CONTINUAL LEARNING IN REINFORCEMENT
ENVIRONMENTS

by

MARK BISHOP RING, A.B., M.S.C.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
August, 1994

For My Father,
without whom I never would have done this.
And To Amy,

without whom I never could have done this.

And In Memory of
Robert F. Simmons

Acknowledgments

This book is a modestly revised version of my dissertation of the same title which was
written for the Department of Computer Sciences at the University of Texas at Austin.
The corrections, revisions, and preparations for printing in book format were all done at
the GMD — German National Research Center for Information Technology, in the Institute
for System Design Technology, where I serve as a postdoc in the Adaptive Systems Research
Group, led by Dr. Heinz Miihlenbein.

Work on the dissertation began with an effort to understand human thought processes.
The first major step in this journey was discovering that it had already been done over 100
years ago. Through The Principles of Psychology, 1 learned from William James that many
of my early ideas were promising, if incomplete, and should be pursued. Though none of
this research survived into the final dissertation, the foundation and understanding I gained
into human psychology has continually benefited all aspects of my research. I therefore want
to acknowledge, first and foremost, my advisor, Robert Simmons. I will always remember
him as the person who introduced me to a true theory of human psychology, who waited
patiently as my thoughts developed, and who gave me (much) more than 600 hours of his
time while I tried to explain them. Robert Simmons was a rare man, a professor who truly
cared about his students and made sure that they were able to overcome the many and
constant challenges of graduate school. This work would not have been possible without
him. I will always owe him a great debt, and I will miss him.

Much of this dissertation was greatly improved by the contributions of David Pierce,
who read and commented on all the chapters (in some cases more than once!), and who
was a daily help to me during the arduous process of thinking through and writing up
these thoughts. Kadir Liano acted as my sounding board before Dave, and to him I owe
much gratitude for his patience and for his excellent understanding of mathematics which
he always generously shared with me. I would like to thank Rick Froom for his friendship,
which has been a constant source of support for me. I’ve also been very fortunate to have
had Eric Hartman’s personal and professional support (as well as his sense of humor) to
rely upon for many years. Thanks to Jim Keeler for sharing his time and confidence and for
showing me what it means to work like hell. I'd also like to thank Ben Kuipers for his help
and encouragement, and to him and his students for allowing me the use of their sleeker,
faster, more expensive computers for doing many weeks of constant computations. I thank
Pavilion Technologies for allowing me to use their equipment while I worked for them.

Special thanks to Peter Dayan, who was more than generous with his time and energy,
reading through the entire dissertation and giving me many invaluable comments, particu-
larly on the sections involving reinforcement learning. Thanks also to Risto Miikkulainen
and Ray Mooney, whose comments also had a substantial impact on the final version. Long-
Ji Lin was very helpful in working through issues related to those described in Section 5.5.
Ming Tan pointed out the importance of separating the testing of Continual Learning from
that of testing CHILD. Joseph O’Sullivan gave me software for generating 3D policy plots,
such as that in Figure 5.3. Many thanks to Jurgen Schmidhuber for his encouragement and
for discussions on many topics.

vii

Thanks in a very major way go to NASA who supported three years of this research
through their Graduate Student Researchers Program, and to Tim Cleghorn at NASA who
has always shown enthusiasm for my work and who encouraged me despite many delays.

The most important acknowledgment belongs to the person whose contribution was
greater than all others combined: Amy Graziano (my wife). Without her help, I would now
be much older and much thinner.

Abstract

Continual learning is the constant development of complex behaviors with no final end in
mind. It is the process of learning ever more complicated skills by building on those skills al-
ready developed. In order for learning at one stage of development to serve as the foundation
for later learning, a continual-learning agent should learn hierarchically. CHILD, an agent
capable of Continual, Hierarchical, Incremental Learning and Development is proposed,
described, tested, and evaluated in this dissertation. CHILD accumulates useful behaviors
in reinforcement environments by using the Temporal Transition Hierarchies learning algo-
rithm, also derived in the dissertation. This constructive algorithm generates a hierarchical,
higher-order neural network that can be used for predicting context-dependent temporal se-
quences and can learn sequential-task benchmarks more than two orders of magnitude faster
than competing neural-network systems. Consequently, CHILD can quickly solve compli-
cated non-Markovian reinforcement-learning tasks and can then transfer its skills to similar
but even more complicated tasks, learning these faster still. This continual-learning ap-
proach is made possible by the unique properties of Temporal Transition Hierarchies, which
allow existing skills to be amended and augmented in precisely the same way that they were
constructed in the first place.

Table of Contents

Acknowledgments

Abstract

Table of Contents

List of Tables

List of Figures

1. Introduction

1.1 Ingredients of Continual Learning
1.2 An Example e
1.3 Incremental Learning, Hierarchical Development
1.4 Existing Hierarchical Systems

1.4.1 Bottom-up Constructive Hierarchies.
1.5 Proposed Methods
1.6 Overview of Dissertation

2. Robotics Environments and Learning Tasks

2.1 Robots and Robotics Tasks
2.1.1 The Environment
2.1.2 The Task e
2.1.3 The Learning Task o
2.1.4 Task Environments

2.2 Environmental Complexities oL
2.2.1 Varieties of Senses and Actions
2.2.2 Markov Environmentso 0o
2.2.3 Markov-k Environments L
2.2.4 Finite State Environments L.
2.2.5 Still More Complex Environments
2.2.6 The Effect of Future Activity

2.3 Dimensions of Difficulty o000

2.4 Conclusions

vi

Vviil

ix

xi1

x1il

Contents

. Neural-Network Learning 17
3.1 Supervised Mappings 17
3.2 Constructive Networks Lo 19
3.3 Higher-Order Systems Lo 21

3.3.1 Second-Order Networks 22
3.3.2 Partially Connected Higher-Order Networks 23
3.4 Conclusions 23

. Solving Temporal Problems with Neural Networks 25
4.1 Delay Lines 26
4.2 Learning Time Delays o 27
4.3 Recurrent Networks oo 28

4.3.1 The Focused and Sticky-bit Architectures 28
4.3.2 Recurrent Cascade Correlation 29
4.3.3 Fully Connected Recurrent Architectures 29
4.3.4 Second-Order Recurrent Networks 31
4.4 Conclusions e 33

. Reinforcement Learning 34

5.1 The Adaptive Heuristic Critic 34

5.1.1 Implementationo L 37
5.2 Q-learning e 38
5.3 Dynamic Programming oL 38
5.4 Gradient Following Methods 40
5.5 Some Geometric Intuition L oo 42

. The Automatic Construction of Sensorimotor Hierarchies 45

6.1 Behavior Hierarchies oo 46
6.1.1 Network Example 0 oo A7
6.1.2 Learning 48
6.1.3 An Example of Hierarchy Construction 19
6.1.4 Reinforcement Learning with Hierarchies 50
6.1.5 A Different Approach is Needed 50

6.2 Temporal Transition Hierarchies 51
6.2.1 Structure and Dynamicso 52
6.2.2 An Example oo 54
6.2.3 Deriving the Learning Rule 54
6.2.4 Adding New Units 59
6.2.5 The Algorithm 61
6.2.6 Tracing Through the Algorithm 64

6.3 Conclusions L 70

Contents xi

7. Simulations 72
7.1 Description of Simulation System 00000 72
7.2 Supervised-Learning Tasks oo o0 73

7.2.1 Reber Grammar. oL 73
7.2.2 The Gap Task o 78
7.3 Continual-Learning Results 82
7.3.1 Continual Learning vs. Learning From Scratch 85
7.3.2 Proprioception L 89
7.3.3 Hierarchy Construction in the Maze Environments. 92
7.3.4 Non-Catastrophic Forgetting 93
7.3.5 Distributed Senseso 94
7.3.6 Other Reinforcement-Learning Methods 95

8. Synopsis, Discussion, and Conclusions 96
8.1 Discussion of Results L oo 96
8.2 Deficiencies 97
8.3 Contributions 98

8.3.1 Distributed Hierarchical Control 99
8.3.2 Rating CHILD with the Dimensions of Difficulty 101
8.4 Future Work oL 101
8.4.1 Stationary Mappings 102
8.4.2 Recurrent Connections 102
8.4.3 The Changing-Reward Problem 103
8.4.4 Practical and Theoretical Work 105
8.5 Closing Thoughts 106

A. Simulating a Queue With a Focused Network 108

B. Equivalence of SLUG and Second-order Recurrent Networks 109

C. Parameter Values for the Maze Tasks 110

D. Derivation of Learning Rule for Non-Temporal Network 112

E. Derivation of Learning Rule for Recurrent Network 115

Bibliography 118

List of Tables

2.1
3.1

4.1
4.2

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1

The Dimensions of Difficulty0 0L 15
Properties of Several Feed-Forward Neural Networks 24
Finite-state grammars from Tomita 32
Characteristics of Temporally-Sensitive Networks 33
Learning Equivalence: The First Five Time Steps 65
Learning Equivalence: Time Steps 6-11 66
Learning Equivalence: Time Steps 12 and 21-25 68
Characteristics of Transition Hierarchies 71
Dimensions of Difficulty of the Proposed Tasks 73
Results on the Reber Grammar 76
The Algorithm’s Sensitivity to its Parameters 77
Results on the Mozer Gap Task 81
Results of Learning from Scratch 0. 86
Continual-Learning Results 0oL 87
Results of Learning from Scratch with Proprioception 90
Continual-Learning Results with Proprioception 90

CHILD and the Dimensions of Difficulty 101

List of Figures

1.1 A simple Environment 2
1.2 A slightly more complex environment 3
1.3 A still (slightly) more complex environment 3
4.1 A Markov-2 Environment o000 27
5.1 The Adaptive Heuristic Critic 35
5.2 Training a Controller Through Distal Learning 41
5.3 Landscape for the Simple Environment 43
6.1 A Behavior Hierarchy Without High-Level Units 47
6.2 A Behavior Hierarchy With One High-Level Unit 48
6.3 A Behavior Hierarchy With Two High-Level Units 49
6.4 An Environment to Demonstrate Behavior Hierarchies 50
6.5 An Environment to Demonstrate Temporal Transition Hierarchies 51
6.6 A Transition Hierarchy Without High-Level Units 53
6.7 A Transition Hierarchy with One High-Level Unit 55
6.8 A Transition Hierarchy for Figure 6.5 55
6.9 A More Complicated, Context-Sensitive Environment 56
6.10 A Transition Hierarchy for Figure 6.9 56
7.1 The Simulation System 0oL 74
7.2 The Reber Grammar 0 75
7.3 Progress of Testing Performance During Training 78
7.4 A Typical Training Curve While Learning the Reber Grammar 79
7.5 Sequences for a Gapof Two oo 79
7.6 Sequences for a Gap of Eight 000000 80
7.7 Training Curves While Learning the Gap Tasks 81
7.8 Diagram of Sense Labels oo oo 83
7.9 The Nine Mazes 84
7.10 Continual Learning vs. Learning from Scratch 88
7.11 Continual Learning vs. Learning from Scratch Using Proprioception 91
7.12 Maze Environment Introduced By McCallum 95
8.1 A Context-Sensitive Policy Lo 100
C.1 Optimized Parameters When Learning from Scratch 110

C.2 Optimized Parameters When Learning from Scratch Using Proprioception . 111

xiv

1

Introduction

The real world is characterized by a seemingly unlimited degree of detail and regularity.
Regularity occurs at multiple scales and to various extents. The simplest organisms may find
regularity such as correlations between scent and food (or movement and danger) that allow
them to survive and succeed. More developed creatures recognize subtler concepts, such as
the movements involved in mating rituals, and carry out more complex behaviors, such as
hunting and stalking prey. Humans, during the course of their lives, continually grasp ever
more complicated concepts and exhibit ever more intricate behaviors. The world supports
this continual learning process by providing a never-ending multitude of complexities and
regularities.

Traditional Al, dedicated to the automation of processes formerly requiring human in-
telligence, is also characterized by continual development. As the field progresses, new
technologies are created from those already in use. Machine learning techniques assist and
speed this process by allowing developers to focus on the more abstract issue of what the
working system must do rather than on how the system should work. (This is usually done
by creating examples of the system’s desired outputs for different inputs.) Developers often
find that even the much simpler task of specifying what the system must do can nevertheless
be onerous and time-consuming; so the pressure of progress also forces learning algorithms
to improve. Reinforcement-learning can potentially speed Al progress by taking the process
of abstraction one step further: the developer of a reinforcement-learning system need not
even specify what the working system does, but need only recognize when the system does
the right thing.

This dissertation focuses on an issue still more abstract: the process of automating
the development process itself. This is continual learning. Given a world of unlimited
complexity and regularity, and a method for measuring improvement, learning does not
need to stop. Even while performing a skill already well learned, it may be possible for
learning to continue, blurring the traditional distinction between training and performance.
Like the evolution of an organism, the growth of human learning, and progress in the field
of Al, continual learning is the process of constant improvement, towards no single, final
end other than improvement itself.

1.1 Ingredients of Continual Learning

Constructing an algorithm capable of continual learning is a difficult business. Fields of
research can progress because this progress is made by humans — systems still somewhat too
complicated to simulate computationally. Humans are themselves only capable of research
after decades of a continual-learning process requiring an unfathomably large number of
experiences and a device perhaps too complicated for humans ever to fully comprehend.
(Some say that if the brain were simple enough to understand, we’d be too simple to
understand it.) We can, however, attempt to specify a simplest minimal set of ingredients

2 Chapter 1. Introduction

Figure 1.1: A simple Environment.

necessary for the continual-learning process and then try to construct and combine these
ingredients computationally.

Three initial ingredients of continual learning are as follows. First, the continual-learning
algorithm should be autonomous: it should be able to receive input information, produce
outputs that can potentially affect the information it receives, and respond to positive
and negative reinforcement. That is, it must behave in its environment and be able to
assign credit to behaviors that lead to desirable or undesirable consequences. Second, these
behaviors should be capable of spanning arbitrary periods of time; i.e, their duration should
have no preset limit. Third, the continual-learning algorithm should be able to acquire new
behaviors when useful, but should avoid acquiring them otherwise.

1.2 An Example

A simple example should help demonstrate what is required by continual learning. Imag-
ine an agent in a maze-like environment, such as that shown in Figure 1.1. The agent can
occupy any of the twelve numbered positions. In each position the agent perceives a num-
ber, which uniquely represents the configuration of the walls immediately surrounding that
position. (A more detailed description will be given in Section 7.3.) The agent can move
north, south, east, or west. (It may not enter the barrier positions in black, nor may it
move beyond the borders of the maze.)

The agent’s task is to learn to move from any position in this grid-world maze to the
goal state (marked by the food dish), where it receives reinforcement. Using standard
reinforcement-learning techniques (as will be described in Chapter 5), the agent can learn
which actions to take so that it will reach the goal no matter where it begins. Such an agent is
autonomous: it receives information, evaluates it, makes a decision, and acts without human
intervention or interruption. (The relationship between the agent and its environment will
be discussed in Chapter 2.)

All positions are uniquely specified by the number in that position, except for those
labeled “6” and “12”. However, if in all positions labeled “6”, the agent moves south, and
in all labeled “12” the agent moves west, then it can choose an action in each position based
only upon its immediate perception, that will lead it to the goal regardless of its starting
position. But what should happen if the agent is moved to a slightly more complicated
environment, such as that shown in Figure 1.2, where there is an ambiguity due to the two
occurrences of the input “9”7 The agent’s previous learning should remain for the most part

1.3. Incremental Learning, Hierarchical Development 3

Figure 1.2: A slightly more complex environment.

intact. The agent should continue to move east when it senses “9” in the upper position.
However, it should move west upon sensing “9” in the lower position. How can this be done
without disturbing the behavior the agent has already successtully learned that brings it to
the goal in Figure 1.17

The answer proposed in this dissertation is to build upon the extant skills hierarchically,
leaving what is in place and amending it only as necessary to accomplish the current task.
The agent must leave its response to stimulus “9” in the upper position intact while modi-
fying its response to the same stimulus in the lower position. It must therefore be able to
distinguish the two different positions, though its input remains the same. It can recognize
that it is in the lower position by its preceding context: only in the lower position has it
just seen input “12”7. Therefore, the agent’s response to the “9” stimulus must be mediated
by the agent’s preceding sensory information.

If the agent were now to be placed in a different maze, such as that shown in Figure 1.3,
its behavior would need to be extended again, such that it moves west upon seeing “9”
whenever its previous input was either a “12”7 or a “9”7. The agent should cope with every
new situation in a similar way: old responses should be modified with surgical precision,
and new exceptions to these responses should be implemented based on the contextual
information that disambiguates the situations in which they apply.

1.3 Incremental Learning, Hierarchical Development

Two further ingredients of continual learning manifest themselves in the above examples.
The first is incremental learning. Incremental learning is a continuing process whereby

Figure 1.3: A still (slightly) more complex environment.

4 Chapter 1. Introduction

learning occurs with each experience rather than from a fixed and complete set of data.
Many learning algorithms, such as ID3 and back-propagation are so-called batch algorithms
requiring all training data to be collected in advance of the algorithm’s execution. (Back-
propagation can be modified trivially, however, into an incremental version that allows data
to be generated and presented as training progresses; and incremental versions of ID3 — ID4
and ID5 — also exist.) For continual learning, it is not known in advance what problems
will be addressed. It is impossible to collect the data from all the problems in advance of
training, and therefore incremental learning is needed.

The second and by far the most significant ingredient of continual learning is hierar-
chical development. Hierarchical development is the subsumption of extant mechanisms or
behaviors by newer, more sophisticated ones. This bottom-up process uses the system’s old
components as constituents of newly created components. Richard Dawkins [18] describes
evolution as a similar process whereby complex organisms evolve from simpler ancestors
that already embody many of the later organism’s sub-assemblies. It seems reasonable to
speculate also that elaborate behaviors would be exhibited by organisms whose ancestors
performed less elaborate versions of these behaviors. Human bipedal locomotion, for exam-
ple, is a very sophisticated behavior that arose from a less demanding, quadrupedal form
of movement. One of the clearest examples of this kind of development is the subsump-
tion architecture of Brooks [14] that seems to mimic the evolutionary process described
by Dawkins. Though development occurs in the subsumption architecture only through
concentrated human effort, it represents precisely the kind of development that must occur
automatically in continual learning.

1.4 Existing Hierarchical Systems

The importance of hierarchy in adaptive systems that perform temporal tasks has been
noted often, and many hierarchical systems have been proposed. In existing systems such
as those of Albus [1], Roitblat [86, 87], Jameson [42], Lin [55], Wixson [126], Dayan and
Hinton [21], Schmidhuber and Wahnsiedler [97], and Singh [99], hierarchical architectures
are developed top down by hand as an efficient method for modularizing large temporal
tasks.

In the architectures of Albus and Roitblat, tasks are defined as a disjunction of sequences
of subtasks. That is, every task might be accomplished in several ways, each of which
involves executing a sequence of less elaborate tasks. The other systems mentioned above
make use of reinforcement-learning. Wixson’s, Lin’s, and Dayan and Hinton’s systems
correspond roughly to the Albus-style architecture without the disjunction: Each high-
level task is divided into sequences of lower-level tasks where any task at any level may
have a termination condition specifying when the task is complete. Jameson’s system is
somewhat different in that the higher levels “steer” the lower levels by adjusting their
goals dynamically. Schmidhuber and Wahnsiedler proposed a mechanism for decomposing
a start and goal combination into a fixed number of subgoals generated automatically to
minimize the “cost” of the action sequence. The system proposed by Singh, when given a
task defined as a specific sequence of subtasks, automatically learns to decompose the task
into its constituent sequences.

1.4. Existing Hierarchical Systems 5

In all of the above systems, hierarchy is enlisted for task modularization. This allows
higher levels to represent elaborate behaviors that span broad periods of time. Modulariza-
tion can also speed learning. For example, the learning algorithm can take into account the
slower time-scales at which higher levels operate when assigning credit to the different lev-
els of the hierarchy. This “vertical” credit assignment is different from but related to both
temporal and structural credit assignment, and it is important in any temporal, hierarchical
learning system.

The purpose of the above systems, however, is not to develop hierarchies bottom-up
as a method for learning more and more complicated tasks. Rather, their purpose is to
improve performance in predesignated domains. These systems are constructed top-down by
human intelligence to reflect the intuitive decomposition of the task and its subtasks (though
Wixson presented some general guidelines for determining how to create new hierarchical
nodes).

1.4.1 Bottom-up Constructive Hierarchies

There are existing hierarchical systems that do develop their architectures bottom-up,
such as those of Wilson [124] and Drescher [24]. Wilson proposed a bucket brigade sys-
tem that allows classifiers to be executed in a hierarchical fashion. The system in some
ways resembles that of Albus (above) but its foundation in a classifier system implies the
possibility of automatic hierarchy-construction by a genetic algorithm. The schema sys-
tem proposed by Drescher supports three kinds of dynamic architectural development: new
schemas, “composite actions” (sequences of actions that lead to specific goals) and “syn-
thetic items” (concepts used to define the pre-conditions and results of actions). The latter
two are hierarchical constructs and reflect the fact that Drescher’s goal — simulating early
stages of Piagetian development — is most congruous with the philosophy of continual
learning. Drescher’s is also the most intricate system of those mentioned here.

Macro-operators in STRIPS [7, §D5] and “chunking” in SOAR [52] are two other meth-
ods for constructing temporal hierarchies. Macro-operators are specific sequences of lower-
level operators combined into a single new operator. They are somewhat like non-disjunctive
Albus-style hierarchies, though they are composed at the lowest level of discrete actions,
whereas Albus’s hierarchies consist of continuous actions. Unlike Albus hierarchies, macro-
operators can be constructed automatically to represent frequently occurring sequences.
Chunking in SOAR is also a development process. In solving a problem or task, the
solutions to subproblems are remembered (as a “chunk”) and used again whenever the
subproblem reappears. In real-world tasks, both macro-operators and chunking tend to
be less suitable than methods based on closed-loop control such as reinforcement-learning.
With macro-operators and chunking there is an assumption that the results of actions are
known in advance. They are not learned, which makes learning in stochastic environments
cumbersome.

Another constructive, bottom-up approach is the “hierarchy of decisions” of Dawkins [18],
similar to “history compression,” recently described and implemented by Schmidhuber [96].
The idea is that if one element of a sequence reliably predicts the next several elements, then
it can represent the predicted elements in a reduced description of the entire sequence. For
example, the sequence: AbcDefXyzDefQrsXyzDefQrsAbcDef can be reduced to ADXDQXDQAD.
This new sequence could then be reduced in the same way, to AXXA, which represents the

6 Chapter 1. Introduction

original sequence. This bottom-up process can continue, constructing a many-leveled hierar-
chy for long sequences with a large amount of regularity. However, this is not an incremental
method: all data must be specified in advance. It is also not immediately obvious how to
convert a method that constructs hierarchies out of a set of data into something an agent
can use for choosing actions.

1.5 Proposed Methods

In this dissertation I introduce a system capable of Continual, Hierarchical, Incremental
Learning and Development (CHILD). Two hierarchical methods are explored for use in
CHILD. The first method constructs hierarchies of binary sequences. The elements at the
lowest level of the hierarchy can be either senses or actions. Higher-level elements are
similar to macro-operators in that they stand for specific sequences of lower-level nodes.
These elements are different from macro-operators in that each unit acts as both an action
and as a sense: it can be executed, and it generates a value indicating whether the sequence
it represents occurred. The units are embedded in a connectionist-like system allowing
operation in stochastic environments. An overview of this method is presented in Section 6.1.

The second method, Temporal Transition Hierarchies, is far more successful than the
first. It is a neural-network-based learning algorithm presented in detail in Section 6.2. It
resembles Dawkins’ “hierarchy of decisions” method in that it pays particular attention to
the least predictable events. It then creates new units that learn to predict these. However,
the Temporal Transition Hierarchies method keeps track of the probabilities between events
(there may be no such thing as a completely “reliable” sequence of events), and it uses the
new units to modify these probabilities dynamically.

The underlying assumption of the untrained Temporal Transition Hierarchies network is
that event probabilities are constants: “the probability that event A will lead to event B is
P4p.” The network’s task is to learn these probabilities. Such an assumption of constancy
is only the first, coarsest, and most abstract description of any set of events, however.
After some examination, certain events can be seen to follow other events with varying
probabilities depending on the context. There may be a specific probability that pressing
the right button on the vending machine will result in the sudden appearance of a small
box of doughnuts. However, knowing the context — whether the correct amount of change
was deposited in the slot — generates two different, much more precise probabilities.!

The Temporal Transition Hierarchies algorithm focuses on highly unpredictable events
and creates new units to help predict these events more reliably. The new units look at
information from the previous time step in search of an unambiguous context in which the
event becomes predictable, just as the context of “deposited correct change” helps determine
whether “doughnuts will appear” when the right button is pressed.

In robotics tasks, an action may seem to succeed frequently and fail frequently. Temporal
Transition Hierarchies can be used to find the broader context in which an action will

IDawkins also noticed this with respect to animal behavior, and he posited a model in which “there is
not just one global set of transition rules governing all behaviour patterns of an animal,” but that there are
“nested sets of transition rules, each set of rules holding sway within a circumscribed cluster of elements.”
Dawkins’ model is also hierarchical, though it is much different from and somewhat less powerful than the
one presented here.

1.6. Overview of Dissertation 7

succeed. In Figure 1.2 simply sensing input “9” is insufficient for determining whether to
move east or west. A new unit would be constructed to find the broader context in which
the agent should move east. The new unit searches for information from the preceding time
step to predict whether, when the agent senses “9”. the move-east action will succeed or
fail. If it finds no such information, another unit can be built to search one more step back
in time, and so on.

The units created by the Temporal Transition Hierarchy resemble Drescher’s “synthetic
items”, created to determine the causes of an event (the cause is determined through train-
ing, after which the item represents that cause). What is particularly powerful about
Temporal Transition Hierarchies is that they are differentiable and can be trained via gra-
dient descent, as described in Section 6.2.3. The algorithm can therefore also be used as a
sequence-learning neural-network algorithm. As such, it learns very quickly — more than
two orders of magnitude faster than recurrent neural-network algorithms on benchmark
tasks — shown in Section 7.2.

1.6 Overview of Dissertation

The chapters that follow fall into three categories: background material, novel contri-
butions, and results. Chapters 2-4 are background chapters, providing descriptions of all
concepts necessary for understanding the primary technical contribution (Chapter 6), the
results (Chapter 7), and the conclusions (Chapter 8). Chapter 2 explores the kinds of tasks
that appear in the later chapters and describes their most influential attributes. It is a gen-
eral overview of the technical issues relevant to continual learning, such as sense and action
types, Markov environments, reinforcement versus supervised learning, and modeling versus
control. Chapter 3, “Neural Network Learning,” describes background issues and related re-
search in the field of neural networks most relevant to continual learning and the methods of
Chapter 6. Besides simple feed-forward networks, it discusses constructive and higher-order
neural networks. Chapter 4 discusses the issue of time in neural networks, including time-
delay neural networks, recurrent neural networks, constructive recurrent neural networks,
and higher-order recurrent neural networks. Chapter 5 is a general overview of reinforce-
ment learning and describes the most pertinent aspects of the field for those not already
familiar with it. Chapters 3, 4, and 5 may be skipped in part or in whole by those who
already have a good background in the topics addressed. Chapter 6 describes the two hier-
archical methods mentioned just above. It derives the learning rule for the second of these
(Temporal Transition Hierarchies) and presents the learning algorithm. Chapter 7 presents
the major results, first demonstrating the efficacy of the Temporal Transition Hierarchies
learning algorithm, and then presenting CHILD, the continual learner, in reinforcement-
learning environments. Chapter 8 concludes the dissertation by discussing and interpreting
the results, and analyzing the contributions as well as the deficiencies of the Temporal
Transition Hierarchies algorithm and of CHILD as a continual learner. The chapter ends
optimistically by proposing future work.

2

Robotics Environments and Learning Tasks

This chapter explores the kinds of tasks that appear in the chapters that follow. These
tasks can best be described as simple (often simplistic) robotics tasks that have several
important properties. First, they are amenable to reinforcement learning, where the re-
inforcement can be easily changed to create tasks of greater or lesser difficulty. Second,
they are easy to visualize: it is clear what the robot (or agent) should be learning, and its
progress can be readily measured by monitoring the amount of reinforcement it receives.
Third, the tasks are highly general; the details, including the complexity of the task to be
learned, are all modifiable. In fact, all tasks of this kind can be described very simply in
terms of senses, actions, and reinforcement, which allows an enormous range of possible
specific tasks, from the trivial to the non-computable.

2.1 Robots and Robotics Tasks

Any robot can be described as the implementation of a set of mappings from current
and previous sense signals and actions, to action signals. For a robot to perform a task it
must produce actions through its actuators, possibly as a function of its previous actions
and its previous and current sensations. In the discrete time case, this can be formalized
as follows:

a(t) = f:(5(0),a(0),35(1),a(l),...,8t —1),dat —1),s(t)), (2.1)
where @(7) is a vector of actuator signals describing the motor activity of the robot at time 7;
§(7) is the vector of sensory signals the robot receives at time 7; and f; is a function mapping
a sequence of 2t 41 vectors onto a single vector. f; is not necessarily deterministic but might
choose randomly from among many possible action-vector candidates. This formalization is
general enough to describe any discrete-timerobot.! The senses can encode tactile, auditory,
visual information, etc. including, for example, joint angles and rates of change. The action
vector can encode any control signal, including the specification of positions, joint angles,
and torques.

Since f; can be any function taking the proper arguments, Equation 2.1 imposes no
limits on the complexity of the robot. A more appealing yet no less general formulation of
Equation 2.1 is the following combination of equations:

ity = F(S@)
S() = g(S(t—1),a(t —1),5(0).

Clearly, Equations 2.2 and 2.3 are identical to Equation 2.1 when ¢ is the concatenation
operator, and f(.S(t)) simply translates its argument into a call of f;. However, it is conve-
nient to think of the robot’s next action as a function of its last action, its current sensory
inputs, and its internal state.

1The continuous-time case will not be considered here.

2.1. Robots and Robotics Tasks 9

2.1.1 The Environment

The robot’s environment interprets the sequence of action vectors and generates the
sequence of sense vectors. It can be described as nearly the mirror-image of the robot:

st) = f(EQ®)
E(t) = ¢(E(t—1),dt—1)).

where E(t) is the state of the environment at time ¢. (Just as with f in Equation 2.1, both
f" and ¢’ may be stochastic: different possible states might result from a given action in
a given state, and different possible sense vectors can be produced in the same state on
different occasions.) A similar description of finite-state task environments was given by

Wilson [125].

2.1.2 The Task

Together, Equations 2.2-2.5 define a protocol by which a robot can interact with an
environment. The robot acts in response to the sensations it receives; the environment
responds to the robot’s actions. This general framework describes a set of robots that can
perform the broadest range of tasks in the broadest range of environments.

Besides describing the actions that are performed by a robot, the functions f and ¢
implicitly describe the task the robot performs. Since Equations 2.2-2.3 impose no limits
on the complexity of the robot, they therefore also impose no limit on the complexity of the
robot’s task (provided it can be performed at all). However, the task might often require
less than all the information supplied in Equation 2.1. Some very simple tasks do not
depend on sensory or action information of any kind. In fact, most tasks, even most of
those that require knowledge of previous actions, can be performed when ¢ is a function of
state and current sense information only (i.e., when f; is a function of sense information
only). With proprioceptive devices, for example, the robot can encode its last action as
sensory inputs. This simply uses the robot’s hardware to transform action information
into sensory information, thereby eliminating ¢’s explicit dependence on d@(t — 1). More
generally, ¢ could include as part of its preliminary computation of S(¢) a computation of
f(S(t—1)). This will work when f is deterministic or when its randomness is reproducible.
The function ¢ actually requires @(t — 1) as an argument only when (1) the task requires
knowledge of previous actions, (2) f is truly stochastic, and (3) the robot lacks sufficient
proprioceptive devices.

2.1.3 The Learning Task

Because d(t) can be used to describe the behavior of an agent that performs a task, it can
also be used to express the desired behavior of an agent that learns to perform the task. In
this case, Equations 2.2 and 2.3 describe a set of training examples for a supervised-learning
agent. The training input to the agent at time 7 would be §(7) — and possibly d(7 — 1) —
and the target output would be a(7).

10 Chapter 2. Robotics Environments and Learning Tasks

Reinforcement Learning Tasks. A reinforcement-learning agent is somewhat more so-
phisticated than the supervised-learning agent. A teacher must be present to provide the
supervised-learning agent with correct responses for each situation. In reinforcement learn-
ing, the correct action is never given. Instead, the agent must learn for itself which actions
are correct in each situation.

To make learning possible without a teacher, a reinforcement environment supplies the
agent with a “reinforcement signal.” The agent monitors changes in the reinforcement signal
to decide which actions are best, where the best actions maximize the agent’s expected
reinforcement over time. More formally, the reinforcement signal is some function of the
previous state of the environment and the most recent action taken:

r(t) = R(E(t —1),@(t — 1)), (2.6)

where E(t) was given in Equation 2.5. The correct action to take in a state is any action
that maximizes the expected future reinforcement:

a(t) = argimax E[i Yr(t+ 1), (2.7)

T=1

where argmax,(f(a)) returns the argument, a, that maximizes f(a); and v is a “discount
factor” — a value often chosen less than 1.0 to avoid infinite sums. The correct action
at time ¢ is any of the possible actions that maximizes the expected sum of the (possibly
discounted) future reward signals — assuming every action taken at every step obeys this
rule.

Because reinforcement-learning environments specify the agent’s reinforcements, they
also implicitly define the agent’s task (to perform the behavior that maximizes expected
reinforcement). As a result, there are two separate meanings of the word “task” in reinforce-
ment learning: the behavior the agent should ultimately perform, and the task of learning
to perform this behavior. In the remainder of this dissertation the word “task” is intended
to denote the latter, the task of learning to perform the appropriate behavior.

Much has been written about reinforcement-learning in both deterministic and stochastic
environments [9, 10, 11, 111, 120]. Some of this work will be described in detail in Chapter 5.

2.1.4 Task Environments

In the reinforcement-learning literature, task environments are frequently quite simple
and are typically not intended to replicate actual environments. Instead, they are used
to test out aspects of intelligence a robot might require in a real environment. The tasks
explored are therefore often “toy” domains (for example, the maze tasks of Sutton [105]).
Yet they are subtly different from most “toy” domains of traditional Artificial Intelligence
(e.g., the blocks world of Winograd [7, §F4]). One way of describing this difference is
that in the latter case, algorithms are often devised to solve problems that embody some
important aspect of reality, whereas in the former case, problems are usually devised to test
algorithms that embody some important aspect of intelligence. The underlying motivation
for traditional Al systems is also often to emulate some important aspect of intelligence,
but not necessarily in a way that can be tested in arbitrary situations. The algorithms
investigated here, however, are not designed for the peculiarities of any specific task. Indeed,

2.2. Environmental Complexities 11

the algorithms can be completely separated from the task and quite nicely plugged into
any other task that can be expressed in the form of Equations 2.2-2.6. These equations
describe an interface protocol between robots and environments (i.e., between learning
agents and the tasks they are to learn). Any agent that follows this protocol may be tested
in any environment that also follows it. The interface is very general and applies to any
reinforcement-learning task.?

Presumably, the agent implements some quality of intelligence. This quality can be
tested in different situations by placing the agent in different kinds of environments. The
agent’s performance might vary greatly across these different environments, and may, in
fact, be completely miserable in some. Nevertheless, the agent need not be designed for
a certain task or even for a certain kind of environment in order to be tested on it. As a
result, the simplicity of many environments used in the reinforcement-learning literature is
designed intentionally so as to focus on a particular contribution of the learning algorithm
and to measure the algorithm’s performance with respect to that contribution.

2.2 Environmental Complexities

The environment can be complex in many different ways, some of which are discussed
next. It is important to note, however, that a task may be simple even though it takes place
in a complex environment. Therefore, when discussing the difficulties introduced by a com-
plex environment, the robot’s task is assumed to be a worst-case task: i.e., it is sufficiently
demanding that the robot must resolve the most complex problems the environment can
introduce in order to choose the correct actions.

2.2.1 Varieties of Senses and Actions

The range of possible senses and actions allowed by Equations 2.2 and 2.3 is enormous,
from the simplest to the most advanced, to the futuristic. In the simplest reinforcement-
learning environments, sense vectors explicitly represent the robot’s exact location, and
action vectors produce only a simple set of actions. Sense and action vectors are generally
binary in these cases and are encoded locally. That is, in each vector, exactly one item
(corresponding to the current state) has a value of 1, and all others have a value of 0. These
tasks are helpful for illuminating certain reinforcement-learning algorithms that enlist the
mathematics of dynamic programming, as will be described in Section 5.3. Agents only need
to learn the optimal mapping from the immediate sensory input (which unambiguously
specifies the environmental state) to the best action(s) for that state. (This mapping is
known as the optimal policy.) Since these vectors are orthogonal, they are conveniently
amenable to learning with even the simplest neural networks.

There are many examples of more complicated environments, however, that use dis-
tributed senses [3, 54]. These environments are necessary for testing algorithms that can
learn complicated policies (i.e., complicated sense—action mappings). Even more difficult
(and more realistic) are environments with continuous-valued, distributed sense and action
vectors [3, 5, 72, 92, 107]. Tasks in these environments can be difficult not only because
of the possible complexity of the policies they might require, but also because the action
space is infinite, meaning it is no longer possible to try all actions exhaustively.

2An example system showing the generality of this modularity is described in Section 7.1.

12 Chapter 2. Robotics Environments and Learning Tasks

2.2.2 Markov Environments

Though mappings from the current sense vector to the correct action vector can be arbi-
trarily complex, there are also other dimensions of difficulty in robotics tasks. For example,
there is the problem of sense-disambiguation. An algorithm that can learn perfectly an
arbitrary mapping from the current sense vector to any action vector is not a guarantee of
success, since the best action might also depend on previous sensory inputs.

The simplest environments used to study reinforcement learning are Markovian and do
not have the problem of ambiguous sensory information. A Markov environment is one in
which the sequence of states that the agent visits are Markov chains. Briefly, a Markov
chain can be described as a sequence of discrete random variables &(7) drawn from a set S
representing the state space, and

P(z(t) = s|2(0),...,2(t — 1)) = P(x(t) = s |z(t — 1))

where t > 1 and s € S (see Grimmett and Stirzacker [37, Ch. 6], and Papoulis [70, §15-3]).
The probability of encountering a given state at one point in the chain depends only upon
the last state encountered; the sequences are history independent. Knowledge of previous
items in the chain introduces no further information regarding the probability of the next
state.

A Markov environment® could therefore be described as an environment in which

PIE() = s[(E(0),d(0)), ..., (E(t = 1),a(t = 1))] = PIE(t) = s[(E(t = 1),a(t = 1))],

where, as before, d(7) is the action the robot takes at time 7, and E(7) is the state of the
environment at time 7. Assuming a unique sensory input for each environmental state, the
task described by a Markov environment in terms of Equation 2.1 is therefore

a(t) = f(5(t)), (2.8)

since the correctness of the action chosen at time ¢ can be determined by the sensory input
at time ¢, inasmuch as it can be determined at all.

2.2.3 Markov-t£ Environments

One might at first wonder whether the characteristics of a Markov environment are
shared by an environment in which the probabilities of the next state depend not just upon
the current state and action, but, say, upon the past k state/action pairs. A chain of such
state sequences could be described more formally as

P(z(t) = s|2(0),...,xt — 1)) = P(z(t) = s|a(t —k),...,x{t—1)). (2.9)

A Markov-k sequence such as this, however, is easily converted to a k-dimensional Markov-1
sequence [70, p. 530] and therefore has the properties of a Markov-1 sequence. (The term
non-Markovian, however, generally means “not Markov-1.") A robot that is to negotiate
a Markov-k environment will need to store the past k sensory vectors in order to take the

3Markov environments are also known as Markov Decision Tasks (MDT’s) and Markov Decision Process

(MDP’s).

2.2. Environmental Complexities 13

correct actions. Provided that knowledge of k is known for a given environment, the task
of the learning agent is identical in the Markov-k and the Markov-1 environments. The
learning task is thus described as:

Q)= f(5(t—k+1),5t—k+2),...,51).

However, if k£ is not known, then the robot must learn this as well. Methods for dealing
with this problem are described in Section 4.2.

2.2.4 Finite State Environments

In the real world, contingencies can span unlimited periods of time. If the robot breaks
a vase at one time step, the vase will still be broken forever after that. If a robot that
remembers only its past k senses breaks a vase and then leaves the room for k£ + 1 time
steps, upon its return, it cannot accurately predict its perception of the broken vase. Clearly,
the robot needs memory that will store information for arbitrary periods of time, and it
must be able to use that memory to generate its actions.

A more general task than that of learning a Markov-k environment is that of learning
a finite-state environment. As with a Markov-k environment, a finite-state environment
requires only a fixed amount of information in order to choose the next action. However,
in the case of the finite-state environment, more may be required than simply a fixed-
sized history of the past several sensory inputs. Instead, some information may be needed
from the arbitrarily distant past. These environments correspond to Finite State Automata
(FSA).*

In finite-state environments the current state can be determined if the starting state
is known and a record is kept of all previous actions (state transitions in the FSA). If all
loops are always removed from the record (where a loop is a sequence of transitions that
lead from some state back to itself), then the record will never need to be longer than the
number of unique states in the environment. When the loops are removed, the record may
contain information from arbitrarily long ago, unlike in the Markov-k environment where a
record of just the latest k inputs is sufficient for determining the current state.

2.2.5 Still More Complex Environments

Keeping a record to determine the current state only works for deterministic finite-state
environments, in which the transition taken from a state must lead to a single, specific
next state. A stochastic finite-state environment, however, does not obey this property.
The stochastic finite-state environment corresponds to the non-deterministic finite-state
automata in which a transition taken from a state can result in arrival at different states
in different instances. These environments are a superset of deterministic finite-state en-
vironments. They are also very difficult to negotiate, since one can always determine the
current state of a finite-state environment given a complete model of the environment and
a record of previous state transitions, but this is not the case with stochastic finite-state
environments.

4The states of a finite-state environment correspond to the states of the FSA. The sensory information
emitted by the finite-state environment corresponds to the “outputs” of states in the FSA. The actions
taken by the robot correspond to the transitions of the FSA.

14 Chapter 2. Robotics Environments and Learning Tasks

Even more difficult than stochastic finite-state environments are hidden Markov envi-
ronments, in which an underlying stochastic finite-state automaton (i.e., a Markov chain)
is not observable directly but can only be observed through a stochastic process that gener-
ates the observable phenomena from the actual states [78]. Even if the robot has a correct
model of the underlying Markov environment and perceptual mappings, it still can only
estimate the probability that it occupies a particular state; it rarely knows precisely where
it is, maintaining at best a fuzzy concept of its state.

As difficult as hidden Markov environments might be, further difficulties can be added.
As with finite-state and stochastic finite-state environments, the less knowledge the robot
has, the more difficult tasks in that environment may be. If the robot has no knowledge
of the observation probabilities, the transition probabilities, or the number of states in the
environment, these must also be learned, resulting in the possibility for some excruciatingly
difficult tasks. Nevertheless, even more difficult environments could be created if the un-
derlying model were not finite state. Push-down environments, for example, could require
arbitrary amounts of information to be stored to solve a given task. These then might be
either deterministic or stochastic, etc.

2.2.6 The Effect of Future Activity

Besides the complexities just discussed, there is the issue of reinforcement, which in-
troduces the dimension of future activity in choosing correct actions. These aspects of
complexity have also been discussed by Littman [58], building on the work of Wilson [125].
Littman describes two dimensions: (1) the number of future steps explicitly or implicitly
considered before taking an action (which he labeled 3), and (2) the amount of history
information needed to take the correct action (which he labeled).

The most interesting values of § are f = 0 and # > 0. In the former case, the only
reinforcement of interest is that received immediately upon taking the next action. In the
latter case, the agent must choose actions now in order to achieve reinforcements in the
(possibly distant) future. Besides this major distinction, it is also of some value to charac-
terize specific tasks by the size of 3 (i.e., the maximum distance between a reinforcement
and a state whose best action is affected by that reinforcement). Clearly, the difficulty of
the task increases with .

Littman assumed a finite-state environment and therefore assumed a finite number of
bits, h, could be used to store all the history information needed to achieve maximum
reward,? since only a finite number of labels are needed to uniquely encode all possible
states. But this is not the case in environments that are not finite state, such as push-
down environments and most real-world tasks. Real-world events are only reproducible in
contrived situations, whereas finite-state environments do not change from one iteration to
the next, and events are reproducible: in a given state, the same action will result in the
same next states with the same probabilities. In non finite-state environments, instead of
states, there are regularities: situations that are similar to previous situations in certain
ways.

In non-finite-state environments, one can encounter interesting relationships between
h and reinforcement: the maximum achievable reward might be related to the amount

SMaximum reward is defined in terms of average reward per time step.

2.3. Dimensions of Difficulty

15

Dimensions of Complexity Extreme values

1 | Sense/Action Representation Local vs. Distributed
2 | Individual Sense/Action Values Binary vs. Continuous
3 | Sense—Action Mapping Orthogonal, Linearly-separable, ...
4 | Sense—State Mapping One-one vs. Many-many
5 | State—Action Mapping One-one vs. Many-many
6 | Next State Function Deterministic vs. Stochastic

i.e., (state, action)—state Many-one vs. many-many
7 | Underlying Model Markov, F.S.A., P.D.A., ...
8 | History Information Needed 0...00
9 | Duration History Must Be Kept Fixed vs. Infinite
10 | State/Action—Reinforcement Mapping | Many-one vs. Many-many
11 | Planning Steps for Reinforcement 0...00

Table 2.1: These eleven dimensions of complexity can be used to construct tasks of various
kinds of difficulty. The middle column gives the name of the dimension of complexity. The
right-hand column gives the extreme cases (when possible) from simplest to most difficult
for that dimension. It is conceivable that a particular task may be extremely difficult in
one dimension while being trivial in others.

of information the robot can store. The larger the robot’s h, the better it becomes at
achieving its reward. In these frequent real-world situations (say, taking an exam), reward
is achievable with a small &, but is greater with a larger h. Similarly, reinforcement may
also be related to any of the other dimensions of difficulty described above.

2.3 Dimensions of Difficulty

The result of the preceding analysis is to demonstrate that there are many different
dimensions of complexity present in the robotics tasks of the form given in Equations 2.2—
2.6. Some of these dimensions, given in Table 2.1, are as follows. (1) Sense and action vectors
can be distributed or encoded locally, and (2) they can have binary, discrete, or continuous
values. (3) The mapping from senses to actions may be of any complexity. (4) Senses may
unambiguously represent a state or can be highly ambiguous. (5) In the simplest case,
there might be a unique action for each state, or in the most complicated case, there are
multiple best actions for each state where some states have the same best actions. (6) An
action in a state may or may not completely determine the next state. (7) The environment
may be a Markov, finite-state, or push-down environment, or something still more difficult.
(8) In order to choose the best action, none, some, or all previous sense information may be
required. (9) The length of time any particular piece of history information is needed might
be fixed (as in Markov-k environments) or arbitrarily long, as in finite-state environments.
(10) An action in a state may or may not completely determine the reinforcement to be
received. (11) The best action might depend on the current reinforcement alone, or it may
depend on future reinforcements as well (Littman’s 4 dimension).

As noted earlier, the complexity of the environment is determined by the most difficult
tasks that can be designed for the environment. This in turn implies a required minimal

16 Chapter 2. Robotics Environments and Learning Tasks

degree of sophistication on the part of the agent that performs the task. (If a simple
agent can perform the task, then it’s a simple task.) In general, the greater the skills of
the agent along the above dimensions, the more successful it will be in achieving reward
in environments that contain complexities across these dimensions. An agent capable of
achieving reward in such an environment may achieve greater rewards if its abilities across
the dimensions are more acute. If there is no maximum achievable reinforcement, then
continual improvement leads indefinitely toward greater average reward.

Modeling versus Control. A word should be said about the distinction between modeling
the environment and controlling an agent within it. Many systems, some of which will
be described in Sections 5.3 and 5.4, separate these two aspects of learning. Modeling
the environment consists of predicting what will happen next if a certain action is taken
(including taking no action). The difficulty of the modeling task depends upon dimensions
1,2, 4,6, 7, 8 9, and 10. The control task, on the other hand, is the task of deciding
which action is best. The difficulty of this task depends upon dimensions 3, 5, 6, and 11.
It is convenient to separate control from modeling for several reasons. First, if a controller
has a perfect model, it can choose optimal actions by using the model to search the action
space [108]. Second, once a model of an environment has been learned, it can be used
by many different controllers. Third, the controller may assume as part of its strategy the
burden of improving the predictive power of the model by exploring parts of the environment
in which the model performs poorly [64, 71, 94, 107]. Finally, learning in both the model and
the controller can occur independently but simultaneously, such that incremental advances
in the model can increase the efficacy of the controller and vice-versa.

Since different kinds of learning might be required in the modeling and control tasks,
certain learning strategies might be more useful in one than in the other. In much of the
research on reinforcement learning, some form of neural network is used for one or both
tasks. Part of this is due to the generality of networks and their capabilities of learning
across so many of the dimensions in Table 2.1, and part of it is due to the way in which
search can be done in neural networks by gradient descent. The next chapter is therefore
devoted to a description of neural-network learning.

2.4 Conclusions

In the chapters that follow, different methods will be discussed for addressing the dimen-
sions just described. No method (including that proposed in this dissertation) addresses
all dimensions perfectly. For continual learning, one would like an algorithm whose poten-
tial learning ability is as broad as possible across all dimensions, but which can begin by
learning simple tasks and steadily increase its abilities. Think of Table 2.1 as a wish-list
that should eventually be addressed by a single learning method. In this dissertation, I
discuss a method that does in fact do continual learning, but at the cost of limiting the
agent in terms of the complexities of the tasks that it can learn. In particular, CHILD, the
agent I will describe beginning in Chapter 6 is limited to learning Markov-£ environments.
Improvements discussed in the future work section (Section 8.4) attempt to broaden these
limitations.

3

Neural-Network Learning

“Neural Network” is a broad term covering a large interdisciplinary field. In this chapter
I intend to describe only a large enough part so that the dissertation can be understood.
I will first discuss simple feed-forward systems and some of their limitations. Then I will
present a few constructive algorithms, which build networks as they learn. Finally, I will
offer a brief discussion of higher-order networks.

3.1 Supervised Mappings

In the previous chapter I discussed the importance in a robotics environment of learning
mappings: mappings from senses to states, states to senses, states to actions, etc. An
excellent way to encode and to learn these mappings is with a neural network. Standard
feed-forward neural networks are capable of representing (if not learning) any computable
function mapping [40]. They are not limited to binary- or even discrete-valued inputs or
outputs, or to locally encoded pattern representations. This greatly reduces the amount of
research effort needed to attack the dimensions of difficulty listed in Table 2.1.

The task faced by neural networks is that of learning supervised mappings: given a
training set of input vectors and associated target vectors, learn a rule that captures the
underlying functional relationship from input vectors to target vectors. That is, each target
vector, fp, is a function, m, of the input vector,]_;9:

—

T, = m(]p)-

The task of the network is to learn the function m. This can be achieved by finding
regularities in the input patterns that correspond to regularities in the target patterns. The
network has at its disposal a set of parameters (weights) whose values can be changed to
modify the function m’ computed by the network. The parameters are then modified until
m’ closely resembles m, as measured by its responses to the input patterns of the training
set. The network’s task is not just to store the training patterns for later retrieval, it is to
learn the function m. Learning the function allows the network to generalize what it has
learned to unseen inputs, and to ignore noisy training patterns (input vectors with incorrect
targets).

In robotic’s tasks, a neural network could be used, for example, to learn the function f
in Equation 2.8, where it would take as input the current sense vector and have as a target
the desired action vector. This would be effective in Markov-1 environments.

By now, the mechanics of simple feed-forward neural networks and their gradient-descent
learning algorithms are quite well known — but a brief description introducing terms and
standardizing notation can’t hurt. To learn a mapping from a vector of real-valued inputs
to a vector of real-valued outputs, each element in the input vector is assigned to a unit (or
neuron) in the input layer of the network. Each element of the output vector is assigned to

18 Chapter 3. Neural-Network Learning

a unit in the output layer of the network. Typically there is one other layer of units called
the hidden layer, though there may be any number of hidden layers (including zero), and
each may have any number of units. In the typical single hidden layer scenario, each input
unit is connected to all the hidden units via weighted connections, where the weights are
adjusted by the learning algorithm. Each hidden unit is in turn connected to all the output
units via a different set of connections. The values of the hidden units are computed as:

H' = f(B' + Zwﬁﬁ), (3.1)

where H® is the i** hidden unit, B® is a real-valued bias unit that serves as a threshold, I’
is the 7" input unit, w;; is the weight of the connection from unit j to unit 7, and f* is
an activation or transfer function (usually a sigmoid such as tanh or the logistic function,
which are monotonically increasing and have high and low asymptotes with slope zero).

The outputs are computed in a nearly identical way:

J

where O° is the i** output unit. Learning is done by comparing the output values to the
values they should have been (the targets), and using gradient descent to reduce the sum
squared difference, E:

1 : :
B= Y Y1 - O,
p 2

where T is the :*" target value and p is an index of input- and target-pattern pairs that
are used for training. The weights are the parameters that can be modified by the learning
algorithm to reduce the total error generated over all the patterns.

Back-propagation, a gradient descent algorithm, computes the contribution of every
weight to the total error: Aw;; = %. The weight is changed in the direction opposite to
that contribution: w;; « w;; — nAwij,]Where n, the learning rate, is usually a small fraction
that keeps the weight change from being too large. Gradient descent is a kind of constraint-
satisfaction technique: given one set of inputs and another set of outputs, the weights are
constrained such that they generate the appropriate output for each input. Teaching a
robot the correct action given a particular sense vector (or any of the other mapping tasks
described above) is simply a matter of presenting input patterns and target patterns to the
network time and time again until gradient descent finds weights that satisty the constraints
of the data.

I stated above that neural networks can in principle represent any function that maps
inputs to outputs; however, this applies only to networks with hidden units, and an arbi-
trarily large number of them at that. Furthermore, the hidden units must have non-linear
activation functions (Equation 3.1); otherwise the entire network is no more powerful than
a network with no hidden units, and networks with no hidden units have limited represen-
tational ability (i.e., they can only make linearly separable classifications). Nevertheless,
single-layer systems do have one advantage over networks with hidden units: if the patterns
that it must learn are linearly separable, the network can learn them very quickly using

3.2. Constructive Networks 19

gradient descent in the form of the delta rule [118], or, even more quickly using second-
derivative information (e.g., Conjugate Gradient [77, §10.6], Quickprop [26]).

On the other hand, more powerful activation functions can increase the abilities of the
network, even in the absence of hidden units. As an extreme case, an activation function
could be any Turing computable function. If the input to the function is in a form that
allows identification of the individual input values,! a single node can theoretically make
any classification.

Less extreme cases are higher-order neurons (also called sigma-pi units [88]), which use
multiplicative connections — the input is a sum over products of a single weight and any
number of input units. This is explained in more detail in Section 3.3. For now it should
only be pointed out that even units with a simple, sigmoid activation function can be very
powerful if the input is sufficiently sophisticated: units with higher-order inputs of order &
(where the sum contains products of k inputs), can solve problems of order k. A problem of
order k is one requiring a boolean computation of k variables [62]. (Classification of linearly
separable, binary input patterns is a problem of order one.) This is important because
Temporal Transition Hierarchies (to be introduced in Section 6.2) contain no hidden units,
but do have higher-order units.

3.2 Constructive Networks

A different limitation of neural networks is their fixed architecture. Many algorithms
have been proposed that, like the methods to be introduced in Chapter 6, add new units
during learning. In general, they are not intended to address continual-learning issues, but
rather to address issues of completeness, efficiency, and generalization. If a problem is given
to a specific multi-layer network, the network may be too small to solve the problem (i.e.,
to learn the mapping from inputs to outputs), thus requiring more units before the network
can map the entire training set completely. On the other hand, large networks are capable
of learning simple mappings but are inefficient, and their excess parameters usually result in
poor generalization. In these cases a small network would be more appropriate. To address
these issues, many constructive neural networks have been devised that increase the size of
the network during the course of learning. I will mention a few.

One of the first network-modifying systems, the Upstart algorithm, was proposed by
Frean [31] who suggested adding new hidden units during the course of learning. The
network begins as a single perceptron that attempts to learn the complete mapping, which
must be a binary classification. Eventually, the learning rule (the “pocket algorithm” [32])
will find the best mapping representable by a single perceptron. At that point there may

!This could be done by assigning incoming weights such that the sum in Equations 3.1 and 3.2 can be
separated into the original components. For example, if the input values are binary, then weights with
n

values 2/ (where j is the index of the input unit) will generate a sum: Z?j I’ Since each IV value will

J
take exactly one bit, the value of I/ can be retrieved as the floor of the sum divided by 2/ modulo 2, i.e.

Zn: 29

Il = floor(—L5—) mod 2.
Alternatively, the notion of an “activation function applied to the sum of the weighted input” can simply

be replaced by any function of n parameters, where n is the number of inputs into the neuron.

20 Chapter 3. Neural-Network Learning

remain some misclassified patterns. These patterns are broken into two groups, those that
were classified incorrectly by the parent perceptron as “on” (belonging to the category)
or “off” (not belonging to the category). These groups are called the wrongly-on and
wrongly-off groups. Two new perceptrons are then created, one to learn the wrongly-on
group, and one to learn the wrongly-off group. Strong connection weights are then built
from these daughter units to the parent to override the parent’s misclassification on these
patterns. The network’s performance will always improve whenever new daughter units
are added, since the daughters can always improve the output of the parent (i.e., they can
simply memorize a single pattern from their training sets and ignore all others, reducing
the parent’s misclassifications by two — one for each daughter). Eventually the number of
classification errors will be brought to zero, resulting in complete learning of the training
set.

GAL (for “Grow and Learn” [2]) is a different constructive technique. This method is
similar to ART [38] in that it creates each new hidden node to match a specific training
pattern. When a pattern is given to the system, each hidden unit is activated in proportion
to its Euclidean distance from the pattern that it was created to match. The most highly
activated unit “wins” and activates the output units to which it has non-zero connections.
When an input pattern activates an output unit that is not in the target pattern, a new
unit is then created to match that pattern. The output connections of a new unit are set
to 1.0 for all output units that are “on” in the current target pattern, and are set to 0.0 for
all output units that are “off” in the current target pattern. GAL also allows connection
weights to be modified in a manner similar to that of radial-basis-function networks [63].
When a pattern activates the output units correctly, the hidden unit that “won” is modified
so that it will become even more strongly activated the next time this pattern is presented.
(This is done by modifying the hidden unit so that the pattern it best responds to is closer
in Euclidean distance to the current pattern.) GAL is extremely fast and generally learns a
training set in a few passes. Even the two-spiral problem, a well-known and very demanding
benchmark only requires two passes.

Both the Upstart algorithm and GAL will learn the complete training set, but general-
ization is to some degree sacrificed, due to the ease with which new units can be created
solely for purposes of memorizing a single pattern. Another drawback of GAL and also of
the Frean network is that they only work for binary classifications. If the output is contin-
uous, or even if it is discrete but not binary, then the algorithm fails. A related approach
that does work in the case of non-binary outputs is the Cascade Correlation algorithm [28].
In this algorithm, training is done for just the output units at first, until the network error
is no longer decreasing quickly. (The training algorithm is Quickprop, which does gradient
descent using second-derivative information.) Once this apparent local minimum has been
reached, a pool of candidate units is trained to predict the error of the output units. Even-
tually, training for these candidates also reaches a minimum. At that point, the candidate
best at predicting the error is incorporated into the network as a hidden unit and its input
weights are frozen. The output units are then re-trained using this new hidden unit to help
their prediction. After this has been done, a new pool of candidates are trained, this time
taking their input not just from the input units but from the hidden unit(s) as well. This
process continues until the error of the network is low enough that the (human) trainer is

3.3. Higher-Order Systems 21

satisfied. Because the new units are trained to predict the actual real-valued error of the
output units, the algorithm does not require binary targets.

The Upstart algorithm, GAL, and Cascade Correlation, are somewhat inefficient: they
create new units with random initial weights and simply allow those units to learn appro-
priate values to reduce error. A different approach introduced by Wynn-Jones [127] is to
configure new units to solve specific problems that the network has encountered while try-
ing to learn the mapping. Wynn-Jones’ “Node Splitting” algorithm focuses its attention on
those units whose weights during training are being pulled in conflicting directions. That
is, the learning algorithm sometimes increases and sometimes decreases the weights: some
weights are changed strongly in one direction for some patterns and strongly in the opposite
direction for others (while other input weights to the same neuron are perhaps only mod-
ified slightly). Node splitting monitors the changes that the learning algorithm calculates
for the weights and determines the overall direction of the conflict in n dimensions, where n
is the fan-in of (i.e, the number of inputs to) the neuron whose weights are in conflict. Two
new units are then created to replace the old one. Each new unit’s input weights are then
assigned to one of the two regions in weight space where the weights of the original unit
were being pulled. Training then continues. If the two units were properly placed, their
introduction causes very little initial disturbance to the network, and the network continues
to train. Of course, it’s still possible that these nodes may need to be split as well. As will
be seen in Section 6.2.4, Temporal Transition Hierarchies use a similar method for deciding
when to create new units, though only in one dimension rather than in n.

3.3 Higher-Order Systems

Another way of increasing the power of a network, also used by Temporal Transition
Hierarchies? as mentioned briefly above, is the use of higher-order neurons. A higher-order
neuron has incoming connections that are multiplicative instead of simply additive. That
is, the input to a traditional hidden or output unit is:

inf=8B"+ Z 'wijx],
J

where in‘ is the part in parentheses in Equations 3.1 and 3.2, and 7 is the value of input
or hidden neuron j. On the other hand, the input to a second-order unit is the sum of
second-order products (i.e., each term is the product of a weight and the value of two
units):

ini = BZ + E Z wz-]-k:r:jxk. (33)
j ok
The general case is the sigma-pi unit [88], where the products may be of any order:

ini = Z'wij H xk.
J

keS;

2Transition hierarchies also have a temporal component not present in the feed-forward networks con-
sidered in this chapter. Neural networks that can solve temporal tasks are presented in Chapter 4.

22 Chapter 3. Neural-Network Learning

For each weight, w;;, there is an associated set of units, S;, by which the weight is multiplied.
The maximum number of weights into unit z is equal to the size of the power set of units
that can feed into ¢, since this represents one weight for every possible product.

If the input patterns are binary (even if the output is continuous), sigma-pi units can
learn to compute any arbitrary mapping [29, 30]. It is appealing to use a single unit
instead of an entire network of units, but a fully powerful sigma-pi unit would have 2"
terms if there are n units in the input vector. Two notable solutions have emerged to
the exponential number-of-terms problem. The first solution is the reduction of order in
the sigma-pi units. By limiting them to second-order terms only, functions impossible to
compute with traditional units can be calculated while requiring only n? connection weights.
This approach has been followed by Giles and Maxwell [35] and Pollack [74], described next.
The second solution is the careful selection of terms that generate a neuron’s input, described
in Section 3.3.2.

3.3.1 Second-Order Networks

Giles and Maxwell’s network was composed of zeroth-, first-, and second-order units
expressed as follows:

O = flwi + Y w7+ > winl IF). (3.4)
J J ok

The w; weight is the same as a bias unit since it is not a coefficient of an input variable;
it is the zeroth-order term. The w;; weights are the traditional first-order weights, and
the w;;, weights are the second-order weights as in Equation 3.3.> Giles and Maxwell
discussed a variety of learning rules for this network and observed a number of its interesting
characteristics, for example, its generalization abilities and its invariance under certain
groups of transformations.

Pollack’s system uses back-propagation to calculate weight changes for a second-order
network. His network splits the input into two parts, the standard input units, I*, 12, ..., I™
and the context units, C',C?, ..., C™. The context units are used to calculate the weights
for a second network, i.e., the weights of the second network are computed as linear sums
of the € units:

Wi; = Bij -+ Zwi]-ka, (35)
k

where B;; is a bias unit.

These computed weights, w;;, are then used as the weights of the second network (as
described by Equations 3.1 and 3.2). The input to this second-order network is the vector
of I units. Therefore, inputs to the hidden units of the second network look like this:

H' = f(BZ-—l—ZwZ-]-]j) (3.6)

J

= f(Bi+) (Bi+ wiirC*) 1) (3.7)
= f(Bi+ 3 Byll + 32> wiCl), (3.8)

3The part of Equation 3.4 in parentheses will result from Equation 3.3 by removing the bias unit and
instead adding an extra input unit whose value is always 1.

3.4. Conclusions 23

and these are, of course, the same second-order sigma-pi units of Equation 3.4, except that
not all factors of input units are represented (i.e., there are no C’C* or I’I* products).
Pollack observed enormous speedups over standard first-order neural networks in terms of
the number of epochs seen. The cost of using a second-order network, however, is that the
space and time complexities grow with n® instead of the n* of standard networks (where n
is the number of units).

3.3.2 Partially Connected Higher-Order Networks

The second suggested solution to the number-of-terms problem with sigma-pi units is
to carefully select the terms that generate a neuron’s input. (This method is closest to
the Temporal Transition Hierarchies method, which dynamically adds higher-order units
one at a time.) This solution was suggested by Fahner and Eckmiller [30], who discussed
two approaches toward this end (both called “parsiHON”, for “parsimonious Higher-Order
Neuron”). The first approach is to build a sigma-pi unit with all possible terms, and then to
eliminate unnecessary ones. Though successful on small problems, this method still requires
exponential space and time for the initial setup.

Fahner and Eckmiller’s second method performs a stochastic search to find good sets of
terms to include in the input equation. With this method, the architecture size (number of
weights) is constant — fixed before training begins. A random set of terms is chosen and
gradient descent is done to train the weights. (Training can be done quickly, since there are
no hidden units.) After training, terms are removed according to the size of their weights:
the larger the weight, the less likely it will be removed. This method is appropriate for much
larger problem spaces than the first method and is similar to genetic algorithms [39] (which
were incidentally suggested by Giles and Maxwell as a method of finding appropriate sigma-
pi terms [35]). It is unclear how this method will scale, since the fraction of all possible
terms that can actually be tested in a reasonable period of time shrinks exponentially with
the size of the input space.

Both parsiHON methods resulted in excellent generalization. GAL, for example, which
solved the two-spiral problem so quickly (above), generalized very poorly because it simply
memorized the training set. ParsiHON, in contrast, captures much higher-order information
and learned the spiral pattern (which extends well beyond the area covered by the training
set).

Another technique that choses the number of terms during training and also seems
to demonstrate quite good generalization is the tree-structured method introduced by
Sanger [89]. This constructive approach creates new higher-order units during training
which are combined to form basis functions over the input space. Though developed inde-
pendently, Sanger’s criteria for the construction of new units is much like that of Wynn-
Jones (cf. Section 3.2) and of Temporal Transition Hierarchies (Section 6.2.4). In fact, of all
methods described here, Sanger’s is the most similar to Temporal Transition Hierarchies,
though it is a feed-forward network and has no temporal component.

3.4 Conclusions

The approaches discussed above are effective measures for overcoming problems faced by
simple feed-forward neural networks. Constructive approaches are useful when the optimal

24 Chapter 3. Neural-Network Learning

network size is not known before training begins. Higher-order networks, on the other hand,
learn in fewer training passes than standard first-order networks, and they can demonstrate
improved generalization — but the cost is generally worse scaling behavior.

Table 3.1 summarizes the algorithms discussed in this chapter in terms of the dimensions
of difficulty listed in Table 2.1 together with four characteristics especially descriptive of
neural-network learning algorithms.

Training Algorithm Dg?g?gu?tn of @ &
y S84 4
S D@
112(3] 4 7 189 &L
BP DICIVIM1|M-1 |[O|F]V|x]|x]|Xx
Upstart L|B|Vv|MA|M-1 |O|F|x|V|x]|x
GAL DIB|Vv|MI1|M-1 |[O|F|V]|V]|x]|Xx
Cascade Correlation DIC|Vv|M/1|M-1 |[O|F|x|V]|x]|Xx
2nd order Nets D|C|Vv|IMII|M-1 [O|F|V|x]|V]x
parsHON LIB|+| M1 |M-1 |[0O|F|[x|[V][V]|V
Sanger’s Network D/[C|VIMI1|M-1 [O|F|V|VI|[V]V

Table 3.1: Properties of the neural networks described in this chapter. The first group
of columns corresponds to dimensions listed in Table 2.1, translating “sense” to “input”,
and “action” to “output”. Since that table described environments and not algorithms,
not all dimensions are appropriate. Dimensions 5, 6, 10, and 11 are meaningless for feed-
forward neural networks. For dimension (1), “L” indicates that the algorithm requires
locally encoded inputs or outputs, and “D” means that both inputs and outputs may
have distributed representations. (2) “B” indicates that either the inputs or outputs must
be binary, whereas “C” means that both inputs and outputs can have continuous values.
(3) A check mark “\/” indicates that the algorithm can learn any mapping from inputs to
outputs (possibly by memorization). A plus sign “4” indicates that the algorithm can learn
complex functions from inputs to outputs with particularly good generalization. (4) Since
feed-forward networks have no state, all algorithms are “M/1” (many-one), meaning they
can map many inputs to a single output pattern, but have no way to otherwise disambiguate
the input information. More complex mappings require temporally sensitive networks.
(7) “M-17 shows that the most complex underlying model that these algorithms can learn
is Markov-1, since none of the algorithms retain information from previous inputs. (8) No
history information is kept. (9) “F” indicates a fixed history (fixed at zero in these cases).
The second group of columns is a set of properties descriptive of neural networks, indicating
whether or not they can learn incrementally, build new units during training, have second-
order weights, or have higher-order weights other than second-order. A check mark “y/”
indicates that the property describes the algorithm on that row, and “x” means that it does
not.

4

Solving Temporal Problems with Neural Networks

Standard feed-forward neural networks are insufficient for solving many problems, specif-
ically those with a temporal component. A feed-forward neural network implements a map-
ping from input units to output units, as was described in Chapter 3. In many robotics
tasks, however, the robot’s sensory input alone is insufficient to determine the correct action.
There may be locations in the environment where the sensory information is ambiguous (a
condition termed “perceptual aliasing” by Whitehead and Ballard [117], also known as the
“hidden state” problem). If the environment is more complex than Markov-1, then its state,
E(t) in Equation 2.5, is “hidden,” since it cannot necessarily be deduced from the current
sensory information alone. (Dimensions 4-10 of Table 2.1 are related to the environment’s
state). Those environments with a non-zero, finite number of hidden states are sometimes
called Partially Observable Markov Decision Processes (POMDP’s). A sufficiently demand-
ing task in such environments requires the current state to be disambiguated using previous
sensory information.

Whitehead and Ballard demonstrate how a robot can modify its own perceptual input
by moving its sensors to complement its previous perceptual input with new information
in order to determine its actual state. In many cases Whitehead and Ballard’s technique
is sufficient; however, if the robot is unable to alter its perceptions, or if by altering its
perceptions it is still unable to disambiguate its sensory information, it may need to rely
upon sensory information experienced earlier, much as we may navigate in a familiar house
when the lights are out, or in an unfamiliar environment by remembering recent landmarks.

Another approach is that of Kuipers and Byun [51], whose agent builds an explicit
topological map of its environment to distinguish among ambiguous perceptions. When the
robot is in a position, say position A, and its perception there is identical to a perception
recorded in, say, position B, the agent performs a rehearsal procedure that attempts to
discover whether A is in fact the same position in the environment as B. This procedure
visits neighboring locations in the topological map to test whether they match the neighbors
of position B. If so, they are assumed to be the same. If not, A is incorporated as a new
position in the map. As long as there is at least a single position in the environment where
perceptual data is unambiguous, the agent can always theoretically determine when two
positions are identical. This approach is promising but requires prior knowledge of the
underlying sensorimotor apparatus, though Pierce [73] is making progress in removing this
requirement.

There are also other cases when the robot might require more information than its
current sensory inputs. Even if there are no two locations in the environment with identical
sensory values, the robot’s task may generate ambiguities. For example, the robot might
be given one of several commands, each of which sends it through some common territory
but toward a different goal location. While crossing the intermediate territory, the robot
must remember the command it was given at the outset.

26 Chapter 4. Solving Temporal Problems with Neural Networks

As will be shown in Chapter 6, Temporal Transition Hierarchies solve the hidden-state
problem in Markov-k environments (where k is initially unknown) by building up behaviors
that may last any arbitrary duration. The methods discussed in this chapter are other
neural-network-based solutions to the problem of ambiguous sensory data. They are dis-
cussed here to provide background for later chapters and for purposes of later comparison
with Temporal Transition Hierarchies.

4.1 Delay Lines

Hidden-state issues have been addressed with a variety techniques in the neural-network
literature. The simplest of these is the use of delay lines. With a delay-line neural-network
architecture, a window is kept of the past several sensory inputs from each sensor. If, as in
Chapter 2, the vector of sensory inputs of length n at time ¢ is 5(¢), then the jth component
of 5(¢) is s7(¢). The input to a delay-line neural network is:

St —1), s (t—7),..., 8"t —7),s°(t — T4+ 1), s (t—T+1),...,5"(1),
where 7 is constant. This can also be expressed as

St—7)odt—7+1)o...038(1),

where “0” is the concatenation operator. This architecture was used, for example, by
NetTalk [98], which learned to map text to phonemes. The “sense” vector was a single
binary-coded alphabetic character. In this system, 7 was equal to seven, so seven characters
were given to the system as input at every time step. The network learned to map the middle
character 5(t —4) to its phonemic category using the surrounding six characters as context.

A more sophisticated method for dealing with delay lines is the TDNN (Time-Delay
Neural Network) described by Waibel [110]. This network is a hierarchy of sampled input
over many time steps. The hierarchy is constructed with multiple layers of hidden units.
Each hidden layer receives input from the layers below at the current time step and at the
previous 7; time steps, where 7; can be different for each layer [. Thus, the input to layer [
can be described as:

Wzt —m)od ™ t—m+1Do...of 7t = 1) 0 Z'7H1))

where W is the weight matrix connecting layer [— 1 with layer [, and #'~1(¢) is the vector
of values produced by input or hidden layer [— 1 at time ¢.

The benefit of this kind of architecture is that information spread over many time steps
can be integrated at each level of the hierarchy, allowing the highest levels of the hierarchy
to compute functions over a large span of data. Nevertheless, the output is always a function
of a fixed number of preceding inputs. If there is vital data not visible at the highest level,
it cannot be incorporated into the output.

In robotics environments, delay lines would be useful if the current state could be disam-
biguated by knowing some fixed, finite number of previous states. For example, in Markov-k
environments (see section 2.2.3), the current state of the robot can be identified unambigu-
ously by examining the last k input vectors. Figure 4.1 is a Markov-2 environment. In this

4.2. Learning Time Delays 27

Figure 4.1: A Markov environment that requires the current and previous input to determine
the current state.

environment, there are thirteen different positions in which the robot can land, but there
are only six distinct sense vectors (labeled A-F). Yet if the robot moves from any one cell
to any adjacent cell, its position will be uniquely determined. If, for example, the robot
sees D at one time step and F at the next, it must be in cell twelve. If it were to see A
instead of £ in the second time step, it would be in position one.

If the robot lives in a Markov-k environment (and its task is sufficiently demanding),
then it must have the information from its last k sense vectors to choose the correct action
in all situations. Having less information than this at its disposal would cause ambiguities
and force errors.

4.2 Learning Time Delays

Because there are Markov-£ environments where k is initially unknown, some algorithms
have been developed that learn the amount of history information needed. As mentioned
above, one such algorithm is Temporal Transition Hierarchies, which will be described in
Section 6.2. Another is Bodenhausen and Waibel’s system, Tempo 2 [13]. In Tempo 2,
input units have time delays that can be learned as adjustable parameters. Each input
unit, in fact, has three adjustable parameters for every incoming connection: the weight,
time delay, and width of the time delay’s receptive field. The receptive field is a Gaussian-
shaped “window” in time that responds to input lines at a particular time delay in the
past.

When gradient descent is done and these parameters are modified for each connection,
the network learns to respond to events that occurred in the past and learns for itself how
far into the past it needs to look to get this information. Therefore, if a Markov-k task is
to be learned, this network can theoretically learn to span k steps to compute the proper
output. Furthermore, though initially each unit responds to each input line through a
single window, new windows can be created automatically when needed so that the units
can respond to every input line at any number of time delays.

A related architecture, designed by Day and Davenport [19], responds to discrete inter-
vals of time in the past rather than to intervals convolved with a Gaussian. Their architec-
ture allows a prespecified number of adaptable time delays to appear for any connection in
the network (not just connections to the input units). To develop their network, they also

28 Chapter 4. Solving Temporal Problems with Neural Networks

explicitly formalized the notion of time delays and produced a method for doing gradient
descent with respect to the parameters that specify the delays.

4.3 Recurrent Networks

Like Temporal Transition Hierarchies and the algorithms just mentioned, recurrent neu-
ral networks can also be used in Markov-k environments where k is not specified in advance.
The topology of a non-recurrent network is acyclic. In those “feed-forward” networks, each
unit sends information to other units from which it will never directly or indirectly receive
information. In recurrent networks, on the other hand, there are cycles. Some units send
information to other units that they either directly or indirectly receive information from
themselves. All cases to be considered here are discrete-time networks in which information
is sent over each connection exactly once per time step (i.e., each unit is updated once per
time step). The simplest recurrent networks look just like the feed-forward networks de-
scribed in Chapter 3, except that some hidden units have single, recurrent self-connections,
and there are no other recurrent connections. Examples of these networks will be described
next: First, Mozer’s Focused Back-Propagation network [65] and Bachrach’s Sticky-bit net-
work [4]; and Second, Fahlman’s RCC (Recurrent Cascade Correlation) architecture [27].
After these comes a description of fully connected recurrent networks.

4.3.1 The Focused and Sticky-bit Architectures

The focused architecture uses hidden units with adjustable connections in the hidden
layer to encode a variable decay rate. The output of each unit is described as the squashed
sum of its input plus an adjustable fraction, d of its previous value:

Hi(t) = F(1 (thwy) + dH (1~ 1), (1.1)

where H'(t) is the value of the i:th hidden unit at time ¢, and I’(#) is the value of the jth
input unit at time ¢. A unit keeps a kind of running average of its past inputs, which in
principle allows the network to make use of events that occurred in the arbitrarily distant
past. The focused network operates by keying into certain features of the input and then
remembering these features until later.

The units in Bachrach’s sticky-bits network include the d* H* term within the squashing
function.

H'(t)= f(dH (t— 1)+ > (t)wij). (4.2)
J

Bachrach also uses a sigmoidal activation function with asymptotes at —1 and +1, allowing
the H"s to “stick” at a positive or negative value when the input to the unit is strongly
positive or strongly negative respectively and d* is large. With this architecture, large input
values can cause a hidden unit to “remember” that an event has occurred in the past and
to keep that value available as processing continues until it is needed at the output. Since
it is stable in two possible states, each hidden unit can detect the presence or absence of a
single feature [4].

Learning in both networks is done by gradient descent in the error space with respect
to the modifiable parameters w;; and d* for all 7 and j. The networks are more powerful

4.3. Recurrent Networks 29

than the adaptive delay-line networks (as well as Temporal Transition Hierarchies) in that
they can in principle remember an event over an arbitrarily long time span. The amount of
information that the nets can store is only limited to the number of hidden units.

Unlike delay-line models, the Mozer and Bachrach networks do not store a history of
previous values one after the other to be used at later time steps. For example, say a
network is to be trained to simulate a queue, specifically to produce as output a copy of
the network’s input twenty steps earlier. At every step the input changes, and twenty time
steps later these changes must be reflected in the output (i.e., Output(¢) = Input(t — 20)).
Obviously, a delay-line model is ideal for this task, since it is the nature of delay lines
to reproduce a signal after a certain duration. While the focused network architecture is
theoretically capable of solving this task for arbitrary delays given discrete valued inputs,
weights of arbitrary precision, and a powerful enough transfer function (see Appendix A for
a differentiable solution), such a network is highly impractical and not possible with limited
precision hardware or with monotonic transfer functions.

4.3.2 Recurrent Cascade Correlation

The RCC (Recurrent Cascade Correlation) network resembles the sticky-bit architecture
but is a constructive network that adds units as needed just as the Cascade Correlation
architecture does in non-temporal domains (Section 3.2). The output of the RCC hidden
units is the same as in Equation 4.2, with the decayed value inside the transfer function.
That is, the network’s hidden unit’s receive input from units lower in the network at the
current time step and from themselves at the previous time step. Again, gradient descent is
performed to tune the weights and the decay parameters. However, in RCC, a pool of new
units are trained en masse to predict the output error of the network. The best one is taken
and integrated into the network; its weights are frozen; and its output is made available to
the next group of trainees to assist them in correcting the remaining error. The network
thus grows one hidden layer at a time with a single unit in each layer. The output values
from all units feed into every unit higher in the network.

RCC can learn to extract any arbitrary number of features from the input string, keeping
them for any arbitrary duration. These networks should be able to learn any Markov-k
task where k is initially unknown, since they are capable of storing an arbitrary amount of
past history information. However, there are computations these networks cannot perform.
This has been proven by Chen, et al. [15], who showed that RCC networks using sigmoid or
threshold activation functions are unable to learn certain classes of finite-state grammars.
(This is due to the fact that none of the RCC hidden units have connections downwards,
back to lower units — units closer to the inputs.) Another limitation of RCC is that it is a
“batch” learning algorithm. Training must be done on a fixed set of training patterns and

cannot be done incrementally as new data is presented. (Comparisons with RCC are shown
in Section 7.2.1.)

4.3.3 Fully Connected Recurrent Architectures

In contrast to focused and RCC networks, certain classes of fully connected recurrent
networks (networks that allow cycles in their connectivity besides just self-connections) have
been shown by Minsky [61] to be Turing equivalent. Limited versions of these networks have

30 Chapter 4. Solving Temporal Problems with Neural Networks

been devised by Jordan [43] and Elman [25]. These networks, though capable of computing
functions not computable by focused and RCC networks, nevertheless have limitations in
what they can learn, due to the fact that their learning algorithms only approximate gradient
descent. Other networks do compute the complete gradient and are capable of learning as
well as solving difficult problems. Back-Propagation Through Time and its variants [88,
115, 121] treat the temporal characteristics of sequential tasks spatially. These algorithms
create a very large virtual network by replicating the real network once for every time step
and then attaching these networks together. The outputs of the network at one time step
are fed as inputs to the network at the next time step. At some point — either at the end
of the sequence or after a certain number of time steps — forward propagation through
the chain of networks is stopped, and back-propagation through the entire virtual network
is performed. The weight changes can be applied to the weights immediately or after an
epoch of such sequences.

Back-Propagation Through Time performs exact gradient descent when the virtual net-
work spans the entire sequence. It is not an incremental learning algorithm, and infinite
sequences are therefore impossible to learn. One way to train on infinite sequences is to
back-propagate over only the past n time steps — where n is a carefully chosen integer for
the task to be learned — and to ignore all previous time steps. Williams and Peng [121]
discuss the positive and negative consequences of this approach.

A different, incremental method [85, 114, 123] calculates the complete gradient as a
function of the derivatives computed at the previous time step. This approach, termed
RTRL (Real Time Recurrent Learning) by Williams and Zipser [123], does not require the
large virtual network that grows according to the length of the sequence to be learned. No
values from previous time steps (other than the trace of derivatives) must be stored for
the computation. (Comparisons with this method are shown in sections 7.2.1 and 7.2.2.)
But RTRL requires O(n?) storage space (where n is the number of neurons), and O(n?)
computations at every time step. Other algorithms [95, 102, 121] have been proposed
that attempt to reduce the number of computations per time step to O(r®). Though the
cost of using a fully recurrent network remains high, numerous studies have demonstrated
very intelligent recurrent-network behavior learned via gradient descent [122, 123]. These
networks have been shown capable of solving very difficult temporal tasks, though generally
extremely slowly. They have also been shown to be particularly poor at learning long
temporal contingencies, i.e., long time delays. As will be seen in Section 7.2.2, Temporal
Transition Hierarchies can learn long time delays very quickly.

Multiscale Temporal Networks. To address the problem of learning long temporal con-
tingencies, Mozer [66] created a network that integrated aspects of his focused network into
a fully connected network. These networks added a special connection from each hidden
unit to itself with a built in decay rate. The decay rates were fixed before training. Mozer
found that if the decay rates were set properly, very long delays could be learned. (Compar-
isons with this method are shown in Section 7.2.2.) However, as the time delays increase,
so does the network’s sensitivity to the decay rate.

4.3. Recurrent Networks 31

4.3.4 Second-Order Recurrent Networks

Because of the weaknesses of back-propagation through time, its equivalents, and its
variants, some more powerful recurrent networks have been proposed. In particular, higher-
order recurrent networks can solve very difficult tasks while converging after fewer training
examples than some classes of standard recurrent networks [36, 60, 74]. These networks
not only have additive connections between units, but also have multiplicative connections.
Though these networks do not have a great deal in common with the methods proposed in
this dissertation, they are discussed here for completeness.

The network described by Pollack [76] is given below. There are three differences between
this network and its non-recurrent counterpart [74] described in Section 3.3. First, each
input and output value is time indexed (e.g., O'(t) is the value of output unit O* at time).
Second, the context units of the previous version are now the output units from the preceding
time step. Third, there are no hidden units. Otherwise, there is a direct correspondence
between Equations 3.5-3.8 and Equations 4.3-4.6.

'wij(t) = Zk:‘wijkOk(t—l) (43)
O'(t) = [wi()I(1)) (4.4)
= FOQ w0t = 1)) (1)) (4.5)

— f(Zk: wirOF (t — 1) (1)) (4.6)

(The fact that the non-recurrent network had explicit bias units and the above description
does not is really not a difference, since bias units can be added to the framework above by
simply clamping an input unit and a context unit to 1.0.)

Pollack was interested in the task of learning to recognize finite-state grammars. Giles,
et al. [33], and Watrous and Kuhn [113] both used Pollack’s architecture, augmenting it by
doing full gradient descent in the network’s three-dimensional weight matrix with respect
to the error generated over multiple time steps. In fact, the network used by Giles, et
al., is incremental in that it computes the derivatives of the weights as a function of the
derivatives computed during the previous time step — just as is done by RTRL for first-
order networks. These networks learned to recognize complicated grammars from small
numbers of sometimes ambiguous training sets. The training sets contained both positive
and negative examples and were ambiguous in that they sometimes suggested more than
one correct finite-state grammar. The importance of this work is in the difficulty of the
tasks that were solved. Table 4.1 lists the grammars learned.

Some of these are extremely difficult. Even the first, the simplest, cannot be learned by a
delay-line network, since the network must record whether it has seen a zero and remember
this for an arbitrary period of time.

Bachrach [5] designed a related architecture strictly for the purposes of learning finite-
state automata in a connectionist system. His architecture was modeled after the finite-
state-machine learning algorithm of Rivest and Schapire [84]. Bachrach’s network is capable
of learning some extremely difficult grammars from positive examples only. Bachrach’s
network, named SLUG, has a different weight matrix for every input unit. (Only one

32 Chapter 4. Solving Temporal Problems with Neural Networks

B
(1 0)"
no odd zero strings after odd one strings
no 000’s
pairwise, an even sum of 01’s and 10’s

number of 11’s - number of 0’s = 0 mod 3
0*1*0*1*

Table 4.1: Regular languages from Tomita [109] used by Pollack [76], Giles, et al. [33], and
Watrous and Kuhn [113] for teaching higher-order recurrent networks to recognize finite-
state grammars. Both positive and negative examples were used for training.

input unit can be active at a time.) His network allows recurrent connections, so the
hidden units can propagate their values to each other from one time step to the next
through the weight matrix selected by the input node. Gradient descent is done with a
variant of Back-Propagation Through Time: as in standard Back-Propagation Through
Time, a large virtual network is constructed (Section 4.3.3), but unlike the standard case,
the weight matrices of these networks can be different at different time steps, and weight
changes must be applied to the weight matrix for which they were computed. SLUG, it
turns out, is actually identical to Pollack’s network (and the network that Giles, et al.,
and Watrous and Kuhn have used) except with the explicit restriction that the inputs
are locally encoded (only one is on at a time), and the function f is the identity map.
(This equivalence is shown in Appendix B). Therefore, the results that Bachrach showed
for SLUG — including its relationship to the work of Rivest and Schapire [84] — apply to
recurrent second-order networks in general. In particular, Bachrach compared his system on
difficult tasks to many traditional networks, including recurrent networks that used Back-
Propagation Through Time, and he found a great improvement. The standard networks
were incapable of learning even his simplest tasks. Bachrach suggests in his thesis [,
p. 65], that one of the key advantages of his network is the multiplicative property of the
connections. The conclusion to be drawn from this is that, even though many classes of
recurrent networks can theoretically perform any computable temporal task [23, 61], higher-
order networks seem to be far superior learners of difficult finite-state grammars. Temporal
Transition Hierarchies also have higher-order connections (though they’re not recurrent).
The fast learning times that will be demonstrated in Chapter 7 are in a large part due to
these higher-order connections.

The recurrent second-order networks are very powerful, but they scale very poorly.
Those which implement incremental learning have a space complexity of O(n*) and a time
complexity of O(n®) at each step, where n is the number of units.

Constructive Fully Recurrent Networks. After describing the limitations of the RCC
network, Chen, et al. [15], went on to design a constructive network of their own. Theirs
adds units as learning progresses to a fully connected, second-order recurrent network (that
of Giles, et al. [34, 33], discussed above). Since it is fully connected, it does not suffer from
the problems faced by RCC and is theoretically Turing equivalent, though it still suffers
from the poor scaling behavior of second-order recurrent networks.

4.4. Conclusions 33

Training Algorithm Dg?ﬁ?gu?p of @
y &&AaA
Yy
1/2/3) 4 7 18|19 &L S
TDNN D|C|Vv| MM |M-k [kK|F[]V]|x]|x]Xx
Tempo 2 D/[C|Vv|MM |M-k [kH{F|V[V|x][x
Day/Davenport D/[C|Vv|MM |M-k [kH{F|V][x|x][x
Focused DIC|Vv| MM |[OFSA|k ||V |x |X]|X
RCC DIC|Vv|M/M |OFSA|[kH o| x|V |Xx]X
BPTT DIC|Vv|M/M |FSA [K|o|Xx|[x|x]X
RTRL DIC|V|MM |FSA [k |oo|V|[x|Xx]X
Multiscale DIC|Vv| MM |FSA [k |oo|V][x]|x]X
2nd order Rec.NNs DIC|+|M/M |FSA |k ||V x|V]X
ContructiveRecNNs | D[C|[+ | M/M | FSA [kH o |V |V |V | X

Table 4.2: The characteristics of the temporally sensitive networks discussed in this chap-
ter. The columns are the same as those of Table 3.1, but, since these algorithms can keep
state information, this table has some differences. Dimension (3) indicates the current-
sense—action mapping given that the previous state is known. (4) Since all of these net-
works are capable of using context to map ambiguous sensory inputs to unambiguous state
representations, all are marked “M/M” (many—many). (7) “M-k” means the algorithm can
learn Markov-k sequences; “FSA” means they can represent any FSA; and “CFSA” means
they are more powerful than Markov-k but cannot represent arbitrary FSA. (8) “k+” means
the algorithm can learn for itself the amount of data it needs. (9) “c0” denotes that state
information can be held indefinitely. All other entries are as in Table 3.1.

4.4 Conclusions

The rows of Table 4.2 list the neural-net architectures described in this chapter. The
columns list the important features of those architectures. In general, recurrent networks
and other approaches to learning temporal tasks have great limitations. Specifically, they are
either incapable of solving any but the simplest tasks, or they are dreadfully slow. Second-
order recurrent networks are capable of learning complex grammars, but by sacrificing either
speed or incremental learning. Because of their poor scaling behavior, it is unreasonable to
try using them in problems with more than just a few input and output units.

Temporal Transition Hierarchies, the solution I propose in Chapter 6 is a non-recurrent,
higher-order network that learns temporal tasks quickly and incrementally while construct-
ing new units hierarchically, but the price is its limitation to learning Markov-£ environments
where k is originally unknown.

5

Reinforcement Learning

I discussed reinforcement learning briefly in Section 2.1.3. This chapter contains a
description of the most common reinforcement techniques, which attempt to resolve the
issues surrounding dimensions 10 and 11 in Table 2.1. It begins with reviews of the AHC
(adaptive heuristic critic) [103, 106], and Q-learning [111], though they are both currently
very popular and their details are known to many. Q-learning will be used in Section 7.3
to provide the framework for CHILD. The chapter then describes some research relating
reinforcement learning to dynamic programming, followed by a discussion of reinforcement-
learning research using gradient-descent methods. If you are already familiar with any of
these techniques, you will probably want to skip the corresponding sections. Finally, I will
try to explain the field from a slightly more intuitive perspective and then explore a few
resulting observations.

5.1 The Adaptive Heuristic Critic

Reinforcement-learning tasks assume the existence of an agent. The agent receives
sensory data as input and generates actions as output, just as with the robots described
in Chapter 2. Occasionally the agent takes an action that results in a reinforcement. The
reinforcement is either rewarding or punishing. The AHC is a general architecture that
increases the probability of actions that lead to greatest reward and decreases the probability
of actions that lead to punishment. More formally, the AHC attempts to maximize the
agent’s long-term reinforcement [9, 103, 105]. This architecture divides the agent into two
modules: one that chooses an action and one that estimates the agent’s future reinforcement
given its current input. Thus, in terms of Table 2.1, one part addresses dimension 5,
mapping states to actions, and the other addresses dimension 10, mapping state/action
pairs to reinforcement predictions. The former is called the policy module. The latter is
called the critic module. A picture is given in Figure 5.1.

In a typical AHC task, the agent’s environment is Markov—1; i.e., the agent’s state in
the environment is encoded unambiguously in the agent’s sensory input (see Section 2.2.3).
The input and actions are often encoded locally in a binary vector (exactly one item will
have a value of 1.0, and all others will have a value of 0.0), but this restriction is not
necessary; it merely serves to simplify the learning task and highlight its reinforcement-
learning aspects. Learning without this restriction has also been done [3, 54, 92, 116]. The
only real restriction with the AHC (and with most other reinforcement-learning techniques
as well) is that the learning algorithm used by the policy and critic modules must be
capable of distinguishing the underlying environmental states. That is, besides learning the
state—action and state/action—reinforcement-prediction mappings, it must also be capable
of learning the sense—state mappings.

For simplicity, the following description assumes the state of the agent at the current
time step, s, is given to the agent as input (i.e., s; is the sensory vector, §(¢) in Section 2.1).

5.1. The Adaptive Heuristic Critic 35

Action

[}

Critic

[

State Reinforcement

Figure 5.1: The Adaptive Heuristic Critic [106] has two components, the policy module,
which generates action suggestions from the current senses, and the critic module which
predicts discounted future reinforcements. The policy module produces a value for each
action that determines the probability the action will be chosen. (An action is then chosen
according to these probabilities by an action-selection mechanism.) The current reinforce-
ment plus the discounted critic’s value (multiplied by the discount factor, v) is compared
with the critic’s value at the previous time step (the box labeled “D” delays its input by
one time step); the difference is used to correct the critic and to modify the policy module.
Implementations for this are given in Section 5.1.1.

The AHC works as follows: an agent exists in a state and in that state takes an action.
The mapping from states to their respective actions is called the agent’s policy. If the agent
always takes the same action every time it visits a state, the policy is deterministic. If
in some states the agent instead chooses different actions with different probabilities, the
policy is stochastic. The policy is therefore the function f in Equation 2.8. This function
is implemented by the policy module.

The critic module, on the other hand, predicts the discounted future reward (dfr) for
each state given the current policy. The dfr is the expected sum of all future rewards, each
discounted by a certain amount (the discount factor) depending on how far into the future
the reward will be received following the current policy. That is,

V() = E[g (k)]

where V(z) is the discounted future reward of state xz; E[.] denotes the expected value
(which is necessary for stochastic environments, where the next state is not a deterministic
function of the current state and policy); v is the discount factor; and r(k) is the reward
the agent will receive for taking the k'* policy action after visiting state z.

For example, if the environment and policy are both deterministic, and if by following
a certain policy the agent will receive a reinforcement of 1.0 for taking policy action a in
state z and will receive no other reinforcement, then V(z) will be 1.0. If v = 0.9, then V(y),
where state y leads in one step to state z, will be 0.9; and V(z), where state z leads in one

36 Chapter 5. Reinforcement Learning

step to state y, will be 0.81, and so on. If all reinforcements are finite and 0 < v < 1.0,
then even if the agent continues forever, the discounted reward for every state is finite [9].

A distinction can be made between two types of tasks: those that terminate, and those
that do not. In terminating tasks, the agent is stopped when it reaches a halting state, or
when it executes the task for some predetermined maximum number of time steps. Once
the agent is stopped, it may be started again on the same task. A new trial is said to start
each time the task is begun again. In terminating tasks, the agent can only visit a finite
number of states.

For non-terminating tasks, there is only one trial. The agent is never expected to
complete the task and can therefore reach an infinite number of states (provided the number
of reachable states is infinite). Though non-terminating tasks are closer to the real world,
it is assumed in the following section that tasks are terminating (though they may proceed
for arbitrarily long) and that multiple trials may be performed to train the agent.

The AHC can be trained with the following successive approximation procedure. A
deterministic policy is used. On every trial, the policy is followed and the critic’s value for
each state visited is re-computed. After every action, the critic’s estimate of the previous
state’s dfr is modified to reflect the reinforcement just received together with the critic’s
estimate of the current state’s dfr:

Critic(s;) = r(ss,a¢) + yCritic(sig), (5.1)

where Critic(s;) is the critic’s current estimate of V(s;); r(s:, a;) is the reinforcement re-
ceived for taking action a; in state s;; and “A=B” means that A is modified so as to reduce
|B — Al, the absolute difference between A and B.' This is a form of temporal difference
learning [104]. Over successive trials, the estimates converge under appropriate conditions
to the correct values [112, 22], i.e., the left-hand side of Equation 5.1 will converge to the
expected value of the right-hand side.

Once a critic has been trained the (deterministic) policy can be improved by taking ran-
dom non-policy actions and comparing the discounted future rewards of the states visited.
It the agent takes a non-policy action, a, from state j to state ¢, and the reinforcement
received plus the dfr of state ¢ is better than expected (i.e., r(¢,a) + vV (i) > V(j)), then
action a is better than the policy action. A new policy can then be created that incorporates
the improved action. If the environment is stochastic, the new action must be tried enough
times (in theory, an infinite number of times; in practice, less) to ensure that it actually
improves the policy in the average case. A new critic module can now be trained to predict
the correct dfr values for this new policy. Clearly, only states that lead eventually to state
J will be affected. Once a new critic is in place, more improvements to the policy can be
learned.

The policy can only improve during policy modification (i.e., the mean dfr over all states
can only increase), and, after retraining, the critic module will reflect the actual dfr for the
new policy. Therefore, this process of alternatively improving the policy and the critic never
produces a new policy that had been the policy previously. That is, the process of modifying
the policy always increases the mean dfr until eventual convergence [9, §5.2]. In the final

'How this adjustment is made depends on the mechanism for representing A (e.g., look-up table, neural
network, etc.)

5.1. The Adaptive Heuristic Critic 37

policy, no state—action mapping can be changed to increase the policy’s mean dfr. This
policy is globally optimal and is called an optimal policy.

Instead of adjusting the policy and critic iteratively, these processes can also occur
simultaneously, by randomly taking non-policy moves. In this case, the policy is stochastic,
so a wetght is associated with every action in each state to determine its likelihood of being
chosen. The weight increases or decreases depending on whether this move generates a
higher or lower dfr than the other actions in that state. Therefore, if a move results in a
dfr better than predicted, it becomes more likely to be chosen in that state in the future.
If it results in a lower dfr than predicted, it becomes less likely to be chosen in the future.
The next action is chosen stochastically by the action selector (Figure 5.1) based on the
weights of the actions available from the current state. Unlike the iterative approach, the
simultaneous case has not been proven to converge to the optimal policy.

5.1.1 Implementation

The critic and policy modules are easily implemented as look-up tables. Simultaneous
learning can be done with the following learning rules:

AY r(se, ar) + yCritie(sipr) — Critic(sy)
w(se, ar) — w(sy,ar) + al\,,

Critic(s;) «— Critic(s;) + BA,,,

where w(s;, a;) is the “weight” given to action a; in state s;, « is a learning-rate parameter
for the policy module, r(s;, a;) is the immediate reinforcement the agent receives for choosing
action a; in this state, and 3 is a learning-rate parameter for the critic. These rules state
what was expressed above: the critic is modified so as to predict the dfr better. The
weight for action a; in state s; increases/decreases if the expected dfr is better/worse than
expected. The probability of choosing an action is determined from the weights using the

following Gibbs distribution:
ew(st,a)

E ew(st,a) '

a

P(als;) = (5.5)

The probability of choosing action @ in a state is proportional to the weight of a relative
to the weights of all other actions, where the weights are magnified (exponentially) to
accentuate their differences.

Alternatively, the critic and policy modules are often implemented as neural networks.
Lin [54], for example, used one network for the critic and separate policy networks for each
action. Each network takes the current sensory vector as input. The critic network is trained
to predict the dfr for each input. The policy network for each action is trained to predict the
weight values for that action. This is done by using A,, as the error value to back-propagate
through network a; with s; as the network input. Neural networks are more useful than
look-up tables when the sensory vectors are large and are not locally encoded, and where
the mapping from inputs to actions can support meaningful generalization. Lin’s tasks used
a large, complicated sensory input which allowed many opportunities for generalization.

38 Chapter 5. Reinforcement Learning

5.2 Q-learning

The AHC is capable of learning many difficult reinforcement tasks, but in its standard,
simultaneous form, it has not been proven to converge to the optimal policy. Q-learning [111]
is a reinforcement-learning method that has been proven to converge under certain condi-
tions [112, 111]. It is used in Section 7.3 as the reinforcement learning component of CHILD.

QQ-learning is actually very similar to the AHC. It, in a sense, combines the functions of
the two AHC modules into a single module. The new module makes predictions of the dfr
not for each state, but for each state/action pair. At every step the state/action pairs for
the current state are examined; the action with the highest estimated dfr is the one most
likely chosen. The dfr of the action actually chosen is then increased if the estimated dfr
of the next state is better than predicted and decreased if it is worse. (The dfr of a state is
the mazimum dfr over all actions available from that state.)

The Q-learning update rule is formalized as follows:

Q(st,a1) = (s, ar) + y(max Q(ser1, a)), (5.6)

where (s, as) is the estimated dfr (the “Q-value”) for taking action a; in state s;, the
agent’s state at time ¢. Actions may be chosen again according to the following Gibbs
distribution:
Q(s4,a)
e~ T
Q(sgya) ?
T

Pla|s;) = (5.7)

€
where T' is a temperature parameter that decreases in an annealing process. As T' — oo,
the action selection becomes entirely random; as T' — 0, randomness plays no part and the
choices become determin