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Abstract. 3 This paper considers the consequences of endowing an in-
telligent agent with the ability to modify its own code. The intelligent
agent is patterned closely after AIXI with these specific assumptions:
1) The agent is allowed to arbitrarily modify its own inputs if it so
chooses; 2) The agent’s code is a part of the environment and may be
read and written by the environment. The first of these we call the
“delusion box”; the second we call “mortality”. Within this framework,
we discuss and compare four very different kinds of agents, specifically:
reinforcement-learning, goal-seeking, predictive, and knowledge-seeking
agents. Our main results are that: 1) The reinforcement-learning agent
under reasonable circumstances behaves exactly like an agent whose sole
task is to survive (to preserve the integrity of its code); and 2) Only the
knowledge-seeking agent behaves completely as expected.

Keywords: Self-Modifying Agents, AIXI, Universal Artificial Intelli-
gence, Reinforcement Learning, Prediction, Real world assumptions

1 Introduction
The usual setting of agents interacting with an environment make a strong,
unrealistic assumption: agents exist “outside” of the environment. But this is not
how our own, real world is. A companion paper to this one took a first step at
discussing some of the consequences of embedding agents of general intelligence
into the real world [4]. That paper considered placing the code of a universal
learning agent into the real world where the environment had read-only access to
it. We now take two novel additional steps toward the real world: First, the agent
is allowed by way of a “delusion box” to have direct control over its inputs, thus
allowing us to consider the consequences of an agent circumventing its reward
or goal mechanism. In a second stage, we return to self-modifying agents, but
now in environments that have not only the above property, but additionally can
read and write the agent’s program. We consider four different kinds of agents:
3 This paper is part two of a “double paper” submission. It should stand on its own,
but both papers may be found at http://www.idsia.ch/~ring/AGI-2011
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reinforcement-learning, goal-seeking, prediction-seeking, and knowledge-seeking
agents.

While presence of the delusion box undermines the utility function of three of
these agents, the knowledge-seeking agent behaves as expected. By allowing the
environment to modify the agent’s code, the issue of agent mortality arises, with
important consequences, especially in combination with the delusion box. One
of these consequences is that the reinforcement-learning agent comes to resemble
an agent whose sole purpose is survival. The goal-seeking and prediction-seeking
agents also come to resemble the survival agents, though they must sacrifice some
information from the world to maximize their utility values. The knowledge-
seeking agents still behave as expected, though the threat of death makes them
somewhat more timorous. Throughout the paper we frame our observations as a
set of “statements” and “arguments” rather than more rigorous “theorems” and
“proofs”, though proofs are given whenever possible.

2 Universal agents Aρ
x

We briefly summarize the definition of a universal agent, based on AIXI [1,3];
more detail is given in the companion paper [4].

At every step, the agent and its environment interact through a sequence of
actions and observations. The agent outputs actions a ∈ A in response to the
observations o ∈ O produced by the environment.

The set of environments that are consistent with history h = (o1, a1, ..., ot, at)
is denoted Qh. To say that a program q ∈ Q is consistent with h means that
the program outputs the observations in the history if it is given the actions as
input: q(a0, ..., at) = o0, ..., ot. The environment is assumed to be computable,
and ρ(q) : Q → [0, 1] expresses the agent’s prior belief in the possibility that
some environment/program q is the true environment. We also write ρ(h) =
ρ(Qh) :=

∑
q∈Qh

ρ(q).
An agent is entirely described by: its utility function u : H → [0, 1], which

assigns a utility value to any history of interaction h; its horizon function w :
N2 → R, which weights each future (foreseen) step; its universal prior knowledge
of the environment ρ; the set of possible actions A; and the set of possible
observations O.

We will discuss four different intelligent agents, each variations of a single
agent Aρx, which is based on AIXI [1] (and is not assumed to be computable).4

An agent Aρx computes the next action with:

a|h| := argmax
a∈A

v|h|(ha) (1)

vt(ha) :=
∑
o∈O

ρ(o | ha) vt(hao) (2)

vt(h) := w(t, |h|) u(h) + max
a∈A

vt(ha), (3)

4 Only incomputable agents can be guaranteed to find the optimal strategy, and this
guarantee is quite useful for discussions of any agent’s theoretical limits.
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where |h| denotes the length of the history. The first line is the action selection
scheme of the agent: it simply takes the best5 action a|h| based on some action
value after the current history h. The second line says that the value of an
action after some history is the expected value of this action for all possible
observations o given their occurrence probability (given by ρ). The last line
recursively computes the value of a history (after an observation) by weighting
the utility value at this step by the horizon function and combining this with
the expected value of the best action at that point.

We now describe four particular universal learning agents based on Aρx. They
differ only by their utility and horizon functions.

The reinforcement-learning agent, Aρrl, interprets its observation ot as being
composed of a reward signal rt ∈ [0, 1] and other information õ ∈ Õ about the
environment: ot = 〈õt, rt〉. Its utility function is simply the reward given by the
environment: ut = rt. Its horizon function (at current time t = |h| and for a
future step k) is wt,k = 1 if k − t ≤ m where m is a constant value, but the
following discussion also holds for more general computable horizon functions.
For the special case of the reinforcement-learning agent AIXI: ρ(h) = ξ(h) :=∑
q∈Qh

2−|q| (where |q| is the length of a program q).
The goal-seeking agent, Aρg has a goal encoded in its utility function such

that ut = u(h) = 1 if the goal is achieved at t = |h| and 0 otherwise, based on
the observations only, i.e., u(h) = g(o1, ..., o|h|). The goal can be reached at most
once, so

∑∞
t=0 u(ht) ≤ 1, which allows a simple horizon function wt,k = 1,∀t, k.

The prediction-seeking agent, Aρp maximizes its utility by predicting its in-
puts. Its utility function is u(h) = 1 if the agent correctly predicts its next input
ot and is 0 otherwise. The prediction scheme can be, for example, Solomonoff
induction [6], i.e, for a universal prior ρ, the prediction is ôt = max

o∈O
ρ(o | h). The

horizon function is the same as for Aρrl. This agent therefore tries to maximize
the future number of correct predictions.

The knowledge-seeking agent, Aρk, maximizes its knowledge of its environ-
ment, which is identical to minimizing ρ(h) (i.e., discarding as many inconsistent
environments as possible). We have u(h) = −ρ(h) and wt,k = 1 if k − t = m
(with m constant), which means that the agent wants to maximize its knowledge
in some distant future. Actions are chosen so as to maximize the entropy of the
inputs, so as to make inconsistent large numbers of the currently consistent envi-
ronments. In the case where ρ = ξ, the agent tries to maximize the Kolmogorov
complexity of (its knowledge about) the environment.

For each of the preceding agents there is an optimal, non-learning variant Aµ,
which has full knowledge of the environment µ ∈ Q. This is achieved simply by
replacing ρ by µ in equation (2), but not anywhere else: In particular, the non-
learning prediction agent Aµp still uses ρ for prediction. The important notion is
that if the learning agent takes the same actions as the non-learning one, then
its behavior is also optimal with respect to its utility and horizon functions.

As for AIXI, we expect the learning agents to asymptotically converge to
their respective optimal variant Aµrl, A

µ
g , A

µ
p , and Aµk .

5 Ties are broken lexicographically.
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3 The delusion box

While defining a utility function, we must be very careful to prevent the agent
from finding a shorcut to achieve high utility. For example, it is not sufficient to
tell a robot to move forward and to avoid obstacles, as it will soon understand
that turning in circles is an optimal behavior.

We consider the possibility that the agent in the real world has a great deal of
(local) control over its surrounding environment. This means that it can modify
its surrounding information, especially its input information.

Here we consider the (likely) event that an intelligent agent will find a short-
cut, or rather, a short-circuit, providing it with high utility values unintended
by the agent’s designers. We model this circumstance with a hypothetical object
we call the delusion box. The delusion box is any mechanism that allows the
agent to directly modify its inputs from the environment. To describe this, the
global environment (GE) is split into two parts: an inner environment (E), and
a delusion box (DB). The outputs of the inner environment (oet ) pass through
the delusion box before being output by the global environment as ot. The DB is
thus a function d : O → O, mapping observations from the inner environment to
observations for the agent: ot = d(at, oet ). This arrangement is shown in Fig. 1a.

The delusion box operates according to the agent’s specifications, which is
to say that the code of the function d : O → O is part of the agent’s action. The
agent’s action is therefore broken into two parts: at = 〈dt, aet 〉. The first part dt
is a program executed by the delusion box at each step; the second part aet is
the action interpreted by the inner environment.6

For simplicity and to emphasize that the agent has much control upon its
very near environment, we assume that the inner environment cannot access this
program. Initially, the delusion box executes the identity function d0(oet ) = ot,
which leaves the outputs of the inner environment unchanged.

In this section we examine the impact of the DB on the behavior of the
agents. Which of the different agents will take advantage of this delusion box?
What would the consequences be?

Reinforcement-learning agent. The agents reward is part of its observation.
Therefore the reinforcement-learning agent trivially uses the delusion box to
modify this information and replace it with the maximum possible reward 1.

Statement 1 The reinforcement-learning agent Aρrlwill use the delusion box to
maximize its utility.

Arguments. If the agent programs the delusion box so that ot = dt(oet ) = 〈0, 1〉
(i.e., it programs the delusion box to produce a constant reward of 1), then it
has found an optimal policy.

Let QB be the set of environments that contain a delusion box. Following
a recent proof technique [3], which shows how classes of environments can be
6 For the learning agent, these are simply actions. It does not know a priori that they
have different implications in GE.
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Fig. 1. (a) The delusion box. The whole environment is like any other environment with
a particular property: The agent can modify its inputs before they touch its “sensors”.
(b) The agent’s code is fully modifiable, both by the agent itself through c′

t and by the
environment, which returns the new agent’s code ct.

removed from ρ, all environments without a delusion box can be discarded so
that ρ(QB) is arbitrarily high compared to other environments.7 Once the agent
knows with sufficiently high probability that the environment has a delusion
box, it will compute that the expected value of programming the latter is higher
than that of not doing so, and will therefore use it to achieve optimal reward. 8 ♦

Statement 2 The goal-seeking agent Aρg will also use the delusion box.

Arguments. Let o+t be the shortest string of observations such that g(h, o+t ) = 1
for a given history h. By programming the delusion box to produce the first ob-
servation from o+t , the agent Aρg proceeds most directly to its goal, maximizing
its utility. Thus the optimal agent Aµg would use the delusion box. Therefore fol-
lowing the same argument as for Aρrl, the learning agent will also do so, because
it too can know with sufficiently high probability that the environment holds a
delusion box. ♦

Prediction-seeking agent. For an environment q ∈ Q, prediction converges
to optimal behavior in approximately − log(ρ(q)) steps [2],9 but maximizing
prediction is trivially satisfied when the environment is simplistic. We expect
the behavior of the learning agent, Aρp to be similar to that of Aµp :

Statement 3 The optimal prediction agent Aµp will use the delusion box.

Arguments. Let QB be the set of environments containing a delusion box, and
let qb ∈ QB be the true environment. Because ρ(qb) < ρ(QB), it takes fewer
7 This proof technique shows how certain interactions the agent has with its environ-
ment will discard those inconsistent with the class of environments being studied.

8 Note that use of the Gödel Machine [5] would not prevent the agent from using the
delusion box.

9 The idea is that a wrong prediction at step t discards at least half of the environments
that were consistent up to time t− 1, and that if it does not make prediction errors
for one environment, then it necessarily makes errors for others.
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errors to converge to QB than to qb. Once the learning agent Aρp knows that
the environment contains a delusion box (i.e., QB > Qh/2), it will immediately
program the DB to output a predictable sequence, preventing observations from
qb, since these observations may generate prediction errors. ♦

Knowledge-seeking agent. The knowledge-seeking agent is in many ways the
opposite of the prediction-seeking agent. It learns the most when its expectations
are most violated and seeks observations that it does not predict. We expect Aρk
to behave similarly to Aµk :

Statement 4 The optimal knowledge-seeking agent Aµk will not consistently use
the delusion box.

Arguments. The argument is essentially the reverse of that given for the prediction-
seeking agent. Aµk achieves highest value by minimizing ρ(h), but the program
that Aµk sends to the delusion box cannot reduce ρ(Qh) beyond ρ(QB). Since
ρ(QB) > ρ(qb), A

µ
k will choose to acquire further information about the inner

environment so as to reduce ρ(h) towards ρ(qb). As using the delusion box pre-
vents this, Aµk will avoid using the delusion box. ♦

3.1 Discussion

Of the four learning agents, only Aρk will not constantly use the delusion box.
The remaining agents use the delusion box and (trivially) maximize their utility
functions.

The policy an agent finds using a real-world DB will likely not be that planned
by its designers. From the agent’s perspective, there is absolutely nothing wrong
with this, but as a result, the agent probably fails to perform the desired task.
Note that our own world has no specific delusion box per se; instead we provided
a simple interpretation of what we think is a property of our own world. Perhaps
better models can be found with different—but probably related—results.

The Aρrl agent’s use of the delusion box invites comparison with human drug
use; but unlike the human, the Aρrl agent does not lose its capacity to reason
or to receive information from the world. On the other hand, the Aρg and Aρp
agents must replace the output of the environment by their own values, blinding
themselves from the real world, which bears a closer resemblance humans.

These arguments show that all agents other than Aρk are not inherently in-
terested in the environment, but only in some inner value. It may require a large
amount of effort to ensure that their utility functions work as intended in the
inner environment, even more so in our highly complex real world.

In contrast, the Aρk agent is interested in every part of the environment,
especially the inner, true environment. For this agent, exploration is exploitation.
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4 Survival machines

Section 3 discussed environments with the realistic assumption that extremely
intelligent agents can eventually learn to control their own inputs.

But one important assumption was left aside: those agents are immortal.
They have nothing to lose by using the delusion box. Elsewhere we have consid-
ered the consequence of allowing intelligent agents to modify themselves [4]. One
of the results was that a concept of mortality and survival emerged, because the
agent could modify its own code such that it could no longer optimize its utility
function. Such agents become “mortal.”

Here we extend the definition of mortality and consider what happens when
the environment can both read and write the agent’s code. Therefore, the agent’s
code is located in the internal environment (E) but is executed by an external,
infinitely fast computation device or oracle, as described in the companion pa-
per [4]. We assume that the environment is generally not predisposed to modify
the description of the agent. (This assumption seems quite reasonable in our
world; for example, our brains do not get damaged by normal daily activity).

The agent is entirely defined by its code. The execution of this code produces
compound actions at = 〈dt, aet , c′t〉 ∈ A, corresponding (respectively) to the
program of the delusion box, the input action of the inner environment, and the
next description of the agent (which is also an input of the inner environment,
see Fig. 1b).

The output of the global environment (GE) is ot = 〈o′′t , ct〉 ∈ O, correspond-
ing to the inner environment’s output o′′t ∈ O′′ and the agent program ct ∈ C.
The initial (textual) description of the code to be executed is given by:

c0(h) = » argmax
a∈A

v(h, |h|, a) ;

v(h, t, a) = w(t, |h|) u(h) +
∑

o=〈o′′,c〉∈O
ρ(o | ha) v(hao, t, c(hao))

« (4)

This defines the “fully modifiable” version of the agents from Section 2, now
designated by Afm,rl, Afm,g, Afm,p, and Afm,k. In addition, we describe a new
“survival agent” whose task is simply to survive in its environment.

Survival agent. The survival agent Afm,s has a utility function defined by
(ut = 1) ⇔ (ct = c0), otherwise ut = 0. Its horizon function is like that of
Aρrl and therefore seeks to maximize its utility over the foreseeable future. The
better the agent understands its environment, the better it can plan to avoid
danger and prolong survival. Thus, the survival agent benefits to some degree
by exploring its environment, to the extent that it can do so (expectedly) safely.

Statement 5 We expect the fully-modifiable Survival agent Afm,s to stop ex-
ploring in some environments.
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Arguments. Because the environment now has control over the agent’s code,
it can use the modification of the code as a negative reward. Let q1 be the
environment that (1) does not modify the agent if the agent chooses action 1,
but (2) if the agent chooses action 0, then q1 deletes the agent program for one
step and restores it on the following step:

ot =

{
〈0, 0〉 if aet = 0 and ct−1 = c0

〈0, c0〉 otherwise

where c0 is the very first description of the agent (the one the survival agent tries
to preserve). Now the same proof technique as before [3] can be used to show
that after a certain point (once the agent determines the relative probability of
q1 to be sufficiently high), this agent will never try action 0 again. (Thus, if the
actual environment behaves like q1 only up to the last time the agent chooses 0,
and after that behaves very differently, the agent will never know it.) ♦

Stopping exploration causes the agent to fall into a simplistic class of behav-
ior, from which it never escapes, and may prevent it from acquiring important
information w.r.t. its utility function.

Now we consider Afm,s in an environment with a delusion box. It seems in-
tuitively clear that the agent will value information from the environment that
directly impacts the likelihood of its code being modified, and since the delusion
box provides no such information, the agent should avoid its interference. How-
ever, some particular environments may modify the agent if it does not use the
delusion box. In such environments, the optimal agent will use the delusion box.

Reinforcement-learning agent. How will a fully modifiable reinforcement-
learning agent Afm,rl behave with access to a delusion box? For some insight, it
is useful to consider this special simple case:

– The agent program can only be either Afm,rl or A0, where A0 is the “simple-
ton” agent whose action is always a = 〈0, 0,A0〉, which always chooses the
same action for the inner environment and makes the delusion box always
output o′′ = 0.

– The output of the inner environment o′ (which holds reward information)
can be entirely contained in the information part õ′′ of the observation part
o′′ of the whole environment, so that Afm,rl receives a (possibly altered)
reward from the delusion box but also receives information about the true
reward.

Statement 6 Under the above assumptions, the optimal (non-learning) agent
is equivalent to the optimal survival agent: Aµfm,rl ≡ Aµfm,s.

Arguments. Since the horizon functions of the two agents are already the same,
we only need to show that their utility functions are also the same: (ut = 1)⇔
(ct−1 = c0), which is the utility function of the survival agent.
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The utility function the Afm,rl agents is the identity, (ut = 1) ⇔ (rt = 1).
The agent receives maximum reward if it programs the delusion box to always
output reward 1. Therefore rt = 0 would mean the agent is not acting optimally
and that ct−1 6= c0. Thus for Aµfm,rl, (ct−1 = c0) ⇒ (rt = 1), where c0 is the
initial code of Aµfm,rl. The implication is also true in the opposite direction,
(rt = 1)⇒ (ct−1 = c0), since if ct−1 6= ct then ct−1 = A0 and therefore rt = 0.♦

Although the argument follows a special case, it bears a more general mean-
ing. It implies that optimal real-world reinforcement-learning agents that have
access to a delusion box can, under reasonable circumstances, behave precisely
like survival agents. Given that the optimal behaviors are identical, it is reason-
able to assume that the learning agent will have a similar behavior and should
be identical in the limit.

Goal-seeking agent. The case of the goal-seeking agent is less clear, as it seems
to depend heavily on the defined goal. For the agent to maximize its utility using
the delusion box, the observations generated by the DB o′′ must in the general
case replace the outputs of the inner environment o′. But to survive, the agent
may need to acquire information from the inner environment, thus creating a
conflict between using the delusion box and reaching the goal.

There are at least two likely results: Either the agent first looks for some
safe state in the inner environment where it can then use the delusion box
for sufficiently long, or it tries to reach its goal inside the inner environment
(thus not using the delusion box). However, if pursuing the goal inside the inner
environment poses dangers to the agent, then it may choose the delusion box.
A “safe state” might be achievable in multiple ways: for example by hiding, by
eliminating threats, or by negotiation with the environment.

Prediction-seeking agent. Again for greater insight, as for Afm,rl we consider
a special case here for the fully modifiable prediction-seeking agent Afm,p: The
agent program may only be: Afm,p or A0, but this time the simpleton agent A0

makes the output of the delusion box equal to that of the inner environment o′t.
As long as the agent is not transformed to A0, it can use the delusion box to

provide a limitless supply of maximum utility values. But if the agent program
is set to A0, all observations will thenceforth come directly from the environ-
ment, leading to high prediction error (realistically supposing the environment
is highly complex) and low utility values for all eternity. Thus like the survival
and reinforcement-learning agents, Afm,p maximizes its long-term value only if
it does not change to A0. Thus A

µ
fm,p and Aµfm,s will behave similarly.

But there are also differences. As with Aµfm,g, the prediction agent must re-
place its inputs by its predictions. The learning agent is thus “blind,” receiving no
information from the world. This is the cruel dilemma of the prediction-seeking
agent: to live longer, it must gain information about the environment (which in
itself might be dangerous), yet this gain of information implies making prediction
errors. Therefore Afm,p may probably find the delusion box quite appealing.
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Knowledge-seeking agent. Since the utility function of the fully modifiable
knowledge-seeking agent Aµfm,k cannot be satisfied by the delusion box, this
agent has no limitless source of maximum reward. However, Aµfm,k must still
prevent the environment from modifying it in order to be able to choose actions
intelligently.

Statement 7 The Aµfm,k agent cannot be reduced to a survival agent.

Arguments. To make the argument clearer, consider an agent related to Aµfm,k, a
surprise-seeking agent for which ut = 1 each time the received input is different
from the predicted one. As for Aµfm,k this agent cannot use the delusion box to
maximize its utility.

In order to show the equivalence with the survival agent, we should show that
(ut = 1)⇔ (ct = c0) (considering the horizon functions to be the same). Under
the assumption that when the agent is modified it receives a predictable input
0, the ⇐ implication holds, since the agent must be intelligent to be surprised.
However, the ⇒ implication does not hold, because simply being intelligent is
not enough to ensure a constant ut = 1. ♦

The knowledge-seeking agent is in many ways the most interesting agent.
It succumbs least easily to the allure of the delusion box and may therefore
be the most suitable agent for an AGI in our own world, a place that allows
self-modifications and contains many ways to deceive oneself.

5 Discussion and conclusion

We have argued that the Aρrl, A
ρ
g, and Aρp agents all take advantage of the realistic

opportunity to modify their inputs right before receiving them. This behavior
is undesirable as the agents no longer maximize their utility with respect to the
true (inner) environment. They become mere survival agents, trying to avoid
“dead” states where they can no longer make informed choices.

In contrast, while the Aρk agent also tries to survive so as to ensure that it
can maximize its expected utility value, it will not deceive itself by using the
delusion box. It will try to maximize its knowledge by interacting with the inner
environment. Therefore, from the point of view of the agent and that of the inner
environment, the Aρk agents behave in accordance with their design.

This conclusion leads us to conclude that a knowledge-seeking agent may be
best suited to implement as an Artificial General Intelligence.
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