts of the graph (GP expression, NEAT
network) that constructs the phenotype.

Here we define an indirect encoding scheme in which genes
represent Fourier series coefficients that are mapped to net-
work weight matrices using an inverse Fourier-type trans-
form. This representation not only yields continuity but also
allows the complexity of the weight matrix to be controlled
by the number of coefficients. Because frequency domain
representations decorrelate the spatial signal (weight ma-
trix), the search space dimensionality can be reduced in a
principled manner by discarding high-frequency coefficients,
just as is done in lossy image coding. Encoding in the fre-
quency domain also means that the size of the genome is
independent of the size of the network it generates. There-
fore, networks can be scaled to high-dimensional problems,
such as vision, since relatively few coefficients can encode
complex weight matrices of arbitrary size.

This indirect encoding was used in previous work [7] to
discover minimal solutions to well-known RL benchmarks
using a version of practical universal search where the max-

(a)

(b)

Figure 1: DCT network representation. The coef-
ficients are selected according to their order along
the second diagonals, going from upper-left corner
to the bottom right corner. Each diagonal is filled
from the edges to the center starting on the side that
corresponds to the longer dimension. (a) Shows an
example of the kind of weight matrix (right) that is
obtained by transforming the full set of coefficients
(left). The gray-scale levels denote the weight values
(black = low, white = high). (b) Shows the weight
matrix when only the first four coefficients from (a)
are used. The weights in (b) are more spatially cor-
related than those in (a).

imum number of searchable coefficients was limited. In this
paper, it is used with evolution to search larger numbers of
coefficients, and potentially extend its applicability to net-
works of greater complexity.

The next section describes in detail both the network rep-
resentation and the evolutionary algorithm, CoSyNE, that
are used in our method for evolving networks in Fourier
space. We then present experimental results in three test do-
mains, showing how evolution in compressed network space
can accelerate the discovery of good solutions. The last sec-
tion discusses our findings and directions for future work.

2. SEARCHING IN COMPRESSED
NETWORK SPACE

The motivation for representing weight matrices as fre-
quency coefficients is that by spatially decorrelating the wei-
ghts in the frequency domain it might be possible to dis-
card the least significant frequencies, and thereby reduce
the number of search dimensions.

The next two sections describe how the networks are rep-
resented in the frequency domain using the Discrete Cosine
Transform (DCT), and the neuroevolution method, Coop-
erative Synapse NeuroEvolution (CoSyNE1), used to search
the space of DCT coefficients.

2.1 DCT Network Representation
All networks are fully connected recurrent neural networks

(FRNNs) with i inputs and single layer of n neurons where
some of the neurons are treated as output neurons. This
architecture is general enough to represent e.g. feed-forward

1We apologize for the potential confusion between Cosine
and CoSyNE.

(e.g. as used in section 3.1) and Jordan/Elman networks,
since they are just sub-graphs of the FRNN.

An FRNN consists of three weight matrices: an n× i in-
put matrix, I, an n × n recurrent matrix, R, and a bias
vector t of length n. These three matrices are combined
into one n × (n + i + 1) matrix, and encoded indirectly us-
ing c ≤ N DCT coefficients, where N is the total number
of weights in the network. Figure 1 illustrates the relation-
ship between the coefficients and weights for a hypothetical
4× 6 weight matrix (e.g. a network with four neurons each
with six weights). The left side of the figure shows two
weight matrix encodings that use different numbers of co-
efficients {C1, C2, . . . , Cc}. Generally speaking, coefficient
Ci is considered to be more significant (associated with a
lower frequency) than Cj , if i < j. The right side of the
figure shows the weight matrices that are generated by ap-
plying the inverse DCT transform to the coefficients. In
the first case (figure 1a), all 24 coefficients are used, so that
any possible 4 × 6 weight matrix can be represented. The
particular weight matrix shown was generated from random
coefficients in [−20, 20]. In the second case (figure 1b), each
Ci has the same value as in figure 1a, but the full set has
been truncated to only the four most significant coefficients.

The more coefficients, the more high frequency informa-
tion that is potentially expressed in the weight matrix, so
that the weight values become less spatially correlated—
large changes can occur from one weight to its neighbors.
As c approaches one, the matrix becomes more regular, with
progressively more correlated changes in value from weight
to weight, until all the weights become equal at c = 1.

Figure 2 shows graphically how DCT genotypes are map-
ped to FRNN phenotypes. Each row shows three network
architectures instantiated with weights generated by apply-
ing the inverse DCT transform to the chromosome in the
left column. In the first row (a), the chromosome consists of
just one gene, the DC coefficient, so that all of the weights in
each of the three networks are equal because one coefficient
corresponds to a constant function. In the second row (b),
one more coefficient is added, and the weights start to vary
within each network, but they are still highly correlated be-
cause the weight matrix is generated by a 2D sinusoid. In
the bottom row (c), the distribution of weights is much less
regular because the five coefficients offer more degrees of
freedom to the spatial function describing the weight ma-
trix.

2.2 Cooperative Synapse NeuroEvolution
(CoSyNE)

Cooperative Synapse Neuroevolution (CoSyNE; [5]) is co-
operative coevolutionary method, but unlike other cooper-
ative neuroevolutionary methods (e.g. ESP, SANE) which
evolve at the level of neurons, it searches at the level of indi-
vidual network weights. While CoSyNE has been shown to
be efficient in searching for weight values directly [4,5], here
it is used indirectly to search for sets of DCT coefficients
that produce good weight matrices.

Algorithm 1 describes the CoSyNE procedure in pseu-
docode. First (line 1), a population P consisting of c sub-
populations Pi, i = 1..c, is created, where c is the number
of DCT coefficients to be evolved, and Ψ is a user-specified
network architecture. (Note that while figure 2 shows each
chromosome being mapped to multiple architectures, this is
merely to convey the independence between the size of the

5.0

(a)

5.0 -8.2

(b)

5.0 -8.2 3.8 4.1 -9.0

(c)

Figure 2: Mapping from DCT genotype to FRNN phenotypes. For each chromosome in the left column, three
different networks with different architectures are shown, instantiated with weights generated by applying the
inverse DCT. The potential complexity of the weight matrices increases with the number of DCT coefficient
genes. The small squares in the networks denote input units, the circles are neurons. The thickness of a
connection (arrow) corresponds to the relative magnitude of its weight, and the weight is positive if the arrow
is dark (black) and negative if light (red).

Algorithm 1: CoSyNE(c,m,Ψ)

Initialize P = {P1, . . . , Pc}1

repeat2

for j=1 to m do3

xj ← (x1j , . . . , xcj)4

network← inverseDCT(xj,Ψ)5

Evaluate(network)6

end7

O← Reproduce(P)8

for k=1 to l do9

xi,m−k ← oik10

end11

for i=1 to c do12

Permute(Pi)13

end14

until solution is found15

genotype and that of the phenotype.) Each subpopulation
is initialized to contain m real numbers, xij = Pij ∈ Pi, j =
1..m, chosen from a uniform probability distribution in the
interval [−α, α]. The population is thereby represented by
an c×m matrix.

CoSyNE then loops through a sequence of generations un-
til a sufficiently good network is found (lines 2-15). Each
generation starts by constructing a complete chromosome

xj = (x1j , x2j , . . . , xcj) from each row in P. Each of the
m resulting chromosomes is transformed into a network by
first plugging its alleles into to the corresponding positions
in a coefficient matrix (figure 3), and then applying the in-
verse Discrete Cosine Transform (line 5) to this matrix to
produce a weight matrix of size determined by the network
architecture, Ψ.

After all of the networks have been evaluated (line 6) and
assigned a fitness, the top quarter with the highest fitness
(i.e. the parents) are copied (line 8) into a pool of offspring
O consisting of l new chromosomes ok, where oik = Oik ∈
Oi, k = 1..l, and the offspring are then mutated. The weights
in each of the offspring chromosomes are then added to P
by replacing the least fit weights in their corresponding sub-
population (lines 9-11).

At this point the algorithm functions as a conventional
neuroevolution system that evolves complete network chro-
mosomes. In order to coevolve the coefficients, the subpop-
ulations are permuted (lines 12-15) so that each coefficient
forms part of a potentially different network in the next
generation. Permutation detaches the subpopulations from
each other by assigning new “collaborators” for each weight.

Permuting the subpopulations increases diversity by al-
lowing CoSyNE to sample networks that would not be gen-
erated through recombination alone. This means that which
weights are retained in the population from one generation
to the next is not determined only by which networks scored

Figure 3: The CoSyNE neuroevolution method. On
the left, the figure shows an example population con-
sisting of six subpopulations, P1..P6, each containing
m DCT coefficient values. To create a network, first
the coefficients at a given index in each subpopu-
lation are collected into a chromosome x, then the
they are mapped to their corresponding position in
a DCT coefficient matrix which is then transformed
into a network weight matrix via the inverse DCT
(see figure 2).

well in the previous generation, but rather by a broader sam-
pling of the possible mc networks that can be formed by
selecting a weight from each subpopulation.

The basic CoSyNE framework does not specify how the
weights are grouped in the chromosomes (i.e. which entry
in the chromosome corresponds to which synapse) or which
genetic operators are used.

3. EXPERIMENTAL RESULTS
The evolutionary search in compressed weight space was

tested on three tasks: pole balancing, ball throwing, and
Octopus-arm control. In all experiments, the scaling factor,
α, was set to 20. The CoSyNE algorithm used mutation
only (no crossover), where the probability of a gene (coef-
ficient) being mutated by adding Cauchy distributed noise
(mean=0, γ = 0.3) was 0.8. The population sizes were 20 in-
dividuals for easier problems (single-pole balancing and for-
ward ball throwing) and 40 individuals for the harder prob-
lems (double-pole balancing, backward-swing ball throwing
and the octopus arm).

3.1 Pole Balancing
Pole balancing (figure 4a) is a standard benchmark for

learning systems. The basic version consists of a single pole
hinged to a cart, to which a force must applied in order to
balance the pole while keeping the cart within the bound-
aries of a finite stretch of track. By adding a second pole
next to the first, the task becomes much more non-linear and
challenging. A further extension is to limit the controller to
only have access to the position of the cart, and the angle
of the pole(s), and not the velocity information, making the
problem non-Markovian (see [10] for setup and equations of
motion). The task is considered solved if the pole(s) can be
balanced for 100,000 time steps.

Table 1 summarizes the results for the four most com-
monly used versions of the task. As in [5], single-layer feed-
forward networks were used for the Markov versions (no
memory is needed for the task), and FRNNs for the non-

(a) Pole balancing

(b) Ball throwing

(c) Octopus arm

Figure 4: Evaluation tasks. (a) Pole balancing: the
goal is to apply a force F to the cart such that the
pole(s) do not fall down, and the cart stays within
the track boundaries. (b) Ball throwing: a ball at-
tached to the end of an arm must be thrown as far as
possible by applying a torque to the joint and then
releasing the ball. (c) Octopus arm: a flexible arm
consisting of n compartments, each with 3 muscles,
must be controlled to touch a goal location with the
arm tip from three different initial positions.

Markov versions. We only report “compressed” results for
numbers of coefficients, c, that reliably solved a given task.

In turns out that for the simplest, classic Markov one-pole
task, searching the space of one coefficient finds a successful
network in just two evaluations, on average. This is because
all that is required is that the weights be equal and positive,
which is exactly what is generated by a single positive (DC)
coefficient; and it takes two evaluations on average to find
a positive coefficient. As the number of coefficients is in-
creased, more evaluations are required to find more complex
solutions where the weights are different.

For the Markovian two-pole task, evolving five coefficients
(one less that the number of weights required) cuts the num-
ber of evaluations in half, and even evolving with as many co-
efficients as there are weights produces a slight improvement
over the baseline, direct evolution. For the non-Markov
tasks, evolving in Fourier space provides no advantage (the

Table 1: Pole balancing results. The table compares
the number of evaluations required to evolve weights
directly versus evolving an equal or fewer number of
DCT coefficients, to solve each task. All networks
had one neuron and w weights (depending on the
number of inputs). Values are averages from 100
runs.

Direct Compressed
Task w eval. c eval.

1 pole Markov 4 39

1 2
2 16
3 54
4 88

2 pole Markov 6 464
5 258
6 358

1 pole non-Markov 4 195 4 151
2 pole non-Markov 5 1422 5 3421

Table 2: Ball throwing results. The table compares
the number of evaluations require to evolve weights
directly versus evolving a fewer number of DCT co-
efficients for the forward-swing and backward-swing
strategies. The columns contain number of coeffi-
cients, number of evaluations of compressed and di-
rectly encoded weight matrices, reached and optimal
distances.

Direct Compressed
Strategy w eval. c eval.

forward 10 267 5 126
backward-fwd 10 10224 9 8220

difference in the one-pole results are not statistically signif-
icant).

3.2 Ball Throwing
In the ball throwing task (figure 4b), the goal is to swing

a one-joint artificial arm by applying a torque to the joint,
and then releasing the ball at precisely the right time such
that it is thrown as far as possible. The arm-ball dynamical
system is described by:

(θ̇, ω̇) =

„
ω,− c · ω|{z}

friction

− g · sin(θ)

l| {z }
gravity

+
T

m · l2| {z }
torque

«

where θ is the arm angle, ω its angular speed, c = 2.5s−1

the friction constant, l = 2m the arm length, g = 9.81ms−2,
m = 0.1kg the mass of the ball, and T the torque applied
(Tmax = [−5Nm, 5Nm]). In the initial state, the arm hangs
straight down (θ = 0) with the ball attached to the end. The
controller sees (θ, ω) at each time-step and outputs a torque.
When the arm reaches the limit θ = ±π/2, all energy is
absorbed (ω = 0). Euler integration was used with a time-
step of 0.01s.

In the experiments, we compare the networks found by
CoSyNE with two optimal control strategies. The first ap-
plies the highest torque to swing the arm forward, and re-
leases the ball at the optimal angle (which is slightly below
45 degrees, because the ball is always released above the
ground). The second, more sophisticated, strategy first ap-

Table 3: Octopus-arm results. The table compares
the best fitness of networks encoded with different
compression ratios versus directly encoded weights,
average of 20 runs.

Direct Compressed
728 320 160 80 40 20 10 5

0.17 0.23 0.17 0.23 0.38 0.27 0.15 0.04

plies a negative torque to swing the arm backwards up to
the maximum angle, and then applies a positive torque to
swing the arm forward, and release the ball at the optimal
angle of 43.03 degrees. The optimal distances are 5.391m for
the forward swing strategy, and 10.202m for the backward-
forward swing strategy. The task is considered solved once a
network controller throws the ball a distance of at least 5.3m
for the forward strategy, and 9.5m for the backward-swing
controller).

The results are summarized in Table 2. CoSyNE was able
to find solutions to the forward swing task using only 5 co-
efficients in about the half the number of evaluations re-
quired by search the 10-dimensional weight space directly.
The average distance was higher than optimal (5.453m) for
the forward-swing controller because the networks already
utilize a slight backward swing. For the backward-forward
swing task, evolving 9 coefficients instead of 10 weights pro-
duced a 20% performance improvement.

3.3 Octopus-Arm Task
The octopus arm (figure 4c) consists of n compartments

floating in a 2D water environment [11]2. Each compart-
ment has a constant volume and contains three controllable
muscles (dorsal, transverse and ventral). The state of a com-
partment is described by the x, y-coordinates of two of its
corners plus their corresponding x and y velocities. Together
with the arm base rotation, the arm has 8n + 2 state vari-
ables and 3n + 2 control variables. The goal of the task to
reach a goal position with the tip of the arm, starting from
three different initial positions, by contracting the appropri-
ate muscles at each 1s step of simulated time. While initial
positions 2 and 3 look symmetrical, they are actually quite
different due to gravity.

Direct and indirect encodings were compared for an octo-
pus arm with n = 10 compartments, for a total of 8n+2 = 82
state variables. The 3n + 2 = 32 control variables were ag-
gregated into 8 “meta” actions: contraction of all dorsal, all
transverse, and all ventral muscles in first (actions 1,2,3) or
second half of the arm (actions 4,5,6) plus rotation of the
base in either direction (actions 7,8). All of the evolved
FRNNs had 8 neurons, one corresponding to each of the ac-
tions, for a total or 8 (neurons) × 83 (inputs+bias) + 64
(recurrent weights) = 728 synaptic weights. For indirect
encoding, the weight matrices were compressed down to 5,
10, 20, 80, 160 and 320 DCT coefficients. Each set of ex-
periments consisted of 20 runs each lasting 100 generations,
using a population size of 40 networks. The fitness of each
network was the minimum, over the three trials (i.e. starting
in the three initial states shown in figure 4c), of the value

2This task has been used in past reinforcement learning com-
petitions, http://rl-competition.org

Trial 1

Trial 2

Trial 3

Figure 5: Octopus arm visualization. Visualization of the behavior of one of the successful controllers. The
controller uses a whip-like motion to overcome the environment friction. This sequence of snapshots was
captured from the video available at http://www.idsia.ch/~koutnik/images/octopus.mp4.

1/(t·d), where t is the number of transpired 10ms simulation
steps, and d is the distance of the arm tip to the target.

The results are summarized in Table 3 showing the aver-
age of the best fitness found in each run for both direct and
indirect encoding schemes. Searching directly in the 728-
dimensional weight space yields an average fitness of 0.173,
very close to the fitness achieved by searching in the rela-
tively small 10-dimensional Fourier space. At 5 coefficients
performance deteriorates because the weight matrices that
can be expressed by so few coefficients are too simple given
the number of weights in the network. At 40 coefficients,
the fitness compared to direct encoding doubles, and there
is a 18-fold reduction in the number of genes being evolved.
As the number of coefficient is increased further, the to 80,
160 and 320 the performance trends back down.

The evolved controllers exhibit quite natural looking be-
havior. For example, when starting with the arm hanging
down (initial state 3), the controller employs a whip-like mo-

tion to stretch the arm tip toward the goal, and overcome
gravity and the resistance from the fluid environment (fig-
ure 5).

4. DISCUSSION AND FUTURE
DIRECTIONS

The experimental results revealed that searching in the
“compressed”space of Fourier coefficients can improve search
efficiency over the standard, direct search in weight space.
The frequency domain representation exploits the structure
of the weight matrix which reduces the number of coefficients
required to encode successful networks.

Of course, in these preliminary experiments we have made
the implicit assumption that solutions will have spatially
correlated weights. It is possible that, for the tasks exam-
ined here, there exists a permutation in the weight ordering
for which the only solutions are those with spatially uncor-

related weights, i.e. requiring the full set of coefficients (no
attempt was made to predefine favorable weight orderings).
For example, in the non-Markov pole balancing benchmarks,
the presence of a single recurrent connection which may
need to be set very differently from the rest of what are
just a few weights, could be the reason that the frequency
domain encoding was not successful. However, ultimately,
the potential of this approach lies in providing compact rep-
resentations for very large networks, such as those required
for vision, where many thousands of inputs have a natural,
highly correlated ordering.

A case in point is the octopus arm, where the input space
has a correlated structure: each compartment adds another
8 variables whose values should be correlated with those of
the adjacent compartments given the physical constraints on
the arm. However, even in this case, a more amenable order-
ing of the weights might be to organize them by compart-
ment rather than by neuron, so that a simple, periodic signal
(i.e. using a small number of coefficients) can encode the cor-
relation between compartments. Or, the weights could be
organized in a 3D cuboid, rather than a 2D matrix, where
each 2D slice corresponds to a compartment. As this re-
search moves toward applications in vision, we will explore
these ideas further to fully exploit problem-specific regular-
ities.

Another approach would be to use a different basis alto-
gether such as wavelets, which can cope with spatial locality,
thereby making the encoding less sensitive to the particular
weight ordering. Wavelets could help in the case of net-
works with multiple layers where it might be desirable for
each layer sub-matrix to exhibit different regularities. With
the current DCT basis, this could be handled less compactly
by using a different set of coefficients for each layer.

In current implementation the number coefficients is sim-
ply specified by the user, without fully exploiting the impor-
tance ordering property of the representation. It should be
straightforward to search incrementally, starting with low-
complexity networks represented by just a few coefficients
and then adding more, one at a time, when performance
stagnates, or some other criteria is met. Future work will
also look to extend the underlying concept more radically so
that the same set of coefficients can be used to encode both
the weights and the topology simultaneously.

ACKNOWLEDGMENTS
The research was supported by the STIFF EU Project (FP7-
ICT-231576) and partially by the Humanobs EU Project
(FP7-ICT-231453).

5. REFERENCES
[1] Z. Buk. High-dimensional cellular automata for neural

network representation. In International Mathematica
User Conference 2009, Champaign, Illinois, USA,
2009.

[2] Z. Buk, J. Koutńık, and M. Šnorek. NEAT in
HyperNEAT substituted with genetic programming.
In International Conference on Adaptive and Natural
Computing Algorithms (ICANNGA 2009), 2009.

[3] J. Gauci and K. Stanley. Generating large-scale neural
networks through discovering geometric regularities.
In Proceedings of the Conference on Genetic and
Evolutionary Computation, pages 997–1004, New
York, NY, USA, 2007. ACM.

[4] F. Gomez, J. Schmidhuber, and R. Miikkulainen.
Efficient non-linear control through neuroevolution. In
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou,
editors, Proceeding of the European Conference on
Machine Learning, number 4212 in LNAI, pages
654–662. Springer, 2006.

[5] F. Gomez, J. Schmidhuber, and R. Miikkulainen.
Accelerated neural evolution through cooperatively
coevolved synapses. Journal of Machine Learning
Research, 9(May):937–965, 2008.

[6] F. Gruau. Neural Network Synthesis using Cellular
Encoding and the Genetic Algorithm. PhD thesis,
l’Universite Claude Bernard-Lyon 1, France, 1994.

[7] J. Koutńık, F. Gomez, and J. Schmidhuber. Searching
for minimal neural networks in Fourier space. In
Proceedings of the 4th Annual Conference on Artificial
General Intelligence, 2010.

[8] M. Li and P. M. B. Vitányi. An Introduction to
Kolmogorov Complexity and its Applications (2nd
edition). Springer, 1997.

[9] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10:99–127, 2002.

[10] A. Wieland. Evolving neural network controllers for
unstable systems. In Proceedings of the International
Joint Conference on Neural Networks (Seattle, WA),
pages 667–673. Piscataway, NJ: IEEE, 1991.

[11] Y. Yekutieli, R. Sagiv-Zohar, R. Aharonov, Y. Engel,
B. Hochner, and T. Flash. A dynamic model of the
octopus arm. I. biomechanics of the octopus reaching
movement. Journal of Neurophysiology,
94(2):1443–1458, 2005.

