
Sustaining Diversity using Behavioral
Information Distance

Faustino J. Gomez
IDSIA, Galleria 2

6928 Manno-Lugano
Switzerland

tino@idsia.ch

ABSTRACT
Conventional similarity metrics used to sustain diversity in
evolving populations are not well suited to sequential deci-
sion tasks. Genotypes and phenotypic structure are poor
predictors of how solutions will actually behave in the en-
vironment. In this paper, we propose measuring similar-
ity directly on the behavioral trajectories of evolving can-
didate policies using a universal similarity measure based
on algorithmic information theory: normalized compression
distance (NCD). NCD is compared to four other similar-
ity measures in both genotype and phenotype space on the
POMDP Tartarus problem, and shown to produce the most
fit, general, and complex solutions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods

General Terms
Algorithms

1. INTRODUCTION
Most challenging real-world problems can cause evolution-

ary algorithms to be lured into local minima by candidate
solutions that afford better than average fitness, but do not
exhibit the kind of true complexity that is ultimately re-
quired to solve the task. These sub-optimal solutions can
quickly overtake the population, depleting diversity and,
with it, the possibility of exploring other more promising
regions of the search space. Reducing selective pressure will
slow convergence, but may also prevent the right path from
being taken. Some mechanism is needed to sustain diversity,
but variation is not enough: ideally the population should
maintain solutions that are not only fit but different from
one another so that evolution can keep its options open for
as long as possible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$10.00.

Many algorithms have been developed to try to sustain di-
versity or at least postpone convergence, e.g., crowding [3],
deterministic crowding [8], fitness sharing [3], implicit fit-
ness sharing [10], restricted mating [4]. With the exception
of recent work by Lehman and Stanley [5] these algorithms
are always implemented to measure diversity by looking at
the distance between individuals using standard metrics (e.g.
Euclidean and Hamming distance) in either genotype or phe-
notype space. This is a natural approach for static tasks such
as function optimization where the fitness of the candidate
is represented directly by its parameters. However, for se-
quential decision, or dynamic tasks this notion of similarity
is deceptive as phenotypes that are similar structurally, may
behave very differently when evaluated in the environment,
not only due to stochasticity, but also discontinuities in the
genotype-phenotype map.

This paper proposes using behavioral distance to more
meaningfully compare individuals using a universal measure
based on algorithmic information theory, called the normal-
ized compression distance (NCD; [7]). This quasi-metric has
the powerful property that it can measure similarity between
sequences (e.g. state-action trajectories) of potentially dif-
ferent lengths by exploiting only their algorithmic regulari-
ties; no domain-specific features need to be specified.

The next section discusses the idea of measuring similarity
in different evolution spaces. Section 3 explains normalized
compression distance in more detail. In section 4, we present
experiments comparing NCD to other similarity measures on
the Tartarus (block packer) problem using a simple crowding
based algorithm. The last two sections discuss the overall
results, suggest directions to further research, and present
our conclusions.

2. MEASURING SIMILARITY
In order to identify novel solutions during a search pro-

cess there must be some way to measure how similar a new
candidate is to the solution points already visited. In evo-
lutionary algorithms, this measurement can be taken in the
genotype space where the solutions are encoded as strings,
or in the phenotype space where they are manifest.

For some problem classes and representations, applying a
particular metric in one space is equivalent to applying it in
the other: the genotype→phenotype mapping, G, preserves
the relative distance between objects in each. When this
is not the case, it may be more informative to measure the
similarity between phenotypes (figure 1), after all, what we
are truly interested in is the similarity of solutions, not there
encodings.

a
ct

io
n

a
ct

io
n

fit n e ss
phenotype
space

b e h a v i or

genotype
space

space
phenotype

dG

!

o
bs

er
va

tio
n

d

d

o
bs

er
va

tio
n

P

Environment

Figure 1: Genotype-Phenotype map. The simi-
larity between evolving candidate solutions can be
computed at different levels. In sequential decision
tasks, comparing individuals structurally in pheno-
type space, dP , may not give a reliable indication
with respect to phenotype behavior (shown as the
cycling of actions and observations of the two high-
lighted phenotypes). A more informative measure
is to compared the behaviors directly, dβ.

In many cases, comparing phenotypes is usually not more
complicated than comparing genotypes. This is because
many optimization problems are static: n-dimensional geno-
type vectors are mapped to m-dimensional phenotypes (pa-
rameter vectors) which are then evaluated once on a cost
function. As both are of fixed dimension, the same metrics
(e.g. Euclidean distance) used for genotypes can be used for
phenotypes.

For sequential decision tasks (e.g. reinforcement learning)
the situation is different: G maps to some form of policy,
π, that implements a probability distribution over a set of
possible actions conditioned on the observation from the en-
vironment. More generally, the choice of action at time t can
be conditioned on the entire history of previous observations,
o, and actions, a:

at ← π(ot−1, at−1, . . . , o0, a0). (1)

For example, such a policy could be implemented by a re-
current neural network. Comparing phenotypes of this form

by only looking at structural similarity, e.g. network topol-
ogy, and weight vectors, can be deceptive as policies that
are structurally similar with respect to the chosen metric
may be very different in terms of behavior when they inter-
act with the environment. We define the behavior, βx, of
individual x to be a set of one or more histories of the form
in equation 1 resulting from one or more evaluations in the
environment. A behavior is therefore an approximation of
the true behavior of the individual that can only be sampled
by interaction with the environment.

In order to encourage useful behavioral diversity, similar-
ity should be computed directly at the level of phenotype
behavior. However, this is more complicated because be-
haviors can be very high dimensional, and two behaviors
can have different durations.

The next section describes a powerful similarity measure
that can be applied to sequences of arbitrary length without
any knowledge domain-specific features.

3. NORMALIZED COMPRESSION
DISTANCE

One universal way to measure the similarity of two objects
is to use the normalized information distance [7]:

NID(x, y) =
max(K(x|y),K(y|x))

max(K(x),K(y))
(2)

where K(x|y), the Kolmogorov complexity of x given y, is
the length of the shortest binary program, running on a uni-
versal Turing machine, that will output x given the input y,
and K(x) is the Kolmogorov complexity of x given no input.
K(x) provides a theoretical lower bound on the compressed
size of x. The beauty of NID is that unlike all other simi-
larity measures, which are feature-based, it does not rely on
the a priori identification of salient domain features: NID
automatically measures the similarity between two objects
based on the dominant discriminating feature.

Unfortunately, K(x) is not Turing computable. In order
to apply NID, Kolmogorov complexity can be approximated
by using a real-world compressor to arrive at the normalized
compression distance (NCD):

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))
, (3)

where C(x) is the compressed length of sequence x, and xy is
the concatenation of x and y. If we assume for the moment
that C(x) < C(y), then NCD(x, y) can be understood as
the improvement in compressing y derived from using x as a
compressed data base. If x has little regularity in common
with y, then C(xy)− C(x) ' C(y) and NCD ' 1. If x = y,
then a good compressor should be able to detect that xy
contains two copies of the same sequence, so that C(xy) '
C(x) = C(y), and NCD ' 0.

Although it is not possible to compute how close the NCD
is from the ideal NID for any two objects, in practice NCD
has yielded impressive and surprising results. In Cilibrasi et
al. [1] it was used to correctly classify disparate file types
ranging from compiled java code to Jimi Hendrix songs in
midi, all without any domain knowledge! And in Li et
al. [6] it was used to construct phylogenetic trees from mi-
tochondrial genomes that corresponded exactly to the exist-
ing maximum likelihood trees which used extensive domain
knowledge.

NW

E

NE

N

SE

input

output

left

right

forward
S

SW

W

Figure 2: Bulldozer controller. The bulldozer is con-
trolled by a fully recurrent neural network with five
units. At each time step the network receives the
state of the eight surrounding grid cells through its
input layer. The input is propagated to the output
layer, along with the activation of the output layer
from the previous time step (i.e. the recurrent con-
nections denoted by the large black arrow), and the
action corresponding to action unit (left, right, for-
ward) with the highest activation is chosen for next
time step.

4. EXPERIMENTS
In the following experiments we compare the performance

of NCD to four other similarity measures on the Tartarus
POMDP problem.

4.1 The Tartarus Problem
Figure 3 shows the Tartarus problem [11], used in the

experiments. The task consists of a 6 × 6 grid-world sur-
rounded by walls within which six blocks and an agent, or
bulldozer, are place away from the walls. The bulldozer is
allotted 80 moves, during each of which it takes one of three
actions: turn left, turn right, or go forward. If the agent
goes forward it can push a block in its path as long as the
block is not against a wall or another block. The objective
is for the bulldozer to push the blocks against the walls. For
each block that finishes against a wall, the agent receives one
point, corners are worth two points; for a maximum score of
10.

Although the grid-world is quite small, the task is chal-
lenging because the bulldozer can only see the adjacent grid
cells, so that many observations that require different actions
look the same, i.e. perceptual aliasing. In order to perform
the task successfully, the bulldozer must remember previous
observations such that it can compute its location relative to
the walls and record the locations of observed blocks for the
purpose quickly acquiring them later. In short, the agent
is quite blind, which means that evolutionary search can
quickly discover simple, mechanical behaviors that produce
better than random performance but do not exhibit the un-
derlying memory capability to perform well on the task.

Algorithm 1: GenericCrowding(p, k, n,m)

1 Initialize the population P with p individuals
2 and evaluate them
3 for i=1 to k do
4 parentA ← TournamentSelect(n)
5 parentB ← TournamentSelect(n)
6 childA ← Crossover(parentA, parentB)

7 childB ↙
8 Mutate(childA) /* evaluate and mutate */

9 Evaluate(childA) /* the two offspring */

10 Mutate(childB)
11 Evaluate(childB)
12 lA ← CrowdingSelect(P, m, childA)
13 lB ← CrowdingSelect(P, m, childB)
14 P [lA] ← childA /* replace losers with */

15 P [lB] ← childB /* offspring */

16 end

Function CrowdingSelect(P, n, x)

1 for i=1 to n do
2 j = rand(|P|)
3 distance ← d(x, P [j])
4 if distance < min then
5 min ← distance
6 loser = j

7 end
8 return loser /* return the most similar */

9 end

4.2 Setup
Algorithm 1 presents pseudocode for the simple steady

state GA used in the experiments. The algorithm takes four
parameters: p, the size of the population, k, the number of
iterations, n, the tournament size for selection, and m, the
crowding factor [2] used for replacement. After the popula-
tion of p individuals is initialized and evaluated, each itera-
tion begins by selecting two parents based on fitness using
tournament selection, and recombining them using 1-point
crossover to produce two children. After mutating and eval-
uating the children, the CrowdingSelect function chooses,
for each child, by tournament selection (tournament size m),
the individual (i.e. the loser) that is most similar to the
child according to the similarity measure d(·, ·). Each child
replaces its corresponding loser, and the cycle repeats.

The Generic Crowding algorithm is not intended to ad-
vance the study of niching methods, rather its purpose is to
provide a minimal framework within which to analyze the
effect of various similarity measures on diversity and per-
formance. This simple algorithm allows us to control the
selective pressure that drives the population to convergence
and at the same time an opposing, “replacement” pressure
via the crowding factor that seeks to delay convergence–the
efficacy of which depends the particular similarity measure
used.

The five following similarity measures were compared:

Fitness:

dfit(x, y) = |f(x)− f(y)| (4)

where f(x) is the fitness of genotype x. This is the

Figure 3: The Tartarus Problem. The Tartarus board on the left shows a possible initial state with the six
blocks and the bulldozer placed at random squares away from the walls; the orientation the bulldozer is also
random. The bulldozer must select an action (either turn left, turn right, or go forward) at each time-step
based on the situation within its visual field (shown in white), and its internal state (memory). The bulldozer
can only move forward if its path is unobstructed or the block in its way has no block behind it, otherwise
it will remain in its current position. On the right is a possible final state after the allotted 80 moves. The
score for this configuration is 7: two blocks receive a score of two for being in the corner, plus one point for
each of the three other blocks that are against a wall.

simplest of the similarity measures used.

Euclidean distance:

deuc(x, y) = ‖x− y‖2 (5)

This is probably the most pervasive measure of sim-
ilarity found in the literature. It is applied here in
genotype space, but given the direct, 1-to-1 genotype-
phenotype mapping used below for the neural net-
work policies, applying it in phenotype space would
have the same effect.

Hamming distance:

dham(x, y) =

T∑
i=0

δ(βx[i], βy[i]) (6)

where δ is the Kronecker delta, the action histories
in each β are concatenated together, and β[i] is the
i-th entry in the concatenated sequence, so that the
distance between two behaviors is just the number of
positions i at which the two individuals chose differ-
ent actions.

Relative Entropy:

dRH(x, y) = D(βx ‖βy) +D(βy ‖βx) (7)

=
∑
a∈A

(px(a)− py(a)) log
px(a)

py(a)
(8)

where D(y‖x) is the Kullback-Leibler divergence of
x from y, i.e. the expected number of extra bits (for
log base 2) per symbol required to encode x using
the optimal code for y. As D(·, ·) is not symmetric,
dRH combines the divergence in both directions so
that dRH(x, y) = dRH(y, x). Each px(a) corresponds

to the probability of symbol a in βx, (P (βx[i] = a)),
and py(a) for each symbol in βy.

Normalized Compression Distance (NCD):

dNCD(βx, βy) =
C(βxβy)−min(C(βx), C(βy))

max(C(βx), C(βy))
(9)

where C(β) is the compressed length of behavior β
(see section 3).

Note that the last three distance measures (dham, dRH and
dNCD) are applied in behavior space. Hereafter, each dis-
tance will be referred to by the following convention: dfit:
Fitness, deuc: Euclidean, dham: Hamming, dRH: Entropy,
dNCD: NCD.

A set of experiments was run for each each similarity mea-
sure, each set consisting of four groups of 50 experiments.
All group within set used a tournament size, n = 10, but
differed in their crowding factor m = 2, 5, 10, 15 parameters,
for a total of 5×4×50 = 1000 experiments. Other values of
n were also tried, but n = 10 produced the best performance
for all methods, so only those results are presented.

In addition, two more groups of 50 simulations were run
to provide a baseline:

Random : replace a random individual in the pop-
ulation. This is equivalent to setting the crowding
factor to 1.

Worst : replace the least fit individual in the popula-
tion. The conventional practice in many GAs.

All simulations were run for k = 400, 000 iterations using
a population of p = 100 bulldozer controllers represented
by fully recurrent neural networks with five sigmoidal units
(figure 2). Three of the five units served as the outputs, one
for each of the actions. The network genotypes were repre-

Crowding factor = 10

Hamming

Random Entropy

Worst
Fitness

Euclidean

NCD

Random

Hamming

Random
Fitness

Crowding factor = 2
Fi

tn
es

s

iterations x 1000

NCD

Euclidean

Entropy

Hamming

NCD

NCD

Random

Worst

Hamming

Fitness

Euclidean

Fitness

Worst

Euclidean

Entropy
Entropy

Worst

Crowding factor = 15

Crowding factor = 5

 200

 8

 2

 3

 4

 5

 6

 7

 8

 2

 3

 4

 5

 6

 7

 8

 200 150 100 50 0 0

 400 350 300 250 200 150 100 50 400 350 300 250 200 150

 6

 7

 8

 100

 2

 3

 4

 5

 50 0 0

 150 100 50 400 250 300 250 350 300 350 400

 2

 3

 4

 5

 6

 7

Figure 4: Comparison of similarity measures for Generic Crowding on the Tartarus problem. Each graph
shows the performance in terms of average fitness for each of the replacement schemes described in section 4.2
using the Generic Crowding algorithm, for a particular value of m, the crowding factor. The two schemes
based on behavioral similarity (Hamming and NCD) show a clear advantage as the crowding factor increases.
NCD dominates the other methods, and benefits more from high replacement pressure than Hamming, which
declines when m reaches 15. Each curve is the average of 50 simulations.

sented by real-valued vectors encoding the inputs and recur-
rent weights of each of the units using initial values chosen
at random from [-10,10]. The mutation operator changed
the value of each weight with probability α to a new value
chosen at random from the same range as the initial weights.
For all experiments α = 0.3.

Each controller was evaluated on 100 random board con-
figurations. To reduce evaluation noise, the set of 100 initial
boards was chosen at random for each simulation, but re-
mained fixed for the duration of the simulation. That is,
in a given run all networks were evaluated on the same 100
initial boards.

For the three behavior distances, Hamming, Entropy,
and NCD, the behaviors consisted of sequences of 80 {Left=1,
Right=2, Forward=3} actions executed in each of the 100
trials concatenated together, for a total of 8,000 actions. For
this task it was not necessary to include observations in the
behaviors because the environment is deterministic and the
initial states were fixed for all individuals in a single run,
so that each sequence of actions only has one corresponding
sequence of observations. For NCD, bzip2 [9] was used as
the compressor, which uses the Burrows-Wheeler transform,
and Huffman coding (O(n)). Note that the compressor has
no explicit information about the segmented, trial-by-trial
structure of the behaviors.

4.3 Results
Figure 4 summarizes the results of the experiments for the

seven different approaches, with one graph for each of the
studied crowding factor, m, values. For m = 2 there is very
little replacement pressure so that all of the schemes, except
Worst, perform close to the Random baseline. However,
even with only this slight bias toward similarity in the re-
placement, the simulations using NCD perform significantly
better than the others, whereas the other behavior-based
measures, Entropy and Hamming, were not statistically
different from the Random replacement scheme.

At 5 ≤ m ≤ 10, the performance of the behavioral dis-
tance methods clearly diverges from that of the others, and
their absolute performance increases. For m = 5, there
was no statistical difference between the average fitness of
the best controller found for Hamming and NCD; however,
NCD learned more quickly. Entropy performed midway
between Hamming and NCD, and the non-behavioral meth-
ods. The fact that Entropy is measured in behavior space
makes it more effective than Fitness and Euclidean, but
because it is not concerned with the structure of the behav-
iors, rather only their statistical properties, it is less infor-
mative about true behavioral similarity.

For m = 15, NCD improves upon Hamming by 10% in
the fitness, and reaches the same performance in about 80%

(a)
Crowding Factor Crowding Factor

%
D

ro
p

in
 a

ve
ra

ge
 fi

tn
es

s

Co
m

pr
es

sio
n

ra
tio

 2 5 10 15

Entropy

Fitness

NCD

Hamming

Worst

NCD

Random

Hamming

Euclidean Fitness Worst

 2 5 15 10

Random

(b)

Euclidean

 0.35

 0.3

 0.25

 0.2

 0.15

 13

 14

 15

 16

 17

 18

 19

 0.1

 0.05

 0

 0.4

Figure 5: Generalization and complexity of evolved controllers. (a) The plot shows, for each of the four
crowding factor values {2,5,10,15}, the average percent degradation in performance compared to the fitness
obtained during evolution, when the best (most fit) network from each run is tested on 10,000 initial Tartarus
boards. Overall, higher crowding factor yields better generalization, with a marked difference between the
behavioral similarity measures and the other replacement schemes. Hamming and NCD show less than a 15%
reduction in average score. (b) This plot shows the complexity of the evolved controllers as measured by the
ratio of the length of the behavior generated by the 10,000 test trials, and the length of the behavior after
compressing it with bzip2. The behavioral similarity measures produce more complex controllers, requiring
as many as 10,000 more symbols to represent in compressed form.

NCD permuted

Hamming permuted

NCD

Hamming

Iterations x 1000

Fi
tn

es
s

 8

 250 300 400 350 50 100 150 200
 3

 4

 5

 6

 7

 0

Figure 6: Permuted trials. The graph compares the
performance of Hamming and NCD when the order of
the trials in the behavior are permuted. Because the
trials of the two behaviors no longer line up, their
Hamming distance is not a useful distance measure;
meanwhile the compressor is still able to detect com-
mon regularity between the strings.

fewer iterations. This is significant as the difficulty of the
task in relation to the number blocks is not linear.

The performance advantage of NCD may not seem to
justify the additional overhead of bzip2 compared to Ham-
ming, even though both have complexity of O(n). The more
important gain from using NCD is that it is less sensitive to
mis-alignments in the two behaviors. Figure 6 illustrates
this point: for each evaluation, the 100 trials in each behav-
ior were permuted. Unsurprisingly, Hamming breaks down
completely, but NCD is still able to measure similarity in

meaningful way. An entropy measure like dRH would be
completely unaffected by permutation, but, as demonstrated
above, it is less useful for measuring similarity as it is not
concerned with the order of the actions taken, only their
expected occurrence.

4.4 Controller Complexity
The generalization of the evolved controllers was also ex-

amined to determine whether evolving with different simi-
larity measures also had an effect on robustness. Figure 5a
shows how much the performance of the controllers from
each approach degrades on average after being tested on
10,000 random Tartarus boards. The robustness all of the
similarity-based methods (i.e. all but Random and Worst),
improves with an increase in the crowding factor, especially
for the behavioral distance methods which experience a drop
of less than 15%, for m ≥ 10.

It is not possible to de-couple the results of this general-
ization test from the absolute performance of each method.
That is, one cannot determine from this data alone whether
replacement by behavioral similarity encourages more gen-
eral controllers to evolve or whether the increased generaliza-
tion is a side-effect of the fact that these methods are better
able to discover more fit controllers that by virtue of be-
ing more competent, are more capable of coping with novel
boards. Further study is needed to compare the generaliza-
tion of the controllers generated by the different similarity
measures, at similar fitness levels.

Figure 5b looks at the “complexity” of the evolved con-
trollers quantified in terms of the ratio between the length
of the behavior generated during the generalization test (fig-
ure 5a) and its length after being compressed using bzip2,
C(β)/β.

Intuitively, higher compression ratios signify less complex

crowding factor = 15crowding factor = 10

iterations x 1000

NCD
Entropy

Euclidean

Euclidean

Hamming
Fitness

D
iv

er
sit

y

Fitness

iterations x 1000

NCD

Entropy

Hamming

 0

 100

 200

 300

 400

 500

 600

 700

 400 350 300 250 200 150 100 50 400 350 300 250 200 150 100 50

 100

 200

 300

 400

 500

 600

 700

 0

Figure 7: Genotypic Diversity. Each curve shows the average pairwise Euclidean distance between the
chromosomes of a population for each method, averaged of 50 runs. The curves for Random and Worst are
barely visible along the bottom of the graph (not labeled).

crowding factor = 10 crowding factor = 15

Fitness

Hamming

Euclidean

Random

Worst

Entropy

Random

Worst

Hamming
Fitness

Entropy

Co
m

pr
es

sio
n

ra
tio

NCD

iterations x 1000

Euclidean

iterations x 1000

NCD
 4

 10

 12

 14

 16

 18

 20

 22

 24

 26

 50 100 200 150 250 300 350 400
 6

 400 350 300 250 200 150 100 50

 10

 12

 14

 16

 18

 20

 22

 24

 26

 8

 6 8

Figure 8: Behavioral Diversity. Each curve shows the average compression ratio (using bzip2) of the behaviors
generated by the population every 50,000 iterations, averaged over 50 runs. Lower compression ratios indicate
more behavioral diversity.

behaviors because they contain more easily identifiable reg-
ularity. For example, behaviors that consistently produce
the same sequence of actions irrespective of the perceived
state of the environment are simple, and this simplicity will
be captured by the compressor since each repetition of the
sequence can be coded by only a few symbols in the com-
pressed representation.

In terms of complexity, in this heuristic sense at least,
the picture is somewhat different from figure 5a where the
baseline experiments, Random and Worst, were the poor-
est performers. Replacing the worst individual is again the
least effective policy, leading to the simplest behaviors. This
is to be expected given that the controllers for Worst were
barely able to push three blocks against the walls, and did
so by employing primitive, mechanical behaviors that loop
around the board or go back-and-forth without regard for
block locations. The Random approach, however, produces
much more complex behaviors, with a compression ratio of
about 16–again, this is correlated with the controller perfor-
mance (figure 4).

The interesting result is for Fitness and Euclidean. While

these two measures performed about same on the task, the
complexity of their controllers diverges as the m increases:
Fitness controllers gain in complexity, where Euclidean
controllers lose complexity.

Finally, Hamming and NCD produced the least compress-
ible, most complex behaviors.

4.5 Diversity
Figures 7 and 8 show how the different similarity measures

affect diversity in both genotype and phenotype behavior
space, respectively (only results for m = 10 and m = 15 are
shown). The average genotype diversity (figure 7) is calcu-
lated by computing the average pair-wise Euclidean distance
of the 100 real-valued chromosomes in each population, sam-
pled every 50,000 iterations. Euclidean maintains the high-
est level of genotypic diversity, since it explicitly tries to
maximize this measure. However, this does not translate
into behavioral diversity (figure 8), which is measured by
compressing all of the behaviors generated by a population,
sampled at the same points during each evolutionary pro-
cess as the genotypic diversity. The higher the compression

ratio, the less diverse the behaviors of the population. By
this measure Euclidean is less diverse than Fitness which
exhibits very low genotypic diversity.

The behavioral similarity measures maintain genotypic di-
versity indirectly by maintaining diversity where it matters
most: in behavior space. The exception is Entropy which
maintains relatively high genotypic diversity, but about the
same behavioral diversity as Fitness, even though it is act-
ing directly on behaviors—the distance between the action
probability distributions (i.e. K-L divergence) of two behav-
iors does not say much about the differences in the actual
sequence of actions taken.

5. DISCUSSION AND FUTURE WORK
The overall results demonstrate that measuring similarity

in behavior space can lead to faster learning by delaying con-
vergence. Genotype Euclidean distance and Fitness distance
proved to be very poor predictors of behavioral similarity,
performing roughly equal to random replacement.

NCD outperformed the other measures and was less sen-
sitive to the crowding factor parameter. While a measure
like Hamming distance is easy to compute, it is limited to
strings of equal length and generalizations such as Edit Dis-
tance are not practical (with complexity O(|βx||βy|)), and
still only capable of detecting rather shallow sequence fea-
tures. In contrast, NCD can exploit the deeper regularities
favored by the particular compressor used, in sequences of
arbitrary length. What is remarkable about NCD is that it
does not care about the domain from which the data derives.

The immediate follow-up work will investigate a broader
class of tasks where policies can generate behaviors of differ-
ent lengths, and compare the performance of different loss-
less compressors plugged into NCD.

More analysis is required of not only the solutions dis-
covered, but also of the evolving populations to gain more
insight into how NCD affects the genetic composition of the
whole population compared to other similarity measures. In
the success stories using NCD for classification [1, 6, 7], the
NCD is computed between all objects in the set, and then a
clustering algorithm is applied to the resulting distance ma-
trix. In our work, we have limited the application of NCD
to O(m) per iteration for reasons of efficiency. It would be
interesting to compute the whole distance matrix, if not to
enhance search, then as an off-line analysis tool for better
understanding the topological structure of evolving popula-
tions in behavior space.

Another promising direction is to use NCD directly to
drive the evolutionary process instead of the obligatory fitness-
based selective pressure, as has been suggested by Lehman
and Stanley [5]. In their work, evolutionary search is fo-
cused on finding novel solutions rather than fit ones. The
belief is that the continual discovery of novelty will lead
to ever-increasing complexity, which will inevitably gener-
ate interesting and possibly even useful behavior. So far,
however, their experiments have employed only a very min-
imal, domain-specific concept of behavioral novelty. A clear
test of the concept would be to use the much more general
measure afforded by NCD.

6. CONCLUSION
This paper has presented an approach to sustaining di-

versity in evolving populations of policies by measuring be-

havioral similarity using normalized compression distance,
a distance measure based on algorithmic information the-
ory. The experiments compared this measure to three other
similarity measures on the the Tartarus problem, using a
simple crowding steady state genetic algorithm. The re-
sults showed that normalized compression distance produces
more fit, general, complex controllers than the other mea-
sures. Given the extremely general applicability of normal-
ized compression distance, these encouraging results bode
well for its broader application to real-world domains.

Acknowledgments
This research was supported in part by the EU Projects
IM-CLEVER (#231711), STIFF (#231576), and Humanobs
(#231453), and the NSF under grant EIA-0303609. I would
like to thank Jürgen Schmidhuber for providing invaluable
input and inspiration for this work.

7. REFERENCES
[1] R. Cilibrasi and P. Vitanyi. Clustering by

compression. IEEE Transactions on Information
Theory, 51:1523–1545, 2005.

[2] K. A. De Jong. An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. PhD thesis, The
University of Michigan, Ann Arbor, MI, 1975.
University Microfilms No. 76-09381.

[3] D. E. Goldberg and J. Richardson. Genetic algorithms
with sharing for multimodal function optimization. In
J. J. Grefenstette, editor, Proceedings of the Second
International Conference on Genetic Algorithms,
pages 148–154. San Francisco, CA: Morgan
Kaufmann, 1987.

[4] W. D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. In J. D.
Farmer, C. Langton, S. Rasmussen, and C. Taylor,
editors, Artificial Life II. Addison-Wesley, Reading,
MA, 1991.

[5] J. Lehman and K. O. Stanley. Exploiting
open-endedness to solve problems through the search
for novelty. In Proceedings of the Eleventh
International Conference on Artificial Life (ALIFE
XI), Cambridge, MA, 2008. MIT Press.

[6] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney,
and H. Zhang. An information-based sequence
distance and its application to whole mitochondrial
genome phylogeny. Bioinformatics, 17(2):149–154,
2001.

[7] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitanyi.
The similarity metric. IEEE Transactions on
Information Theory, 50(12):3250–3264, 2004.

[8] S. W. Mahfoud. Niching Methods for Genetic
Algorithms. PhD thesis, University of Illinois at
Urbana-Champaign, Urbana, IL, May 1995.

[9] J. Seward. bzip2 and libbzip2, version 1.0.5: A
program and library for data compression, 1996–2007.
http://www.bzip.org.

[10] R. E. Smith, S. Forrest, and A. S. Perelson. Searching
for diverse, cooperative populations with genetic
algorithms. Evolutionary Computation, 1(2):127–149,
1992.

[11] A. Teller. Advances in Genetic Programming,
chapter 9. MIT Press, 1994.

