Effective Neighborhood Functions for the
Flexible Job Shop Problem*

Monaldo Mastrolilli - Luca Maria Gambardella
IDSIA - Istituto Dalle Molle di Studi sull’Intelligenza Artificiale
C.so Elvezia 36, 6900 Lugano, Switzerland
{monaldo,luca}@idsia.ch, http://www.idsia.ch

January 31, 2000

Abstract

The Flexible Job Shop Problem is an extension of the classical job
shop scheduling problem which allows an operation to be performed by
one machine out of a set of machines. The problem is to assign each oper-
ation to a machine (routing problem) and to order the operations on the
machines (sequencing problem), such that the maximal completion time
(makespan) of all operations is minimized. To solve the Flexible Job Shop
problem approximately, we use local search techniques and present two
neighborhood functions (Noptl,Nopt2). Nopt2 is proved to be optimum
connected. Noptl does not distinguish between routing or sequencing an
operation. In both cases, a neighbor of a solution is obtained by mov-
ing an operation which affects the makespan. Our main contribution is
a reduction of the set of possible neighbors to a subset for which can be
proved that it always contains the neighbor with the lowest makespan.
An efficient approach to compute such a subset of feasible neighbors is
presented. A tabu search procedure is proposed and an extensive com-
putational study is provided. We show that our procedure outperforms
previous approaches.

Keywords: flexible job shop, tabu search.

*Supported by Swiss National Science Foundation project 21-55778.98, “Resource Alloca-
tion and Scheduling in Flexible Manufacturing Systems”.

1 Introduction

In the job shop scheduling problem (JSP), there is a set J = {J1,...,J,} of n
jobs that must be processed on a group M = {1,... ,m} of m machines. Each
job J; consists of a sequence of n; operations Oy, Ogj,. .. ,Oy,;, where O;;
must be processed without interruption on machine m;; € {1,... ,m} during
pi; time units. The operations Oyj, Ogj, ... , Oy, ; must be processed one after
another in the given order and each machine can process at most one operation
at a time.

In this paper we study a generalization of JSP called the flexible job shop
problem (FJSP), which provides a closer approximation to a wide range of
problems encountered in real manufacturing systems.

FJSP extends JSP by allowing an operation O;; to be executed by one
machine out of a set M;; of given machines, where M;; C M. The processing
time for operation O;; on machine k € M;; is p;ji > 0. The goal is to choose
for each operation O;; a machine ;(O;;) € M;; and a starting time s;; when it
must be performed so that makespan is minimized.

FJSP is therefore made more complex than JSP by the need to determine
a routing policy (i.e., the assignment of operations to machines) other than the
traditional sequencing decisions. The FJSP is NP-hard since it is an extension of
the job shop scheduling problem [17]. The NP-hardness of an optimization prob-
lem suggests that it is not always possible to find an optimal solution quickly.
Therefore, instead of searching for an optimal solution with enormous compu-
tational effort, we may instead use a local search method or an approximation
algorithm to generate approximate solutions that are close to the optimum with
considerably less investment of computational resources.

Our approach to solve the FJSP approximately is based on a local search
method [1]. Local search employs the idea that a given solution may be improved
by making small changes. Consider the minimization problem min{f(S)|S €
3}, where f is the objective function and X is the search space, i.e. the set
of feasible solutions of the problem. A neighborhood function is a mapping
N 3 — 2% which defines for each solution S € ¥ a subset N(S) of %, called
a neighborhood. Each solution in N(S) is a neighbor of S. A local search
algorithm starts off with an initial solution and then continually tries to find
better solutions by searching neighborhoods.

In this paper, a neighbor of a given solution S is obtained by moving an
operation. More precisely, first, an operation v is chosen and is deleted from its
machine sequence; next, assign v to an eligible machine (not necessary different
from the previous one); finally, insert v in the chosen machine sequence such
that the resulting schedule is feasible. An optimal insertion of v is the one with
the lowest makespan (see section 4.2). We reduce the set of possible neighbors to
a subset that always contains an optimal insertion. In particular, for a selected
operation v and a machine k, an efficient method is proposed for computing
a restricted set of solutions F,j that always contains the solution obtained by
inserting v in k optimally.

This paper is organized as follows. In Sections 2 and 3 a solution graph

representation and an overview of previous research are provided. Section 4
defines and proves the above mentioned properties of F;. Next, neighborhood
functions Noptl and Nopt2 are presented in Section 6. In Section 7 a tabu search
procedure is proposed. In Section 8 we present an extensive computational study
on 221 benchmark problems where our approach is compared with previous
approaches. Some final remarks are given in Section 9.

2 The Solution Graph

Let O denote the set of all operations, i.e., O = {O;;|7 =1,..,nand 1 <i < n,}.
A solution (u,s) of the problem defines for each operation v € O a unique
machine p(v) on which v is processed without preemption and a starting time
Sp-

We will represent a solution (u, s) by means of a solution graph. Fach node
represents an operation. Two dummy nodes, 0 and *, are introduced, repre-
senting the start and the end of the planning period. Each node has a weight
which is equal to the processing time p, ,(,) of the corresponding operation v,
when v is processed on machine p(v); furthermore py = p. = 0.

Precedence relations are incorporated in the solution graph by means of
precedence arcs; for each couple (O;;, Oiy15), where 1 < i < mn; —1 and j =
1,...,n, an arc (O;;, O;41;) is introduced. For each operation v € O we introduce
dummy arcs (0,v) and (v,*). If it has been decided that an operation w is
performed before operation v on a machine, a machine arc (u,v) is introduced.

We will denote a solution graph by G(V, A’), where V = O U {0, x}, and A’
consists of all machine arcs, precedence arcs, and dummy arcs. Let the starting
time of the dummy operation 0 be fixed at 0. Each arc (u,v) € A’ can then be
considered as representing a constraint of the form s, > sy, + Py, u(w)-

Many of the machine arcs and dummy arcs in a solution graph are redundant
in the sense that they are implied by other machine and dummy arcs. It is easy to
compute a reduced solution graph G(V, A), so that all information represented
in the solution graph G(V, A’) is also present in the reduced solution graph
G(V, A) and the number of arcs is bounded by O(N), where N is the total
number of operations. Precisely, graph G(V,.A) is the transitive reduction of
GV, A).

Here, the length of a path (wq,ws, ..., wy) is defined as the sum of the pro-
cessing times of the operations wy up to and including w,_1. Denoting the value
of some longest path from node ¢ to node j by £(i,), the starting time s,, of
operation w in a left justified schedule is equal to ¢(0,w) in the corresponding
solution graph. The makespan of a solution is equal to the length of some longest
path from 0 to %, i.e., £(0,*). This path is often referred to as the critical path,
and the arcs and nodes on this path are called critical. Sometimes there are
several longest paths. A solution is infeasible if and only if the corresponding
solution graph contains a cycle.

In the remainder p., () is written as p,, when it is clear which machine
processes operation w. In addition, the tail time t,, is defined. It corresponds to

the length of some longest path from operation w to node x, i.e., t,, = {(w,).
It follows that an operations w is critical if and only if s, + pw + tw = Cimax,
where C,.x denotes the makespan of the corresponding solution.

Bellman’s labeling algorithm [10] can be used in order to compute the
makespan and all s,, and t,, values in time O(N), for any given solution.

3 Literature review

A review of some approaches to the FJSP is reported here. An early approach
is described by Brucker and Schlie [8]. They give a polynomial time algorithm
for minimizing the makespan for the case of two machines.

Heuristic approaches based on local search techniques are usually classi-
fied according to how routing and scheduling problems are solved during the
search. A distinction between simultaneous and hierarchical approaches is usu-
ally made. The hierarchical approach [2, 5, 6, 15, 26] is based on the observation
that when a routing is chosen, FJSP turns into the classical job shop problem.
Given the machine assignment, the problem is to find the sequence of operations
minimizing a given performance function. Brandimarte [6] first determines an
assignment and then focuses on the job shop scheduling problem. A reassign-
ment of one of the critical operations is done at predefined intervals and then
again the focus is on the resulting job shop scheduling problem. Other authors
suggest more integrated approaches [4, 7, 11, 21, 19, 27]. In [7, 4, 19, 21] the
assignment of operations to resources and the sequencing of operations on the
resources are two different types of transitions. In [11, 27] there is no distinc-
tion between reassigning or resequencing an operation. Vaessens [27] obtains a
neighbor by deleting an operation v from the machine ordering, by identifying
a set of feasible insertions containing the optimal one and by inserting v in the
best possible way. Vaessens’ algorithm spends a considerable amount of com-
puting time for defining such a set of feasible insertions. Brucker and Neyer [7]
also propose the best insertion of an operation in their neighborhood function,
but the algorithm they suggest is too time consuming. In order to reduce the
computational effort, they propose a faster algorithm that guarantees only the
feasibility of an insertion.

Recently, Jansen et al. [20] developed a linear time approximation scheme
for the flexible job shop problem with fixed number of machines and number of
operations per job.

4 Moving an operation

In the proposed approach, a neighbor of a solution S is obtained by mowving
and inserting an operation in an allowed machine sequence. Suppose that a
feasible solution (y, s) is given and let G be the corresponding solution graph.
A k-insertion of operation v € O in machine k € M, is performed in 2 steps.

1. Delete v from its current machine sequence by removing all its machine
arcs. Set the weight of node v equal to 0.

2. Assign v to machine k and choose the position of v in the processing order
of k, by adding its machine arcs and setting the weight of node v equal to

Dok-

Let G~ be the graph obtained from G at the end of step 1 (for the remainder,
the superscript “—” refers to the situation after the execution of step 1, and v
denotes the operation to be moved). A k-insertion of v is feasible if it does not
create a cycle in the resulting graph. Clearly, G~ is acyclic since G is already
acyclic. A k-insertion is called an optimal k-insertion, if

e it is feasible;

e the makespan of the corresponding schedule is minimal; i.e. is smaller than
or equal to the makespan of all other schedules resulting from feasible k-
insertions.

An insertion of v is called optimal if it leads to a schedule with minimal
makespan within the set of all schedules resulting from optimal k-insertions of
v, k € M,.

In the following we describe how to compute, for any given operation v and
machine k € M, a subset of neighbors F,; that always contains the solution
obtained by performing an optimal k-insertion of v. Obviously, the set of neigh-
bors F, = Uren, Fur contains the solution obtained by performing an optimal
insertion of v.

Let s, and t; be the starting and the tail time of a generic operation x € O
in G~. Notice that in G, for every operation x, we have s; < s, and t; <t,,
since the removal of an operation from a machine cannot increase the starting
and tail times. Furthermore, since in G~ the machine arcs of operation v are
deleted, it follows that s; = S;J[v} + ppap) and t7 = psyp) + th[v], where
PJ [v] (SJ [v]) denotes the operation of the same job of v that directly precedes
(follows) v. If v is the first (last) job operation, we set PJ[v] = 0 (SJ[v] =).
It should be clear that s, Jj] = 5P and tg I = tg Jp> since the removal of
v cannot change the starting time of its previous job operations, and the tail
times of its following job operations.

Let Q. be the set of operations processed by k in G~ and sorted by increasing
starting time (note that v ¢ Q). Let Ry and L, denote two subsequences of
Q. defined as follows,

Rk — ($ € Qk‘sw +p:z; > S;) (1)
L, = (xEQk‘pm+tm>t;) (2)

The set F,; will be defined as follows.

Definition 1 Let F,; be the set of solutions obtained by inserting v after all
the operations of L\ Ry and before all the operations of Ry\Ly.

Note that the computation of Ry and Lj only requires starting and tail times
of operations in G, therefore F,; is calculated by using only information from
the current graph solution.

In subsection 4.1 it is shown that F, is a set of feasible neighbors, while in
subsection 4.2 it is proved that other k-insertions than the ones used to define
F,;, cannot deliver a solution with a better makespan.

4.1 Feasible insertion

Let x be any operation of the set (), of operations processed by k. If a path
from x to v exists in G~, then must be scheduled before v in order to obtain
a feasible solution, otherwise a cycle is produced. Similarly, if a path from v to
x exists in G~, then & must be scheduled after v. Finally, if no path between
x and v exists in G, then any insertion of v just after or before = delivers a
feasible solution.

Properties of R, By the definition of Ry, there is no path from any operation
x € R tovin G~. If x is an operation of Q\Ry then s, + p, < s, . Since
Sy > sy and p, > 0, it follows that sy < s, + p,. Hence no path from v to
any operation of Qi \ Ry in G (and hence in G™) exists. The above situation is
illustrated in Figure 1.

Properties of L, Again, by the definition of Lj there is no path from v to
any operation € Ly in G~. If x is an operation of Qx\Ly then p, +t, <t .
Since t, > t, and p, > 0, it follows that ¢, < p, + t,, thus there is no path
from any operation of Q;\L to v in G (and hence in G™). This situation is
depicted in Figure 2.

Relationship between R, and L; In the following it is shown that the set
F,; of solutions obtained by inserting v after every operation of Li\Rj and
before every operation of R\ Ly, is a set of feasible solutions.

By the definition of Ry and Ly, any operation of L\ Ry, is completed before
any operation of Ri\L,. We distinguish between two cases, i.e., Ly N Ry # ()
and L N Ry, = 0.

1. Case L, N Ry, # (). For each operation x of Lg N Ry, there is no path from
v to x and from x to v. Therefore, every k-insertion of v in Ly N Ry, (after
every operation of Lj\ Ry and before every operation of Ry\Ly) delivers
a feasible solution. This case is represented in Figure 3.

2. Case Ly N Ry, = (. For each operation = of Qr\(Lxr U Ry), there is no
path from v to z and from x to v in G~. Hence, any k-insertion of v after
every operation of L and before every operation of Ry delivers a feasible
solution. This case is represented in Figure 4.

4.2 Optimal insertion

In this subsection we prove that other k-insertions than the ones used to define
F,;, cannot deliver a solution with a better makespan.

Let (u,w) denote a k-insertion of v obtained by scheduling v just after u €
Qr, and before w € @y, where w is the operation scheduled just after u in
Qr. The corresponding solution graph G(*™) is obtained from G~ by adding
machine arcs (u,v) and (v, w) and setting the weight of node v equal to py.

For any x € V), let the starting and tail times in G(**) be denoted as s&"’w) and

() respectively. The length of a longest path in G(*®) containing v is equal
(u,w) (u,w)
to sy + Pok + tv .
Since G(»®) is derived from G~ by only adding arcs incident to v, the
makespan Cfﬁ‘a;;") of the solution graph Gww) is the maximum between the

(uw,w (u,w)

length £ (0, *) of a longest path in the graph G, and s,) Fpor + 1) e
Cliae) = max {7 (0,4), s0) 4+ pyg, + £}

A E-insertion (u,w) of v is an optimal k-insertion if Oéig;”) is minimal.
However, since the constant £~ (0,) occurs for each insertion, it suffices that

slww) 4 Dok + £80%) i minimal. Since s{“*) = max {s7 4+ pu; sy} and Hlww) —
max {p,, + ty;t, }, the value of sp" +pyp + 10"

(o) “) is equal to 7 + po + £ +
A(u,w), where

A(u,w):max{s; +pufs;;0}+max{pw+t;ft;;O}. (3)

Thus, a k-insertion (u,w) of v for which A(u,w) is minimal is an optimal k-
insertion.

Since F is defined as the set of solutions obtained by inserting v after all
the operations of L;\Rj and before all the operations of Rj\ L, the following
theorem shows that other k-insertions than the ones used to define F,; cannot
deliver a solution with a better makespan.

Theorem 1 There is an optimal k-insertion of v obtained by inserting v after
every operation of Li\Ry and before every operation of Ry\Ly. Furthermore,
if L N Ry, = 0 such insertions are all optimal k-insertion.

Proof. Section 4.1 shows that any insertion of v after every operation of
L;\ Ry and before every operation of Rj\Ly produces a feasible set F, of
solutions. Fyj is shown to contain an optimal insertion in two steps.

(Case 1) The insertion of v as a direct successor of the last operation of
L\ Ry, is not worse than all those obtained by inserting v before any operation
of Li\Ry;

(Case 2) The insertion of v as a direct predecessor of the first operation of

R\ Ly, is not worse than all those obtained by inserting v after any operation
of Rk\Lk.

1. For each operation u of Li\ Ry, we have max {s, + p, — s, ;0} = 0. Since
Sy > Sy, it follows that max {s,, + py, — s ; 0} = 0. Therefore the value of
expression (3) when v is inserted just after w is equal to max {p,, + t;, — ¢, ;0},
where w is the operation that follows u in Q). Since for each oper-
ation x that follows w in @) we know that max{p, +t, —t,;0} >
max {p, +t, —t,;0}, the set of solutions obtained by inserting v be-
fore the last operation of L\ Ry cannot deliver a better solution than the
one obtained by inserting v as a direct successor of the last operation of
Li\Rg.

2. (Case 2 is symmetric to Case 1).

Now consider the case when Ly N R, = (). Then Li\Ry, = Ly, and Rp\L, =
Ry.. For each operation z of Qi\(Lx U Ry), Sz +px < s, and p, +t, < t,,.
Again, since s, > s, and t, > t, it follows that max{s, + p, —s,;0} =
max {p,; +t; —t,;0} = 0. For each operation x of Ly, max {s; + ps — s;;0} =
0, and for each operation x of Ry, max {p, +t, —t,;0} = 0. Therefore all the
insertions of v after all the operations of Lj and before all the operations of Ry
are optimal. m

The computation of a reduced set of insertions that always contains an op-
timal k-insertion of v is a task that takes O(log N) time. Indeed, |Qx| < N and
the time required to determine Ly and Ry is O(log |Qy|) by using binary search.

5 Moves Evaluation

In order to assess the effectiveness of a given k-insertion of v we use the value
of the new longest path which contains operation v. The length of this path
is a valid lower bound on the value of the new solution. The exact value of
the longest path which contains operation v can be calculated in O(N) time;
however, doing this for every candidate v and every machine k € M, at every
step becomes expensive. In the following we introduce an attempt to avoid the
calculation of longest paths. Indeed, we compute upper bounds instead of the
exact values. Over 52 problems with different features, we experimentally found
that the proposed upper bound is very close to the exact length. Indeed, it was
on average only 0.001% bigger than the exact value.

The upper bound of a longest path from 0 to * containing v in the solution
graph induced by a k-insertion of v, is determined as follows. First, compute
sequences Ly, and Ry. If LyNRy, = () (see Theorem 1), every k-insertion of v after
the operations of Lj and before the operations of Ry, is an optimal k-insertion,
and the exact length of the longest path containing v is equal to s, +p,,+t, . If
L N Ry, # (), consider L N Ry, sorted in increasing order of starting times. Let [
be the cardinality of Ly N Ry, and let the function 7 : {1,...,1} — Ly N Ry denote
this order; hence Se1) < Sx2) < o0 < Snq but also tﬂ(l) > tﬂ@) > > tﬂ(l).
The exact length Lp(v,k, i) of the longest path passing through v when it is

inserted in k in the i*" position of L, N Ry, (i = 0 means that v is inserted just
before (1), 1 < i <! means that v is inserted just after m(7)) is,

sy +max{prq) + t;(l),t;} ifi=0
Ly(v, ki) = por + mam{s;(i) + Pr(iys 8y } + max{pr(iz1) + t;(i+1),t;} ifl1<i<li
max{s;) +Pr(i): Sy | 1, ifi=1

(4)

and v is k-optimally inserted when equation (4) is minimized. If L, N Ry # ()
it is necessary to compute s;(i) and t;(i) for each ¢ € {1,...,1}, which takes
O(N) time. In that situation, we use instead a less expensive approximation
procedure to estimate 5;(1‘) and t;(i). More precisely, to define the estimated

value f/p(v, k,i) of Lp(v,k,i), we distinguish two cases.

(a) Machine k is different from the machine processing v in the current solu-
tion, i.e., k # u(v).

(b) & = o).

In case (a) we define Lp(v, k, i) by simply replacing Sa(d) and b with s ;)

i

and ¢, and from (4) we get

. Sy +Pr) a1 ifi=0
Lp(v,k,i) = pok + 4§ Sx(s) + Pr@) T Prit1) +trpry 1 <0< (5)
Sn(i) T Pa(i) T, ifi=1

since (i) € Li N Ry.

In case (b), we adopt a procedure used by Dell’Amico and Trubian [13] for
the job shop problem which takes O(l) time. Hence, computing Lp (v, k, i) takes
O(log |Qk| + 1) time. The latter is on average a substantial gain over the O(N)
time needed in the exact case.

We call the k-insertion of v for which the estimated longest path is mini-
mized, approximate optimal k-insertion. Over 17 x 10° trials and 172 different
problems, we experimentally found out that an approximate optimal k-insertion
is also an optimal k-insertion of v in 99% of the cases with a maximum absolute
error of 1%.

In the following we want to study how “far” the upper bound L p(v, k,i) is
from the correct value Lp(v,k,4) in the worst case. Only case (a) (k # p(v))
is considered. Nevertheless, since the approximation procedure adopted in case
(b) is more accurate than the one used for (a), the same bound holds also for
case (b).

Theorem 2 f/p(v, k,i) <2Lp(v,k,i) + (Pop(v) — Pok)-

Proof. Let ¢ and d denote the operations which are executed just before
and after v, respectively, in the schedule of machine p(v) in G. Let u and w

denote the operations which are executed on machine k just before and after v,
respectively, when v is inserted in the i'" position of L N Ry. Let P(u) (S(w))
be the set of operations belonging to any path between 0 and u (between w
and) in G. First note that it is not possible that v € P(u) and v € S(w)
simultaneously, otherwise there would be a cycle in G. Therefore, in G three
different situations are possible.

1. v € P(u) and v ¢ S(w). In this case t,, = t,,. If i = 0 then Lp(v,k,0) =
Lp(v,k,0). Otherwise, if d is not on the longest path between 0 and u in
G, then s = s, and eq. (5) gives the exact value. Otherwise, s, — sq
is equal to the length of the longest path between d and u. Since after
the k-insertion (u,w) of v the value of the longest path between d and
u cannot change, we have s, > s, + s, — sq. Furthermore, sq — s =
max {Sv + Do, u(v), SPJId] T PPJ[d) } —max {Sc + Pe, SPJd] T PPJ[d) }7 and as
max {Sv + Do, u(v)> SPJI[d] +pPJ[d]} < Sy +Py,p(v)tmax {Sc + Pe; SPJld] T PPJd] },
then sq — s; < 8, + Py,u(v)- Thus,
j)p(v,i, k) 54 — S, +max {S; + Pus s;} + Po, + max {pw +it,,t,
8, + P, p(v) + LP(”a i k)
2LP(U7 k? Z) + (pv,u(v) - pvk)'

IN NN

since s, + por < Lp(v,i,k).

2. v ¢ P(u) and v € S(w). Analogous to case 1, it is possible to prove that
Lp(v,i, k) <ty + Do,u(v) + LP(U,i,k). Since t,, + por < LP(U,i, k), the
claim follows.

3. v ¢ P(u) and v ¢ S(w). In this case, Lp(v,i,k) = Lp(v,i,k) since

s, = 8y and t, =t,,.

6 Neighborhood function

In this section we present two neighborhood functions (Noptl, Nopt2) which
can be used in local search methods for the FJSP.

In order to minimize the makespan, it may be profitable to consider only
neighbors which are obtained by reinserting operations v that belong to a critical
path in the solution graph of the current schedule. Indeed, a neighbor that is
obtained by reinserting an operation v that does not belong to a longest path
in the solution graph of the current schedule, does have a longest path in its
solution graph which is at least as long as the longest path in the solution graph
of the current schedule. The reason for this is that the longest path of the
current schedule remains present in the solution graph of such a neighbor [22].

In order to reduce the neighborhood size we consider only a single critical
path P of G. In P the preference is given to job arcs and it is obtained as

10

follows: the first operation of P is the first operation of any arbitrarily selected
critical path of G for each operation v € P, if the immediate job successor S.J[v]
of v is a critical operation, then SJ[v] belongs to P, otherwise the immediate
machine successor SM|[v] of v is a critical operation that belongs to P (if SJ[v]
and SM|[v] are defined). By using this particular critical path P it is possible
to prove some properties (see theorems 3 and 4) of Noptl and Nopt2.

Let S’vk denote the solution of F; obtained from solution .S by performing
an approximate optimal k-insertion of v (see Section 5) obtained by considering
only insertions on different positions than the current, i.e. S # Sie-

The neighborhood set Nopt1(.S) is defined as the set of every Sy, for each op-
eration v € P and each machine k € M,,. The proposed neighborhood Nopt1(S)
allows us to formulate a sufficient condition of optimality.

Theorem 3 Let S be a feasible solution of a given FJSP. If Nopt1(S) =) then
S is an optimal solution.

Proof. If Noptl1(S) = 0, any operation v € P can be processed by only
one machine, i.e., M, = {k}; the set F,; contains only the current solution,
i.e., Fyr = {S}. Therefore, for each operation v € P it must be the case that
Ly N Ry, = (), otherwise at least two insertion points would be available for v,
guaranteeing therefore that Nopt1(S) #). Since v is a critical operation in
G so that L N Ry = (), we will show that PJ[v] and SJ[v] are also critical
operations in G. Indeed, at least one operation between SJ[v] and SM [v] must
be critical. If SM|[v] is critical, since Ly N R, = @) and SM[v] € Ry, it follows
that' S.M[v] ¢ Lk rI.‘helrefore Psmn] T s S to =P T s AS SMv] is
a critical operation it follows that pg M) +ig Mlo] = Psy] +ig o] and therefore
SJ[v] is also critical (analogous considerations hold to prove that PJ[v] is a
critical operation). Then, every operation of P belongs to the same job J;, and
the length of the critical path P is equal to the sum of the processing times of
all the operations of J;. Obviously, this value also defines a lower bound for the
makespan of an optimal schedule and thus S is optimal. m

The neighborhood set Nopt2(S) is defined as an extension of Nopt1(S) by
adding for the current machine & of v all schedules of the set Fi;\ {S}. Since
Nopt1(S) C Nopt2(S) it follows from Theorem 3 that S is an optimal solution
if Nopt2(S) = 0.

Because of theoretical and practical reasons a fundamental question is whether
a given neighborhood is optimum connected or not. This property is defined as
follows.

Definition 2 A neighborhood function N is called optimum connected if, from
each solution S, there exists a finite sequence of solutions (Si,Sa, ..., Sk) with
So =5, Sk is optimal, and S;y1 € N(S;) Vi=1,...,k— 1.

The optimum connectivity of a neighborhood function has consequences for
local search algorithms. For instance, if a given neighborhood function is not
optimum connected, then there are solutions for which no sequence of transitions

11

leads to an optimal solution. In this case any local search algorithm that starts
with such an initial solution and makes only transitions to neighboring solutions
is unable to find an optimal solution. In Theorem 4 it is shown that Nopt2 is
optimum connected. The concept of block is used in the proof. A block is the
maximal sequence, with cardinality greater than one, of adjacent operations of
different jobs processed by the same machine and belonging to a critical path
of a current solution.

Theorem 4 The neighborhood function Nopt2 is optimum connected.

Proof. The proof of this theorem is similar to the proof of a corresponding
theorem in Hurink et al. [19]. In the following we provide only the differences.
Consider an optimal solution S*. In the neighborhood structure Nopt2, there
is always a transition which allows an operation v € P to be reassigned to any
machine in the set M,. Thus, at most N transitions are necessary to get a
solution for which all operations of all blocks on the critical path P are assigned
to the same machines as in S*; assume this situation in the following. Let P =
{By, Ba, ..., B;} be the current critical path (previously defined) of I blocks. Asin
[19], it is sufficient to prove that any solution obtained by reversing two adjacent
operations (by,byy1) (1 < 2z < h — 1) belonging to Bj = (by, ..., by, ..., bp) (for
j=1,...,1) isone of Nopt2(S). By the definition of Nopt2(S), b, can be inserted
just after byyq if o, +po,,, >, and ssarpp,,,] T PSMb.] > Sp, -

The first condition is verified since b, and b, are two adjacent and critical
operations, hence ty,,, + pb,,, = tp,; furthermore t,, > ¢, and &, # ¢, by
the definition of P. Indeed, suppose, on the contrary, that t,, = t,,» then
tsiba] + PsJp.] = te, and it follows that SJ [b,] is a critical operation and, by
the definition of P, operation x is the last operation of its block, i.e., © = h,
which is a contradiction since 1 <z < h — 1.

The second condition is verified since sspsp, . ,] + PSMpyi1] = Sboys = Sb, +

Pb, > Sb_:n. |

7 Search Procedure

A local search algorithm starts with some initial solution and moves from neigh-
bor to neighbor in order to find better solutions. The main problem with this
strategy is to escape from local minima where the search cannot find any further
neighborhood solution that decreases the objective function value.

Different strategies have been proposed to solve this problem. One of the
most efficient strategies for job shop problems is tabu search [18]. Tabu search
allows the search to explore solutions that do not decrease the objective function
value only in those cases where these solutions are not forbidden. This is usually
obtained by keeping track of the last solutions in term of the action used to
transform one solution to the next. When an action is performed it is considered
tabu for the next T iterations, where T is the tabu status length. A solution is
forbidden if it is obtained by applying a tabu action to the current solution.

12

Two tabu search algorithms were implemented by employing neighborhoods
Noptl and Nopt2, respectively. We compared the Noptl-version and Nopt2-
version, and we experimentally found that the Noptl-version is as good as,
but faster than the Nopt2-version since a smaller neighborhood size is used.
Therefore, in our experience and for the considered problem, the connectivity
of the neighborhood is only of theoretical but not of practical interest. The
following refers to the Noptl-version only.

When Noptl is used, an action is composed of a couple (v, k), where v is the
operation being moved and k is the machine operation to which v is assigned
before the move. In order to keep track of the actions performed, we use a
N x m matrix TM. Each time, action (v, k) is performed, TM (v, k) is set to
iter + T, where iter is the current iteration number and T is defined in the
following. An action (v, k) is tabu if TM (v, k) > iter. The tabu status length
T is crucial to the success of the tabu search procedure, and we propose a self-
tuning procedure based on empirical evidence. T is dynamically defined for
each operation v and each solution. It is equal to the number of operations of
the current critical path P plus the number of alternative machines available
for operation v, i.e., T':= | P| + | M,|. We choose this empirical formula since it
summarizes, to some extent, the features of the given problem instance and those
of the current solution. For instance, there is a certain relationship between |P)|
and the instance size, between |P| and the quality of the current solution. In
order to diversify the search it may be unprofitable to repeat the same action
often if the number of candidate actions is “big” or the solution quality is low,
in some sense, when |P| is “big”. Furthermore, the tabu status length of v is
augmented by |M,| in order to diversify the machine assignment of v.

We denote as best move the one with the smallest estimated length of the new
longest path containing the moved operation. If several non-tabu moves exist,
the next one is randomly chosen between the best two non-tabu moves. This
method is useful to decrease the probability of generating cycles. In order to
explore the search space in a more efficient way, tabu search is usually augmented
with some aspiration criteria. The latter are used to accept a move even if it has
been marked tabu. In the present case a move of operation v is always accepted
if the estimated length of the new longest path containing v decreases the best
makespan obtained so far (when several moves satisfy the previous condition,
the best one is chosen). Finally, when only tabu moves are available, the chosen
solution is the one (v, k) with the lowest value of TM (v, k).

Before presenting the computational results we describe how the first fea-
sible solution is computed. We put the first operation which has not yet been
scheduled of a randomly chosen job at the end of a permissible and randomly
chosen machine.

8 Computational results

The Noptl-version of the search procedure described in Section 7 was imple-
mented in C++4 on a 266 MHz Pentium and tested on a large number of problem

13

instances from the literature. The results obtained with our procedure (denoted

T'Soptl) were then compared with results obtained with other procedures.
First we discuss the flexible job shop scheduling instances we use in our

computational comparisons. Several sets of problem instances were considered.

o The first data set (BRdata) comes from Brandimarte [6]. The data were
randomly generated using a uniform distribution between given limits.
They consist of ten problems where the number of jobs ranges from 10 to
20, the number of machines ranges from 6 to 15, operations for each job
range from 5 to 15 and the maximum number of equivalent machines per
operation ranges from 3 to 6.

e The second test sample (DPdata) comes from Dauzére-Pérés and Paulli
[11]. The data consist of 18 test problems where the number of jobs ranges
from 10 to 20, machines range from 5 to 10, operations for each job range
from 5 to 25. The set of machines capable of performing an operation was
constructed by letting a machine be in that set with a probability that
ranges from 0.1 to 0.5.

o The third data set (BCdata) comes from Barnes and Chambers [4]. The
data were constructed from three of the most challenging classical job
shop problems [16, 23] (mt10, 1a24, 1a40) by replicating machines selected
according to two simple criteria: the total processing time required by a
machine and the cardinality of critical operations on a machine. The set
consists of 21 test problems and the processing times for operations on
replicated machines are assumed to be identical to the original.

o The fourth test sample (HUdata) comes from Hurink et al. [19]. The prob-
lems are generated by modifying benchmark problems for the classical job
shop problem. More specifically, they were obtained from three problems
by Fisher and Thompson [16] (mt06, mt10, mt20) and 40 problems from
Lawrence [23] (la01-1a40). Each set M;; is equal to the machine to which
operation O;; is assigned in the original problem, plus any of the other
machines with a given probability. Depending on this probability, Hurink
et al. generated three sets of test problems: edata, rdata and vdata. The
first set contains the problems with the least amount of flexibility, whereas
the average size of M;; is equal to 2 in rdata and m/2 in vdata.

The non-deterministic nature of our algorithm makes it necessary to carry
out multiple runs on the same problem instance in order to obtain meaningful
results. We ran our algorithm five times from different starting solutions. The
results obtained with our procedure were then compared with results obtained
with all procedures for which we could find results (in terms of makespan and
CPU time) in the literature. We use the following notation for those procedures:
BR stands for the best tabu search procedure of Brandimarte [6]. DP stands
for a tabu search procedure of Dauzére-Pérés and Paulli [11]. BC stands for
a tabu search procedure of Barnes and Chambers [4]. HJT stands for a tabu

14

search procedure of Hurink et al. [19]. BN stands for a tabu search procedure
of Brucker and Neyer [7]. For HUdata the best results of the combined effort of
HJT, BN and DP are denoted as HBD.

The number of iterations was chosen experimentally in order to ensure a
compromise between the running time and solution quality. We limited the
number of iterations to 10° for BRdata and HUdata and to 4 x 10° for DPdata
and BCdata.

The acronym CI-CPU stands for computer-independent CPU times. These
values were computed using the normalization coefficients of Dongarra [14], as
interpreted by Vaessens et al. [28].

For the HUdata problems we consider the lower bounds computed by Jurisch
[21]. For the remaining data sets only lower bounds computed in a straight-
forward way are available, therefore they are generally not very close to the
optimum. We compute the relative error for each algorithm and each instance;
i.e. the percentage by which the best solution value (UB) obtained is above the
best known lower bound (LB), that is 100(UB/LB). M RE denotes the mean
relative error for the set of problems reported. For our procedure M RE: best
out of 5 runs, M RE,,: average out of five runs.

Table 1 shows our computational results. The name and size of data sets
are given in column 1 and 2. Our procedure outperforms the combined effort of
the other procedures. Comparing the best value with average value, we can see
that algorithm T'Soptl is quite robust (i.e. the differences between the solution
values of the runs are small) and the quality of the solutions is weakly dependent
upon the random choices and the poor starting solutions.

More information on data set HUdata is shown in table 3. The test problems
in edata seem to be more difficult than the test problems in rdata and vdata.
For some of the test problems in edata, the deviation from the lower bound
is quite high, e.g. 1a36-la40. Admittedly, this might be caused by poor lower
bound quality for these problems, but it might also come from the fact that the
test problems get easier as the flexibility increases.

A comparative overview of the T'Soptl average makespan and CI-CPU out
of 5 runs is given in Table 2. Column 4 (CI-CPU) gives the sum of the CI-CPU
times used to compute all the solutions except for our procedure where it is the
sum of the average CI-CPU out of five runs. Column 5 (B:E:W) represents the
number of examples for which T'Soptl average makespan is better (B), equal
(E) or worse (W) than the best makespan found by the procedure of column
2. The major message of table 2, is that T'Sopt1 significantly outperforms all
the other procedures both in terms of average solution quality and computing
time. With reference to HUdata, our average computational effort is about 15,
30 and 25 times smaller than the corresponding CI-CPU of HJT, BN and DP,
respectively, and comparing our average solution values with the best known
upper bounds, in 129 test problems we obtain 74 better results, while in only
5 cases our average solution values are worse. Furthermore, T'Soptl is about
5 and 20 times faster than DP and BC on DPdata and BCdata, respectively.
Computing times for BRdata are not reported in [6] and therefore a comparison
of the computational effort for these runs is not possible. Additional details on

15

the computational experience reported here can be found in [24].

Considering our best results we note that T'Soptl found 120 new better
upper bounds and 77 optimal solutions over 178 benchmark problems and it
was outperformed in only one problem instance. Furthermore, it should be
noted that by increasing the number of iterations, it is possible to eliminate
that case. The computing times are generally small (no run required more that
3 minutes for DPdata and 30 seconds for the remaining problems).

Since the classical job-shop scheduling problem is a special case of the flexible
job shop problem, our tabu search procedure can also be used to solve these
problems. We tested our procedure on the original 43 test problems [16, 23]
(sdata) used to generate test sample BCdata and HUdata. For this set of
problems we ran T'Soptl 10 times from different starting solutions and limited
the number of iterations to 10°. Our tabu-search algorithm finds an optimal
solution for 38 of 43 problems. With regard to the 5 remaining problems, the
distance from the best lower bound (or optimum, if known) is smaller than
0.1%. It is worth noting that our procedure is able to find the optimal solution
to the notorious 10 x 10 problem (mt10) by Fisher and Thompson in just 0.01
seconds starting from a solution with makespan equal to 1686. In order to
make a more detailed comparison on problems for which it is meaningful, we
selected the 13 most difficult instances, according to Balas and Vazacopoulos
[3], among the 43 problems. Table 4 contains comparisons related to the best
makespans found by T'Sopt1, against those from DT (the tabu search procedure
of Dell’Amico and Trubian [13]), NS (the tabu search procedure of Nowicki and
Smutnicki [25]) and BV (the procedure SB-GLS2 of Balas and Vazacopoulos
[3]). Our results are close to the ones obtained by the best search procedures to
solve the job shop problems, although the computational time used by T'Sopt1l
is considerably greater. Indeed, on average T'Soptl is 6 times slower than BV.
However, our tabu search procedure is quite simple and it is an obvious topic
for further computational experiments to analyze how more sophisticated search
strategies could improve the computational time.

9 Conclusion

In this paper, two new neighborhood functions with several properties for solv-
ing the flexible job shop scheduling problem are presented. Due to their special
structure, our tabu search based algorithm works faster and more efficiently
than other known algorithms. Furthermore the procedure is quite simple. Our
primary objective is to show that the proposed neighborhood structure leads
to an efficient heuristic for the FJSP. A large sample of computational experi-
ments is presented and we found 120 new better upper bounds and 116 optimal
solutions over 221 benchmark problems.

Future research directions include the analysis of the procedure performance
when features of tabu search such as long-term memory and backtracking mem-
ory are considered.

16

The neighborhood structures presented here can be extended to solve the
multi-resource shop scheduling with resource flexibility [12] and the multi-mode
job shop problem [7]. Both problems can be seen as special cases of Resource
Constrained Project Scheduling Problem where multiple modes are allowed [9].

Acknowledgment. Thanks are due to Marco Zaffalon, Andrea Rizzoli,

Fred Cummins and two anonymous referees for comments that helped improve
the paper.

17

References

1]

2]

Aarts, E.H.L., Lenstra, J.K., (1995): Local Search in Combinatorial Optimiza-
tion, Wiley, Chichester.

Akella, R., Choong, Y., (1984): “Performance of a hierarchical production
scheduling policy”, IEEE Trans. Components, Hybrids and Manufacturing Tech-
nology, 225-248.

Balas, E., Vazacopoulos, A., (1998): “Guided Local Search with Shifting Bottle-
neck for Job Shop Scheduling”, Management Science 44, 262-275.

Barnes, J. W., Chambers, J. B., (1996): “Flexible Job Shop Scheduling by Tabu
Search”, Graduate Program in Operations Research and Industrial Engineer-
ing, The University of Texas at Austin, Technical Report Series, ORP96-09,
http://www.cs.utexas.edu/users/jbc/.

Bona B., Brandimarte P., (1990): “Hybrid hierarchical scheduling and control
systems in manufacturing”, IEEE Trans. Robotics and Automation, 673-686.

Brandimarte, P., (1993): “Routing and scheduling in a flexible job shop by tabu
search”, Annals of Operations Research 22, 158-183.

Brucker, P., Neyer, J., (1998): “Tabu-search for the multi-mode job-shop prob-
lem” ;, OR Spektrum 20, 21-28.

Brucker, P., Schlie R., (1990): “Job-shop scheduling with multi-purpose ma-
chines”, Computing 45, 369-375.

Brucker, P, Drexl, A., Mohring, R., Neumann, K., Pesch, E., (1999): “Resource-
Constrained Project Scheduling: Notation, Classification, Models, and Methods”,
European J. Operational Research 112, 3-41.

T. H. Cormen, C.E. Leiserson, R. L. Rivest, (1991): Introduction to Algorithms,
MIT Press.

Dauzere-Pérés S., Paulli, J., (1997): “An integrated approach for modeling
and solving the general multiprocessor job-shop scheduling problem using tabu
search”, Annals of Operations Research 70, 281-306.

Dauzere-Péres S., Roux J., Lasserre J.B., (1998): “Multi-resource shop scheduling
with resource flexibility”, European Journal of Operational Research 107, 289-
305.

Dell’Amico M., Trubian, M., (1993): “Applying tabu-search to the job shop
scheduling problem”, Annals of Operations Research 22, 15-24.

Dongarra, J.J., (1998): “Performance of various computers using standard lin-
ear equations software”, Computer Science Department, University of Tennessee,
Knoxville, Tennessee.

18

[15]

[25]

126

Escudero, L.F., (1989): “A mathematical formulation of a hierarchical approach
for production planning in FMS”, Modern Production Management Systems,
231-245.

Fisher, H., Thompson, G.L., (1963): “Probabilistic learning combinations of lo-
cal job shop scheduling rules”, in: Industrial Scheduling, J.F. Muth and G.L.
Thompson, eds., Prentice Hall, Englewood Cliffs, 225-251.

Garey M. R., Johnson D.S., Sethi R., (1976): “The complexity of flowshop and
jobshop scheduling”, Math. Oper. Res. 1, 117-129.

Glover, F., (1989): “Tabu search - Part I”, ORSA Journal on Computing 1,
190-206.

Hurink,E., Jurisch, B., Thole, M., (1994): “Tabu search for the job shop schedul-
ing problem with multi-purpose machine”, Operations Research Spektrum 15,
205-215.

Jansen K., Mastrolilli M., Solis-Oba R., (1999) “Approximation Algorithms for
Flexible Job Shop Problems”, to appear in the Proceedings of Latin American
Theoretical Informatics, LATIN’2000.

Jurisch, B., (1992): “Scheduling Jobs in Shops with Multi-purpose Machines”,
Ph.D. thesis, Fachbereich Mathematik/Informatik, Universitat Osnabruck.

Van Laarhoven P.J.M., Aarts E.H.L., Lenstra J.K. (1992),“Job Shop Scheduling
by simulated annealing”, Operations Research 40, 113-125.

Lawrence, S., (1984): Supplement to “Resource Constrained Project Schedul-
ing: An Experimental Investigation of Heuristic Scheduling Techniques”, GSIA,
Carnegie Mellon University, Pittsburgh, PA.

Mastrolilli, M., Gambardella, L.M., (1998): “Effective Neighbor-
hood Functions for the Flexible Job Shop Problem: appendix”,
http://www.idsia.ch/~monaldo/fjsp.html.

Nowicki, E., Smutnicki, C., (1996): “A fast taboo search algorithm for the job
shop problem”, Management Science 42, 797-813.

Stecke, K.S.,(1983): “Formulation and solution of nonlinear integer production
planning problems for flexible manufacturing systems”, Management Science 29,
273-288.

Vaessens, R.J.M., (1995): Generalized Job Shop Scheduling: Complexity and
Local Search, Ph.D. thesis, Eindhoven University of Technology.

Vaessens, R.J.M., Aarts, E.H.L., Lenstra, J.K., (1996): “Job shop scheduling by
local search”, INFORMS Journal on Computing, vol.8 n.3.

19

10 Figures

Qk-Rx R«

4 +

A\

Figure 1: Properties of Ry, and Qi \Ry in G~.

20

Lk Qk-Lk

Qx

Figure 2: Properties of Ly and Qx\Lg in G™.

Lk-R« L.n R, Rk-Lk

\ /
R
\
4, F

Figure 3: Properties of Ly N Ry in G~

21

L« Qx-Lk-R« R«

Figure 4: Properties of Q;\(Lx U Rg) in G™.

11 Tables

Data Set # Procedure MRE (MRE,,)

Briaa 10 0% 1 s

DPdata 18 Tg;ﬂ }8‘;’31 (102.24)

BCdata 21 Tgoiﬂ gg:g (122.64)
edata 43 TI;]Z?H }83:?3 (102.27)
rdata 43 Tléljygl ig}:;g (101.40)
vdata 43 HBD 10025

TSoptl ~ 100.10 (100.14)

Table 1: Mean Relative Error (MRE) over Best Known Lower Bound.

22

Data Set # Procedure CI-CPU B:E:W
BRdata 10 T?itl 74 el
DPdata 18 TS]EZJP;;H 1322; 0
BCdata 21 T?oczitl 7;?2 16:1:4
HJT 258750 102:27:0
HUdata 129 IB)I; igégfg 12;42132
TSoptl 16568
Table 2: Summary results.
edata rdata vdata
Problem Jobs/Machines HBD TSoptl HBD TSoptl HBD TSoptl
Class (Avg) (Ave) (Avg)
oo e oo e
woros o P g Y ey oo
w10 a5 T G T ey oo
s s P) T e aooon
wozo om0 T T s T oo
worzs om0 U Rl T G o)
1a31-35 30/10 10052 (188223) e (188:(1)?1) e (188:8;)
e T W W

Table 3: Mean Relative Error on HUdata.

23

Problem BV TSoptl NS DT BC
mt10 930 930 930 935 935
1la02 655 655 655 655 655
1a19 842 842 842 842 843
la21 1046 1046 1047 1048 1053
la24 935 935 939 941 946
la25 977 977 977 979 988
1la27 1235 1235 1236 1242 1256
1a29 1164 1160 1160 1182 1194
1a36 1268 1269 1268 1278 1278
la37 1397 1397 1407 1409 1418
la38 1196 1196 1196 1203 1211
1a39 1233 1233 1233 1242 1237
1a40 1224 1228 1229 1233 1239

Table 4: Makespan for 13 hard problems.

24

