
Grouping Techniques for Scheduling Problems:

Simpler and Faster∗†

Aleksei V. Fishkin1, Klaus Jansen2 and Monaldo Mastrolilli3
1Siemens AG, Munich, Germany, alexey.fishkin@siemens.com

2Universität zu Kiel, Germany, kj@informatik.uni-kiel.de
3IDSIA Lugano, Switzerland, monaldo@idsia.ch

Abstract

In this paper we describe a general grouping technique to devise faster
and simpler approximation schemes for several scheduling problems. We
illustrate the technique on two different scheduling problems: scheduling
on unrelated parallel machines with costs and the job shop scheduling
problem. The time complexity of the resulting approximation schemes
is always linear in the number n of jobs, and the multiplicative constant
hidden in the O(n) running time is reasonably small and independent of
the error ε.

1 Introduction

Scheduling is one of the fundamental areas of combinatorial optimization. Most
multiprocessor and shop scheduling problems are known to be hard to solve op-
timally. Thus the research focuses on giving efficient approximation algorithms
that produce a solution close to the optimal one. Ideally, one hopes to obtain a
family of polynomial algorithms such that for any given ε > 0 the corresponding
algorithm is guaranteed to produce a solution with a value within a factor of
(1 + ε) of the optimum value; such a family is called a polynomial time ap-
proximation scheme (PTAS). While always being polynomial in the input size,
the running time of a PTAS may also depend on 1/ε: the better the approxi-
mation, the larger may be the running time. Fully polynomial approximation
schemes (FPTAS) are PTASs having running time growing polynomially with
the reciprocal of the error bound. Some problems are known not to have fully
polynomial approximation schemes unless NP=P. This lower bound applies to
strongly NP-hard problems [3].

The problem of scheduling jobs on machines such that the maximum com-
pletion time (makespan) is minimized has been extensively studied for various

∗Supported by Swiss National Science Foundation project 200020-109854, “Approximation
Algorithms for Machine scheduling Through Theory and Experiments II”.

†A preliminary version of this paper appeared in the Proceedings of ESA’01.

1

problem formulations. Several polynomial time approximation schemes have
been found for various shop and multiprocessor scheduling problems [1, 2, 6, 7,
8, 10, 11, 13, 14, 20]: these include scheduling problems on a single machine
with release dates and delivery times, scheduling on unrelated machines, mul-
tiprocessor tasks (e.g. dedicated, parallel, malleable tasks), and classical open,
flow and job shops. Some of these results were extended in [12] by providing
a polynomial time approximation scheme for a general multiprocessor job shop
scheduling problem (containing as special cases some of the problem formula-
tions above).

The main goal of this paper is to emphasize a fairly general idea for obtaining
approximation schemes for makespan (and related) minimization problems. The
resulting approach can be applied to speed up and significatively simplify all
the previous schemes for the aforementioned scheduling problems. In this paper
we provide two schemes that indeed follow the same pattern. More precisely,
we focus our attention on two problems: scheduling on unrelated machines
with costs and the classical job shop scheduling problem. Although these two
problems are different in nature (the first is an assignment problem while the
other is an ordering problem), the reader will recognize that the underlying ideas
are very similar. Furthermore, the described techniques can also be applied to
many other scheduling problems including the general multiprocessor job shop
scheduling problem studied in [12] (see [17, 18] for other examples). In both
cases the overall running time is O(n) + C, where the constant hidden in O(n)
is reasonably small and independent of the accuracy ε, whereas the additive
constant C depends on the number of machines, the accuracy ε (and the number
of operations for job shops).

The Basic Idea. The basic idea is to reduce the number of jobs to a constant
and apply enumeration or dynamic programming afterwards. To accomplish
this, we perform the following steps:

1. Rounding and Profiling. We first round the job data (processing times
and costs) such that, in the resulting rounded instance, there are only a
constant number of different job profiles. Jobs sharing the same profile
may differ only by a different scale factor. It follows that each job is
completely characterized by a job profile and a scale factor.

2. Grouping. Jobs with the same profile and having a sufficiently “small”
scale factor are merged (grouped) to form new jobs. This way the number
of jobs can be reduced in linear time to a constant number.

3. Enumerating. Finally, dynamic programming or enumeration yield a
(fully) polynomial time approximation scheme.

The bound on the approximation error ε is proved by showing that two linear
programming formulations (one for the original instance and one for the trans-
formed instance) have a gap of at most εOPT , where OPT is the minimum
objective value.

2

We remark that the general idea of rounding job data and merging jobs in
order to reduce the total number of jobs is not new (see e.g. [19]). However, the
proposed combination reduces the number of jobs immediately to a constant
and leads to elegant and simpler approximation schemes for the two considered
scheduling problems.

First Example: Unrelated Parallel Machines with Costs. We begin
with the problem of scheduling a set J = {J1, ..., Jn} of n independent jobs
on a set M = {1, ..., m} of m unrelated parallel machines. Each machine can
process at most one job at a time, and each job has to be processed without
interruption by exactly one machine. Processing job Jj on machine i requires
pij ≥ 0 time units and incurs a cost cij ≥ 0, i = 1, . . . , m, j = 1, ..., n. We
consider the problem of minimizing the objective function that is a weighted
sum of the maximum job completion time among all jobs (makespan) and the
total cost.

When cij = 0 the problem turns into the classical makespan minimization
form. Lenstra, Shmoys and Tardos [16] gave a polynomial-time 2-approximation
algorithm for this problem; and this is the currently known best approxima-
tion ratio achieved in polynomial time. They also proved that for any posi-
tive ε < 1/2, no polynomial-time (1 + ε)-approximation algorithm exists, un-
less P=NP. Furthermore, Shmoys and Tardos [23] gave a polynomial-time 2-
approximation algorithm for the general variant with cost. Since the problem
is NP-hard even for m = 2, it is natural to ask how well the optimum can be
approximated when there is only a constant number of machines. In contrast
to the previously mentioned inapproximability result for the general case, there
exists a fully polynomial-time approximation scheme for the problem when m
is fixed. Horowitz and Sahni [9] proved that for any ε > 0, an ε-approximate
solution can be computed in O(nm(nm/ε)m−1) time, which is polynomial in
both n and 1/ε if m is constant. Lenstra, Shmoys and Tardos [16] also gave
an approximation scheme for the problem with running time bounded by the
product of (n + 1)m/ε and a polynomial of the input size. Even though for
fixed m their algorithm is not fully polynomial, it has a much smaller space
complexity than the one in [9]. Jansen and Porkolab [10] presented a fully
polynomial-time approximation scheme for the problem whose running time is
n(m/ε)O(m). They combine the previous (dynamic [9] and linear [16] program-
ming) approaches. Their algorithm has to solve at least (m3/ε2)m many linear
programs. In order to obtain a linear running time for the case when m is fixed,
they use the price-directive decomposition method proposed by Grigoriadis and
Khachiyan [5] for computing approximate solutions of block structured convex
programs. The final ingredient is an intricate rounding technique based on the
solution of a linear program and a partition of the job set.

In contrast to the previous approach [10], our algorithm (that works also
for the general variant with cost) is extremely simple and follows the basic idea
sketched before: first we preprocess the data to obtain a new instance with
min

{
n, (log m/ε)O(m)

}
grouped jobs. The preprocessing step requires linear

3

time. Then using dynamic programming we compute an approximate solution
for the grouped jobs in (log m/ε)O(m2) time. Both steps together imply a fully
polynomial-time approximation scheme that runs in O(n) + C time where C =
(log m/ε)O(m2). We remark that the multiplicative constant hidden in the O(n)
running time of our algorithm is reasonably small and does not depend on the
accuracy ε.

Second Example: Makespan Minimization in Job Shops. In the job
shop scheduling problem, there is a set J = {J1, . . . , Jn} of n jobs that must be
processed on a given set M = {1, . . . ,m} of m machines. Each job Jj consists
of a sequence of µ operations O1j , O2j , . . . , Oµj that need to be processed in this
order. Operation Oij must be processed without interruption on machine mij ∈
M , during pij time units. Each machine can process at most one operation at
a time, and each job may be processed by at most one machine at any time.
For any given schedule, let Cij be the completion time of operation Oij . The
objective is again to find a schedule that minimizes the maximum completion
time Cmax = maxij Cij).

The job shop problem is strongly NP-hard even if each job has at most three
operations and there are only two machines [15]. Williamson et al. [24] proved
that when the number of machines, jobs, and operations per job are part of
the input there does not exist a polynomial time approximation algorithm with
worst case bound smaller than 5

4 unless P = NP . When m and µ are part of
the input the best known result [4] is an approximation algorithm with worst
case bound O((log(mµ) log(min(mµ, pmax))/ log log(mµ))2), where pmax is the
largest processing time among all operations. For those instances where m and
µ are fixed (the restricted case we are focusing on in this paper), Shmoys et al.
[22] gave approximation algorithms that compute (2+ ε)-approximate solutions
in polynomial time for any fixed ε > 0. This result has been improved by
Jansen et al. [13] who have shown that (1 + ε)-approximate solutions of the
problem can be computed in polynomial time. The main idea is to divide the
set of jobs J into two groups L and S formed by jobs with “large” and “small”
total processing time, respectively. The total number of large jobs is bounded
by a constant exponentially in m, µ and ε. Then they construct all possible
schedules for the large jobs. In any schedule for the large jobs, the starting and
completion times of the jobs define a set of time intervals, into which the set of
small jobs have to be scheduled. Then for every possible job ordering of large
jobs, a linear program is used to assign small jobs to time intervals. The rounded
solution of the linear program in combination with an algorithm by Sevastianov
[21], gives an approximate schedule in time polynomial in n. In order to speed
up the whole algorithm, in [14] is suggested a number of improvements: they
use the logarithmic potential price decomposition method of Grigoriadis and
Khachiyan [5] to compute an approximate solution of the linear program in
linear time, and a novel rounding procedure to bring down to a constant the
number of fractional assignments in any solution of the linear program. The
overall running time is O(n), where the multiplicative constant hidden in the

4

O(n) running time is exponentially in m, µ and ε.
In contrast to the approximation schemes introduced in [13, 14], our algo-

rithm is again extremely simple and even faster. We show that we can prepro-
cess in linear time the input to obtain a new instance with a constant number
of grouped jobs. This immediately gives a linear time approximation scheme
with running time O(n)+C, where C is a constant that depends on m, ε and µ.
Again, we remark that the multiplicative constant hidden in the O(n) running
time of our algorithm is reasonably small and does not depend on the accuracy ε.

Note. Our approach uses several transformations of the input instance which
may potentially increase the objective function value by a factor of 1 + O(ε).
Therefore we can perform a constant number of them while still staying within
1 + O(ε) of the original optimum. Throughout this paper, when we describe
this type of transformation, we shall say it produces 1 + O(ε) loss.

2 Unrelated Parallel Machines with Costs

The problem can be stated by using the following integer linear program ILP
that represents the problem of assigning jobs to machines (xij = 1 means that
job Jj has been assigned to machine i, and µ is any given positive weight):

min T + µ
∑m

i=1

∑n
j=1 xijcij

s.t.
∑n

j=1 xijpij ≤ T, i = 1, . . . ,m;∑m
i=1 xij = 1, j = 1, ..., n;

xij ∈ {0, 1} , i = 1, . . . , m, j = 1, ..., n.

The first set of constraints relates the makespan T to the processing time on
each of the machines, while the second set ensures that every job gets assigned.

Let 0 < ε < 1 be an arbitrary small rational number, and let m ≥ 2 be an
integral value. Throughout this section, the values ε and m are considered to
be constants and not part of the input. The outline of the scheme is as follows.

Step 1 Round the processing times of the jobs (see Section 2.1).

Step 2 Merge jobs together of the same profile with small scale factor to obtain
a constant number of jobs (see Section 2.2).

Step 3 Use a dynamic programming algorithm to compute an approximate
solution for the job set obtained in Step 2 (see Section 2.3).

Optimal Value Bounds. We begin by computing some lower and upper
bounds for the minimum objective value OPT that will be useful in the follow-
ing. By multiplying each cost value by µ we may assume, w.l.o.g., that µ = 1.
Let

dj = min
i=1,...,m

(pij + cij),

5

and

D =
n∑

j=1

dj .

Consider an optimal assignment (x∗ij) of jobs to machines with makespan T ∗

and total cost C∗. Then,

D =
n∑

j=1

dj ≤
m∑

i=1

n∑

j=1

x∗ijcij +
m∑

i=1

n∑

j=1

x∗ijpij

≤ C∗ + m · T ∗ ≤ m ·OPT,

where OPT = T ∗+C∗. On the other hand, we can generate a feasible schedule
according to the dj values. Indeed, let mj ∈ {1, ..., m} denote any machine such
that dj = pmj ,j +cmj ,j . Assign every job Jj to machine mj . The objective value
of this schedule can be bounded by

∑
j∈J cmj ,j +

∑
j∈J pmj ,j = D. Therefore,

OPT ∈ [D/m, D], and by dividing all processing times and cost values by D/m,
we get directly the following bounds for the optimum value:

1 ≤ OPT ≤ m.

2.1 Rounding and Profiling Jobs

For each job Jj , we define four sets of machines: the set of fast

Fj =
{

i : pij ≤ ε

m
dj

}

the set of cheap
Cj =

{
i : cij ≤ ε

m
dj

}

the set of slow
Sj =

{
i : pij ≥ m

ε
dj

}

and the set of expensive
Ej = {i : cij ≥ dj/ε}

machines, respectively.

Rounding the Input. According to the above definitions, the input data of
any job Jj (j = 1, . . . , n) is rounded as follows.

• For any possible fast machine i ∈ Fj for job Jj , round the corresponding
processing time to zero, i.e. set pij := 0. Similarly, for any i ∈ Cj set
cij := 0.

• For any possible slow machine i ∈ Sj for job Jj , set the corresponding
processing time pij to be a “large enough” number such that no reasonable
algorithm would schedule that job on a slow machine (pij ≥ 2m suffices);
let us write pij := +∞. Similarly, for any i ∈ Ej , set cij := +∞. (Observe
that, by definition, for all jobs Jj there exists always a machine i which is
neither expensive nor slow.)

6

• For any other machine i of job Jj , round the processing time pij and cost
cij down to the nearest lower value of ε

mdj(1 + ε)h, for some h ∈ N.

Lemma 1 Rounding the input produces 1 + 4ε loss.

Proof. Let us start by considering only the effect of rounding to zero the
processing times and costs of jobs on fast and cheap machines, respectively. Let
A : J → M be an optimal assignment of jobs to machines for this modified
instance. Clearly, the optimal value corresponding to A cannot be larger than
OPT (we just reduced the processing times and costs). Let F and C denote
the set of jobs which are processed on fast and cheap machines according to A.
Now, if we replace the processing times and costs of the transformed instance by
the original processing times and costs, we may potentially increase the value
of A by at most

∑

Jj∈F

ε

m
dj +

∑

Jj∈C

ε

m
dj ≤ 2

n∑

j=1

ε

m
dj = 2ε

D

m
= 2ε.

Now we show that there exists an approximate schedule where jobs are
scheduled neither on slow nor on expensive machines. This allows us to set
pij = +∞, for i ∈ Sj , and cij = +∞, for i ∈ Ej . Consider an optimal assignment
A : J → M of jobs to machines with T ∗ and C∗ denoting the resulting makespan
and cost, respectively. Let S and E represent, respectively, the set of jobs which
are processed on slow and on expensive machines according to A. Then, assign
every job Jj ∈ S ∪ E to machine mj (recall that mj ∈ {1, ...,m} denote any
machine such that dj = pmj ,j + cmj ,j). Moving jobs Jj ∈ S ∪ E onto machines
mj may potentially increase the objective value by at most

∑

Jj∈S∪E

dj ≤ ε

m

∑

Jj∈S

pA(j),j + ε
∑

Jj∈E

cA(i),j ≤ εT ∗ + εC∗,

since pA(j),j ≥ m
ε dj for Jj ∈ S, and cA(j),j ≥ dj/ε for Jj ∈ E.

Observe that by the above arguments, all the positive costs cij and positive
processing times pij are greater than ε

mdj . The last change is such that every
positive processing time pij and every positive cost cij is rounded down to the
nearest lower value of ε

mdj(1 + ε)h, for h ∈ N, i = 1, ...,m and j = 1, ..., n.
Consider the optimal value of the rounded instance. Clearly, this value cannot
be greater than OPT . It follows that by replacing the rounded values with the
original ones we may increase each value by a factor 1 + ε, and consequently,
the solution value potentially increases by the same factor 1 + ε.

Job Profiles and Scale Factors. Consider the input instance after the
rounding step described above. We define the execution profile of job Jj to
be an m-tuple < Π1,j , ..., Πm,j > such that pij = ε

mdj(1 + ε)Πi,j . We adopt the
convention that Πi,j = +∞ if pij = +∞, and Πi,j = −∞ if pij = 0. Likewise,
we define the cost profile of job Jj to be an m-tuple < Γ1,j , ..., Γm,j > such

7

that cij = ε
mdj(1 + ε)Γi,j . Again, we adopt the convention that Γi,j = +∞ if

cij = +∞, and Γi,j = −∞ if cij = 0. Let us say that two jobs have the same
job profile iff they have the same execution and cost profile. Observe that the
value of dj plays the role of a scale factor, and two jobs with the same profile
may differ only by their scale factors.

Lemma 2 The number of distinct profiles is at most ` :=
(
3 + 2 log1+ε

m
ε

)2m.

Proof. Every profile is determined by 2m entries. Each entry can be either
±∞ or any nonnegative integer h with ε

mdj(1 + ε)h ≤ m
ε dj .

2.2 Grouping Jobs

Consider the input instance rounded as described in Section 2.1. Let δ := ε
m , and

partition the set of jobs into two subsets L = {Jj : dj > δ} and S = {Jj : dj ≤ δ}
according to their scale factors. Let us say that L is the set of large jobs, while
S the set of small jobs. We further partition the set of small jobs into subsets
Si of jobs having the same profile, for i = 1, ..., `. Let Ja and Jb be two jobs
from Si such that da, db ≤ δ/2. We “group” together these two jobs to form a
composed job Jc in which the processing time (and cost) on machine i is equal
to the sum of the processing times (and costs) of Ja and Jb on machine i, and
let dc = da + db. We repeat this process, by using the modified set of jobs,
until at most one job Jj ∈ Si is left with dj ≤ δ/2. At the end, all jobs Jj in
group Si have dj ≤ δ. The same procedure is performed for all other subsets
Si. At the end of this process, there are at most ` jobs, one for each subset
Si, having dj ≤ δ/2. All the other jobs, have processing times larger than
δ/2. Therefore, the number of jobs in the transformed instance is bounded by
2D
δ + ` ≤ 2m2

δ + ` = (log m/ε)O(m). Note that the procedure runs in linear time,
and a feasible schedule for the original set of jobs can be easily obtained from
a feasible schedule for the grouped jobs. We motivate the described technique
with the following result.

Lemma 3 With 1 + ε loss, the number of jobs can be reduced in linear time to
be at most min{n, (log m/ε)O(m)}.

Proof. Consider the transformed instance I ′ right after the rounding step (but
before grouping). Assume, w.l.o.g., that there exists an optimal solution SOL′

for I ′ of value OPT ′. It is sufficient to show that, by using the small jobs
grouped as described previously, there exists a schedule of value (1 + ε)OPT ′.

Accordingly to SOL′ we may assume that each machine executes the large
jobs at the beginning of the schedule. Let c denote the total cost of large jobs
when processed according to SOL′, and let ti denote the time at which machine
i finishes to process large jobs, for i = 1, ...,m. Now, consider the following

8

linear program LP1:

min T + c +
∑m

i=1

∑
Jj∈S xij

ε
mdj(1 + ε)Γi,j

s.t. ti +
∑

Jj∈S xij
ε
mdj(1 + ε)Πi,j ≤ T, i = 1, . . . ,m;∑m

i=1 xij = 1, Jj ∈ S;
xij ≥ 0, i = 1, . . . ,m, Jj ∈ S.

Note that LP1 formulates the integer relaxation of the original problem ILP
for the subset of small jobs: we are assuming that machine i can start pro-
cessing small jobs only at time ti, and when the processing times and costs are
structured as in Lemma 1.

For each Sφ, φ = 1, ..., `, consider a set of decision variables yφi ∈ [0, 1] for
i = 1, ..., m. The meaning of these variables is that yφi represents the fraction
of jobs from Sφ processed on machine i. Consider the following linear program
LP2:

min T + c +
∑m

i=1

∑`
φ=1 yφi

∑
Jj∈Sφ

ε
mdj(1 + ε)Γi,j

s.t. ti +
∑`

φ=1 yφi

∑
Jj∈Sφ

ε
mdj(1 + ε)Πi,j ≤ T, i = 1, . . . ,m;∑m

i=1 yφi = 1, φ = 1, . . . , `;
yφi ≥ 0, i = 1, . . . , m, φ = 1, . . . , `.

By setting

yφi =

∑
Jj∈Sφ

xijdj∑
Jj∈Sφ

dj
,

it is easy to check that any feasible set of values (xij) for LP1 gives a feasible
set of values (yφi) for LP2 (recall that jobs belonging to any Sφ have the same
profile). Furthermore, by these settings, the objective function value of LP2 is
equal to that of LP1. But LP1 is a relaxation of the original problem. Therefore,
if we were able, by using the grouped small jobs, to get a feasible schedule of
length at most 1 + ε times the optimal value of LP2, we would be done. In the
remainder we show how to generate such a schedule. This solution is obtained
by using the solution of LP2 and the small grouped jobs.

Let us denote by y∗φi the values of variables yφi according to the optimal
solution of LP2. For every positive value y∗φi, schedule a subset of grouped jobs
from Sφ on machine i until either (a) the jobs from Sφ are exhausted or (b)
the total fraction of jobs assigned to i is equal to y∗φi (if necessary fraction-
alize one job to use up y∗φi exactly). We repeat this for the not yet assigned
grouped small jobs and for every positive value y∗φi. Note that if y∗φi is not
fractional, then the jobs from Sφ are not preempted by the previous algorithm.
In general, the number of preempted jobs from Sφ is at most fφ − 1, where

fφ =
∣∣∣
{

y∗φi : y∗φi > 0, i = 1, ..., m
}∣∣∣. Now remove all the preempted jobs Jj and

schedule them at the end on machines mj . This increases the makespan and
the cost by at most ∆ = δ ·∑`

φ=1(fφ − 1), since every grouped small job has
cost plus processing time bounded by δ when processed on machine mj . A

9

basic feasible solution of LP2 has the property that the number of positive vari-
ables is at most the number of rows in the constraint matrix, m + `, therefore∑`

φ=1(fφ − 1) ≤ m. In order to bound the total increase ∆ by ε we have to
choose δ such that δ ≤ ε

m , and the claim follows.

2.3 Dynamic Programming

The optimal solution for the transformed instance with k = (log m/ε)O(m) jobs
can be computed in O(mk) time by simply enumerating all possible assignments
and retaining the smallest one. However, to avoid the exponential dependence
on 1/ε (recall, our aim is to obtain a fully polynomial approximation scheme), we
will not treat separately all of these schedules. Furthermore, for our problem
we do not need to find an optimal solution for the transformed instance, an
approximate solution suffices.

In the following, we show that an approximate schedule for the transformed
instance can be computed in (log m/ε)O(m2) time. The first step is to round
down every processing time and cost to the nearest lower value of (ε/k)i, for
i = 0, 1, . . . , k/ε; clearly this does not increase the objective function value.
Then, find the optimal solution SOL of the resulting instance by using a dy-
namic programming approach. Finally, by replacing the rounded values with
the originals, it is easy to check that we may potentially increase the cost and
the makespan of SOL by at most ε, respectively. This results in a (1 + 2ε)-
approximate solution for the transformed instance.

We now present the dynamic programming algorithm. Let J1, ..., Jk de-
note the k jobs of the transformed instance. Let a schedule configuration
s =(t1, ..., tm, c) be defined as an (m + 1)-dimensional vector, where ti denotes
the completion time of machine i and c the total cost. For each job Jj let
Vj denote the set of (m + 1)-dimensional vectors defined as follows: for each
i = 1, ...,m, there is a vector v ∈ Vj whose entries are 0 except for the ith
component which is pij , and the (m + 1)-st component which is cij . Let T (j, s)
denote the truth value of the statement: there is a schedule for jobs J1, .., Jj

for which s is the corresponding schedule configuration. The values of all the
T (j, s) can be viewed as being arranged in a table, and the crux of the approach
lies in the following very simple procedure that can be used for filling in the
table entries:

T (1,v) =
{

true if v ∈ V1

false if v /∈ V1

T (j, s) =
∨

v∈Vj :v≤s

T (j − 1, s− v) for j = 2, . . . , k.

The reader should have no difficulty to bound the time to fill in the table en-
tries by O(mN), where N is the number of table entries. By the way we have
rounded the values, the number of different completion times for each machine
and different costs is bounded by mk/ε + 1. It follows that the total number of

10

different schedule configurations is at most (mk/ε + 1)m+1. By observing that
it is sufficient to store the minimum cost value for each different m-dimensional
vector (t1, ..., tm) of completion times, we have N = k(mk/ε + 1)m. There-
fore, the total running time of the dynamic program is O(km(mk/ε + 1)m) =
(log m/ε)O(m2). By Lemma 3, and by using the described dynamic programming
approach, we have the following result.

Theorem 4 For the problem of minimizing the weighted sum of the cost and the
makespan in scheduling n jobs on m unrelated machines (m fixed), there exists a
fully polynomial time approximation scheme that runs in O(n)+(log m/ε)O(m2)

time.

3 Makespan Minimization in Job Shops

Let ε > 0 be an arbitrary small rational number, and let m ≥ 2 and µ ≥ 1 be
integral values. Throughout this section, the values ε, m and µ are considered
to be constants and not part of the input. For simplicity, we assume that 1/ε
is integral. The outline of the scheme is as follows.

Step 1 Round the processing times of the jobs (see Section 3.1).

Step 2 Merge jobs together of the same profile with small scale factor to obtain
a constant number of jobs (see Section 3.2).

Step 3 Use an enumeration algorithm to compute the optimum solution for
the job set obtained in Step 2.

Optimal Value Bounds. We begin by providing some lower and upper
bounds of the minimum makespan. For any given instance of the job shop
scheduling problem, the optimal value will be denoted as OPT . Let

dj =
µ∑

i=1

pij

be the total processing time of job Jj ∈ J , and let

D =
∑

Jj∈J
dj .

Clearly, D/m ≤ OPT and a schedule of length at most D can be trivially
obtained by scheduling one job after the other. Then the following bounds
hold: D

m ≤ OPT ≤ D. By dividing every processing time pij by D/m, we will
assume, w.l.o.g., that D/m = 1 and

1 ≤ OPT ≤ m.

11

3.1 Rounding and Profiling Jobs

For each job Jj (j = 1, . . . , n), let

Nj =
{

Oij : i = 1, . . . , µ and pij ≤ ε

µm
dj

}

denote the set of negligible operations.

Rounding the Input. The input data of any job Jj (j = 1, . . . , n) is rounded
as follows.

• Round the processing time of any negligible operation to zero, i.e. set
pij := 0 for any Oij ∈ Nj .

• For any other operation Oij 6∈ Nj , round pij down to the nearest lower
value of ε

µmdj(1 + ε)h, for some h ∈ N.

Lemma 5 Rounding the input produces 1 + 2ε loss.

Proof. Clearly, by setting pij := 0, for every Oij ∈ Nj and j = 1, . . . , n, the
corresponding optimal makespan cannot be larger than OPT . Furthermore, if
we replace the zero processing times of the negligible operations with the original
processing times, we may potentially increase the solution value by at most

∑

Oij∈N

ε

µm
dj =

n∑

j=1

∑

Oij∈Nj

ε

µm
dj ≤ ε

D

m
= ε.

Any non negligible operation Oij has processing times pij greater than ε
µmdj .

We rounded each pij down to the nearest lower value of ε
µmdj(1 + ε)h, where

h ∈ N and Oij /∈ Nj . By replacing these rounded values with the original ones
we may potentially increase the makespan by at most a factor of 1 + ε.

Job Profiles and Scale Factors. Consider the input instance after the
rounding step. We define the profile of a job Jj to be a (µ ·m)-tuple

< Π1,1,j , . . . , Π1,m,j , Π2,1,j , . . . , Π2,m,j , . . . , Πµ,1,j , . . . , Πµ,m,j >

such that the following holds for every operation Oij .

• If w = mij and pij 6= 0, then pij = ε
µmdj(1 + ε)Πi,w,j .

• Else if w = mij (pij = 0) then Πi,w,j = −∞.

• Else (w 6= mij) we assume Πi,w,j = +∞.

Again, observe that any job Jj is completely defined by its job profile and the
scale factor dj .

12

Lemma 6 The number of distinct profiles is at most ` := mµ·(2 + log1+ε
µm
ε

)µ.

Proof. Every profile is determined by µm entries. Recall that every operation
can be processed by one machine. It follows that all the different profiles can
be generated by first deciding the machine for each operation (there are mµ

possibilities). Then, for the chosen machines, the entries can be either −∞ or
any nonnegative integer h with ε

µmdj(1 + ε)h ≤ dj . For the remaining (not
chosen) machines the entries are equal to +∞.

3.2 Grouping jobs

Consider the input instance rounded as described in the previous Section 3.1.
Let δ := m(ε

6µ4m2)m/ε, and partition the set of jobs into two subsets of large
jobs L = {Jj : dj > δ} and small jobs S = {Jj : dj ≤ δ} according to their scale
factors. Again, we further partition the set of small jobs into subsets Si of jobs
having the same profile, for i = 1, . . . , `. For each subset Si, we group jobs from
Si as described for the unrelated parallel machines scheduling problem, but with
the following difference: here grouping two jobs, Ja and Jb, means to form a
composed job for which the processing time of the i-th operation is equal to the
sum of the processing times of the i-th operations of Ja and Jb.

Lemma 7 With 1 + 2ε loss, the number of jobs can be reduced in linear time
to be at most min{n, 2m

δ + `}.
Proof. Consider the rounded input instance I ′ as described in Section 3.1
(before grouping small jobs). Assume, w.l.o.g., that there exists a solution
SOL′ for I ′ of value OPT ′. It is sufficient to show that, by using the small jobs
grouped as described previously, there exists a schedule of value (1 + 2ε)OPT ′.

Partition the set L of large jobs into three subsets L1, L2, L3 as follows. Set
ρ = ε

6µ4m2 and let α denote a constant integer defined later such that

α = 0, 1, . . . ,m/ε− 1.

Following a technique that was used in [20], L is partitioned into the following
three subsets:

L1 = {Jj : mρα < dj},
L2 = {Jj : mρα+1 < dj ≤ mρα},
L3 = {Jj : mρm/ε < dj ≤ mρα+1}.

Note that each set size is bounded by a constant, and sets L1, L2, L3 and S
establish a partition of all jobs. The number α can be chosen such that

∑

Jj∈L2

dj ≤ ε. (1)

This is done as follows. Starting from α := 0, check each time whether the
set L2 corresponding to the current value of α satisfies inequality (1); if it is

13

not the case, set α := α + 1 and repeat. Note that for different α-values, the
corresponding L2 sets are disjoint. The total length of all jobs is m, and so
there exists a value α′ ≤ m/ε − 1 for which the corresponding set L2 satisfies
inequality (1). We set α := α′.

In the following we consider an artificial situation that we use as a tool.
Focus on solution SOL′, remove from SOL′ all the jobs except those from L1.
Clearly, this creates gaps in the resulting schedule σ. The starting and finishing
times of the operations from L1 divide the time into intervals: t1, t2, . . . , tg,
where t1 is the interval whose right boundary is the starting time of the first
operation according to σ, and tg is the interval with left boundary defined by
the finishing time of the jobs from L1. Furthermore, let lv denote the length of
interval tv, 1 ≤ v ≤ g. It follows that OPT ′ =

∑g
s=1 ls. Note that the number

g of intervals is bounded by 2µ|L1| + 1 ≤ 3µ/ρα. Let G be the set of pairs
(v, i) such that no job from L1 is processed in interval v and by machine i, for
v = 1, . . . , g and i = 1, . . . ,m (each pair (v, i) represents a gap of schedule σ).

Since the total length of jobs from L2 is at most ε, we can get rid of these
jobs by assuming that they are processed at the end of the schedule one after
the other; this increases the schedule by at most ε.

Consider the problem of placing jobs from L3∪S into the gaps of σ such that
the length of the resulting schedule is OPT ′. In the following we first describe
a linear program LP1 which is a relaxation of this problem. Then we propose
another linear program LP2 which is a relaxation of LP1. By using the solution
of LP2, we show that the jobs from L3 and the grouped small jobs, can be
scheduled within the gaps without increasing too much the length of the gaps.
More precisely, we show that the total increase of the length can be bounded
by ε, and the claim follows. The overall approach is similar to that used in the
proof of Lemma 3.

We formulate LP1 as follows. Consider the set S of (not grouped) small
jobs. For each job Jj ∈ S ∪L3 we use a set of decision variables xj,τ ∈ [0, 1] for
tuples τ = (τ1, . . . , τµ) ∈ A, where

A = {(τ1, . . . , τµ)|1 ≤ τ1 ≤ τ2 ≤ . . . ≤ τµ ≤ g}.

The meaning of these variables is that xj,τ represents the fraction of job Jj whose
operations are processed according to τ = (τ1, . . . , τµ), i.e., the i-th operation is
scheduled in interval τk for each 1 ≤ k ≤ µ. Note that by the way in which we
numbered the operations, any tuple (τ1, . . . , τµ) ∈ A represents a valid ordering
for the operations. Let the load Lv,h on machine h in interval v be defined as
the total processing time of operations from the jobs in S∪L3, that are executed
by machine h during interval v, i.e.,

Lv,h =
∑

Jj∈S∪L3

∑

τ∈A

∑
k=1,...,µ|τk=v,mkj=h

xj,τpkj .

Let us write the load Lv,h as the sum of L3
v,h + LS

v,h, where L3
v,h is the load of

the jobs from L3, while LS
v,h is the load of jobs from S. By Lemma 5, we have

14

that
LS

v,h =
∑

τ∈A

∑
k=1,...,µ|τk=v

∑

Jj∈S

xj,τ
ε

µm
dj(1 + ε)

Πk,h,j
.

Then LP1 is the following

(1) L3
v,h + LS

v,h ≤ lv, (v, h) ∈ G;
(2)

∑
τ∈A xjτ = 1, Jj ∈ S ∪ L3;

(3) xjτ ≥ 0, τ ∈ A, Jj ∈ S ∪ L3.

Constraint (1) ensures that the total length of operations assigned to gap (v, h)
does not exceed the length of the interval, while constraint (2) ensures that job
Jj is completely scheduled.

Let Sφ denote the set of small jobs having the same profile, where φ =
1, . . . , `. For each Sφ (φ = 1, . . . , `) we use a set of decision variables yφτ ∈ [0, 1]
for tuples τ = (τ1, . . . , τµ) ∈ A. The meaning of these variables is that yφτ

represents the fraction of jobs from Sφ whose operations are processed according
to τ = (τ1, . . . , τµ), i.e., the i-th operation is scheduled in interval τk for each
1 ≤ k ≤ µ. Let

L∗v,h =
∑

τ∈A

∑
k=1,...,µ|τk=v

∑̀

φ=1

yφτ

∑

Jj∈Sφ

ε

µm
dj(1 + ε)

Πk,h,j
.

Then LP2 is the following

(1) L3
v,h + L∗v,h ≤ ts, (v, h) ∈ G;

(2)
∑

τ∈A xjτ = 1, Jj ∈ L3;
(3)

∑
τ∈A yφτ = 1, φ = 1, . . . , `;

(4) xjτ ≥ 0, τ ∈ A, Jj ∈ S;
(5) yφτ ≥ 0, τ ∈ A, φ = 1, . . . , `.

By setting

yφτ =

∑
Jj∈Sφ

xj,τdj∑
Jj∈Sφ

dj

it is easy to check that any feasible set of values (xj,τ) for LP1 gives a feasible
set of values (yφτ) for LP2. Since by construction a feasible solution for LP1

exists, a feasible solution for LP2 exists as well. We show now that by using the
optimal solution of LP2 we can derive a schedule without increasing too much
the makespan.

Let y∗φτ (x∗jτ) denote the values of variables yφτ (xjτ) according to the op-
timal solution of LP2. For every positive value y∗φτ , schedule a subset Hφτ of
grouped jobs from Sφ on machine i until either (a) the jobs from Sφ are ex-

hausted or (b) the total fraction (i.e.
P

Jj∈Hφτ
djP

Jj∈Sφ
dj

) of jobs assigned to i is equal

to y∗φτ (if necessary fractionalize one job to use up y∗φτ exactly). We repeat this

15

for the not yet assigned grouped small jobs and for every positive value y∗φτ .
Note that if y∗φτ is not fractional, then the jobs from Sφ are not preempted by
the previous algorithm. In general, the number of preempted jobs from Sφ is

at most fφ − 1, where fφ =
∣∣∣
{

y∗φτ : y∗φτ > 0, τ ∈ A
}∣∣∣. According to the optimal

solution of LP2, let us say that job Jj ∈ L3 is preempted if the corresponding
(x∗jτ)-values are fractional. Let fj =

∣∣{x∗jτ : x∗jτ > 0, τ ∈ A
}∣∣, for Jj ∈ L3, then

we have that the number of preemptions of job Jj ∈ L3 is fj−1. Therefore, the
total number of preemptions is f =

∑`
φ=1(fφ − 1) +

∑
Jj∈L3

(fj − 1), and this
gives also an upper bound on the number of preempted jobs.

Now remove all the preempted jobs from S ∪ L3, and schedule these set of
jobs at the end of the schedule, one after the other. Since every job from S has
a smaller total processing time than any job from L3, we can bound the total
increase of the schedule length by ∆ = f ·mρα+1. A basic feasible solution of
LP2 has the property that the number of positive variables is at most the number
of rows in the constraint matrix, mg + ` + |L3|, therefore f ≤ mg ≤ 3mµ/ρα,
and ∆ = f · mρα+1 ≤ 3m2µρ. By the previous algorithm, we have assigned
all the jobs from S ∪ L3 to gaps with a total increase of the schedule length
of 3m2µρ. Now we consider the problem of schedule jobs from S ∪ L3 within
each interval. This is simply a smaller instance of the job shop problem, and
by using Sevastianov’s algorithm [21] it is possible to find a feasible schedule
for each interval tv of length at most lv + µ3m ·mρα+1; this increases the total
length by at most µ3mg · mρα+1 ≤ 3m2µ4ρ. Therefore, the total increase is
3m2µρ + 3m2µ4ρ ≤ 6m2µ4ρ, and by setting ρ = ε

6m2µ4 the claim follows.
By the previous lemmas a (1 + O(ε))-approximate schedule can be obtained

by finding the optimal schedule for the reduced set of jobs, a task that can be
performed in constant time.

Theorem 8 There exists a linear time PTAS for the job shop scheduling prob-
lem whose multiplicative constant hidden in the O(n) running time is reasonably
small and does not depend on the error ε, whereas the additive constant is ex-
ponential in m, µ and 1/ε.

4 Conclusion

In this paper we have proposed a new grouping technique which improves the
running times of several known approximation schemes. Interestingly, the re-
sulting approximation schemes are much simpler than the previous ones. This
new technique allowed us also to avoid the quite involved linear programming
technique by Grigoriadis and Khachiyan [5] as well as the rounding techniques
[10, 14], and the vector summation algorithm by Sevastianov [21] (that were
used as key ingredients in the approximation scheme for the job shop schedul-
ing problem). Clearly, the technique can be also used as a preprocessing step
in other algorithms (like branch and bound or cutting plane algorithms). Fi-
nally, we expect that the proposed idea will be also useful for other scheduling
problems.

16

References

[1] A. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis. Scheduling inde-
pendent multiprocessor tasks. Algorithmica, 32:247–261, 2002.

[2] J. Chen and A. Miranda. A polynomial time approximation scheme for
general multiprocessor job scheduling. SIAM Journal on Computing, 31:1–
17, 2001.

[3] M. R. Garey and D. S. Johnson. Computers and intractability; a guide to
the theory of NP-completeness. W.H. Freeman, 1979.

[4] L. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk. Better approx-
imation guarantees for job-shop scheduling. SIAM Journal on Discrete
Mathematics, 14(1):67–92, 2001.

[5] M. D. Grigoriadis and L. G. Khachiyan. Coordination complexity of par-
allel price-directive decomposition. Mathematics of Operations Research,
21:321–340, 1996.

[6] L. Hall. Approximability of flow shop scheduling. Mathematical Program-
ming, 82:175–190, 1998.

[7] L. Hall and D. Shmoys. Approximation algorithms for constrained schedul-
ing problems. In Proceedings of the 30th IEEE Symposium on Foundations
of Computer Science, pages 134–139, 1989.

[8] L. Hall and D. Shmoys. Near-optimal sequencing with precedence con-
straints. In Proceedings of the 1st Integer Programming and Combinato-
rial Optimization Conference, pages 249–260. University of Waterloo Press,
1990.

[9] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. Journal of the ACM, 23(2):317–327, 1976.

[10] K. Jansen and L. Porkolab. Improved approximation schemes for scheduling
unrelated parallel machines. Math. Oper. Res., 26(2):324–338, 2001.

[11] K. Jansen and L. Porkolab. Linear-time approximation schemes for schedul-
ing malleable parallel tasks. Algorithmica, 32(3):507–520, 2002.

[12] K. Jansen and L. Porkolab. Polynomial time approximation schemes for
general multiprocessor job shop scheduling. J. Algorithms, 45(2):167–191,
2002.

[13] K. Jansen, R. Solis-Oba, and M. Sviridenko. Makespan minimization in
job shops: a polynomial time approximation scheme. In Proceedings of the
31st Annual ACM Symposium on the Theory of Computing (STOC 99),
pages 394–399, 1999.

17

[14] K. Jansen, R. Solis-Oba, and M. Sviridenko. Makespan minimization in
job shops: A linear time approximation scheme. SIAM J. Discrete Math.,
16(2):288–300, 2003.

[15] E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys. Sequencing and schedul-
ing: Algorithms and complexity. Handbook in Operations Research and
Management Science, 4:445–522, 1993.

[16] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Mathematical Programming,
46:259–271, 1990.

[17] M. Mastrolilli. Efficient approximation schemes for scheduling problems
with release dates and delivery times. Journal of Scheduling, 6:521–531,
2003.

[18] M. Mastrolilli. A linear time approximation schemes for the single ma-
chine scheduling problem with controllable processing times. Journal of
Algorithms, 59:37–52, 2006.

[19] P. Schuurman and G. Woeginger. Approximation schemes - a tutorial. In
R. Moehring, C. Potts, A. Schulz, G. Woeginger, and L. Wolsey, editors,
Lectures on Scheduling. To appear.

[20] S. Sevastianov and G. J. Woeginger. Makespan minimization in open shops:
a polynomial time approximation scheme. Mathematical Programming,
82:191–198, 1998.

[21] S. V. Sevastianov. On some geometric methods in scheduling theory: a
survey. Discrete Applied Mathematics, 55:59–82, 1994.

[22] D. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for
shop scheduling problems. SIAM Journal on Computing, 23:617–632, 1994.

[23] D. Shmoys and E. Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical Programming, 62:461–474, 1993.

[24] D. Williamson, L. Hall, J. Hoogeveen, C. Hurkens, J. Lenstra, S. Sev-
astianov, and D. Shmoys. Short shop schedules. Operations Research,
45:288–294, 1997.

18

