
A Committee of Neural Networks for Traffic Sign Classification

Dan Cireşan, Ueli Meier, Jonathan Masci and Jürgen Schmidhuber

Abstract— We describe the approach that won the prelimi-
nary phase of the German traffic sign recognition benchmark
with a better-than-human recognition rate of 98.98%. We obtain
an even better recognition rate of 99.15% by further training
the nets. Our fast, fully parameterizable GPU implementation
of a Convolutional Neural Network does not require careful
design of pre-wired feature extractors, which are rather learned
in a supervised way. A CNN/MLP committee further boosts
recognition performance.

I. INTRODUCTION

THE most successful hierarchical visual object recogni-

tion systems extract localized features from input im-

ages, convolving image patches with filters whose responses

are then repeatedly sub-sampled and re-filtered, resulting

in a deep feed-forward network architecture whose output

feature vectors are eventually classified. The Neocognitron

[1] inspired many of the more recent variants.

Unsupervised learning methods applied to patches of natu-

ral images tend to produce localized filters that resemble off-

center-on-surround filters, orientation-sensitive bar detectors,

Gabor filters [2], [3], [4]. These findings as well as exper-

imental studies of the visual cortex justify the use of such

filters in the so-called standard model for object recognition

[5], [6], [7], whose filters are fixed, in contrast to those of

Convolutional Neural Networks (CNNs) [8], [9], [10], whose

weights (filters) are learned in a supervised way through

back-propagation (BP).

To systematically test classification performance of various

architectures, we developed a fast CNN implementation on

Graphics Processing Units (GPUs). Most previous GPU-

based CNN implementations [11], [12] were hard-coded to

satisfy GPU hardware constraints, whereas ours is flexible

and fully online (i.e., weight updates after each image).

Other flexible implementations [13] are not fully exploiting

the latest GPUs. It allows for training large CNNs within

days instead of months, such that we can investigate the

influence of various structural parameters by exploring large

parameter spaces [14] and performing error analysis on

repeated experiments.

Here we present results on the German traffic sign recog-

nition benchmark [15], a 43 class, single-image classification

challenge. We first give a brief description of our CNN,

then describe the creation of the training set, and the data

preprocessing. Finally we present experimental results and

show how a committee of a CNN trained on raw pixels and

Dan Cireşan, Ueli Meier, Jonathan Masci and Jürgen Schmidhuber are
with IDSIA, University of Lugano, SUPSI (email: {dan, ueli, jonathan,
juergen}@idsia.ch).

This work was supported by a FP7-ICT-2009-6 EU Grant under Project
Code 270247: A Neuro-dynamic Framework for Cognitive Robotics: Scene
Representations, Behavioral Sequences, and Learning.

an MLP trained on standard feature descriptors can boost

recognition performance.

II. CONVOLUTIONAL NEURAL NETWORKS

CNNs are hierarchical neural networks whose convolu-

tional layers alternate with subsampling layers, reminiscent

of simple and complex cells in the primary visual cortex [16].

CNNs vary in how convolutional and subsampling layers

are realized and how they are trained. Here we give a brief

description of the main building blocks (Fig. 1). A detailed

description of the GPU implementation can be found in [17].

Fig. 1. Architecture of a convolutional neural network. Here the convolu-
tional layers are fully connected. Both convolutional layers are using a 5 x
5 kernel and skipping factors of 1.

A. Convolutional layer

A convolutional layer is parametrized by: the number of

maps, the size of the maps, kernel sizes and skipping factors.

Each layer has M maps of equal size (Mx, My). A kernel

(blue rectangle Fig 1) of size (Kx, Ky) is shifted over the

valid region of the input image (that is, the kernel has to be

completely inside the image). The skipping factors Sx and

Sy define how many pixels the filter/kernel skips in x- and y-

direction between subsequent convolutions. The output map

size is then defined as:

Mn

x
=

Mn−1

x
−Kn

x

Sn
x
+ 1

+ 1; Mn

y
=

Mn−1

y
−Kn

y

Sn
y
+ 1

+ 1 (1)

where index n indicates the layer. Each map in layer Ln is

connected to at most Mn−1 maps in layer Ln−1. Neurons

of a map share their weights, but have different input fields.



B. Max-pooling layer

The biggest architectural difference of our implementation

compared to the CNN of [8] is the use of a max-pooling layer

[18] instead of a sub-sampling layer. In the implementation

of [10] such layers are missing, and instead of a pooling

or averaging operation, nearby pixels are simply skipped

prior to the convolution. The output of the max-pooling layer

is given by the maximum activation over non-overlapping

rectangular regions of size (Kx, Ky). Max-pooling creates

position invariance over larger local regions and down-

samples the input image by a factor of Kx and Ky along

each direction.

C. Classification layer

Kernel sizes of convolutional filters and max-pooling rect-

angles as well as skipping factors can be chosen such that

the output maps of the last convolutional layer are down-

sampled to 1 pixel per map. Alternatively, a fully connected

layer combines the outputs of the last convolutional layer into

a 1D feature vector. The last layer is always a fully connected

layer with one output unit per class in the recognition task.

We use soft max as the last layer’s activation function, thus

each neuron’s output represents the class probability.

III. EXPERIMENTS

We use a system with a Core i7-920 (2.66GHz), 12 GB

DDR3, and four graphics cards: 2 x GTX 480 and 2 x

GTX 580. Correctness of the implementation is checked by

comparing the analytical gradient with the finite difference

approximation of the gradient. Our plain feed-forward CNN

architecture is trained using on-line gradient descent. Images

from the training set might be translated, scaled and rotated,

whereas only the original images are used for validation.

Training ends once the validation error is zero (usually after

10 to 50 epochs). Initial weights are drawn from a uniform

random distribution in the range [−0.05, 0.05]. Each neuron’s

activation function is a scaled hyperbolic tangent [8].

A. Data preprocessing

The original color images contain one traffic sign each,

with a border of 10% around the sign. They vary in size

from 15 × 15 to 250 × 250 pixels and are not necessarily

square. The actual traffic sign is not always centered within

the image; its bounding box is part of the annotations. The

training set consists of 26640 images; the test set of 12569

images. We crop all images and process only the bounding

box. Our CNN implementation requires all training images to

be of equal size. After visual inspection of the training image

size distribution we resize all images to 48×48 pixels. As a

consequence, the scaling factors along both axes are different

for traffic signs with rectangular bounding boxes. Resizing

forces them to have square bounding boxes.

High contrast variation among the images calls for contrast

normalization. We test three different types of normalization:

1) Pixels of all three color channels are linearly scaled

to plus-minus one standard deviation around the average

pixel intensity; 2) Pixels of all three color channels are

linearly scaled to plus-minus two standard deviations around

the average pixel intensity; 3) Contrast-limited Adaptive

Histogram Equalization (CLAHE) [19]. We also create a

gray-scale representation of the original color images. In total

we perform experiments on 8 different datasets: the original,

as well as sets resulting from three different normalizations,

in color and gray-scale (Fig. 2).

Fig. 2. Five gray-scale (left) and color (right) traffic signs normalized
differently. Original images (first row), ±1σ normalization (second row),
±2σ normalization (third row) and CLAHE (fourth row).

B. CNNs

Initial experiments with different normalizations and vary-

ing network depths (4 to 7 hidden layers) showed that deep

nets work better than shallow ones, consistent with our

previous work on image classification [20], [17]. We report

results for a single CNN with seven hidden layers (Table

I). The input layer has either three maps of 48x48 pixels

for each color channel, or a single map of 48x48 pixels for

gray-scale images. The output layer has 43 neurons, one for

each class.

TABLE I

THE ARCHITECTURE OF THE CONVOLUTIONAL NEURAL NETWORK.

Layer Type # maps & neurons kernel

0 input 1 or 3 maps of 48x48 neurons
1 convolutional 100 maps of 46x46 neurons 3x3
2 max pooling 100 maps of 23x23 neurons 2x2
3 convolutional 150 maps of 20x20 neurons 4x4
4 max pooling 150 maps of 10x10 neurons 2x2
5 convolutional 250 maps of 8x8 neurons 3x3
6 max pooling 250 maps of 4x4 neurons 2x2
7 fully connected 200 neurons
8 fully connected 43 neurons

We summarize the result of various CNNs trained on

gray-scale and color images in Tables II and III. The latter

perform better, which might seem obvious, but the former

also achieve highly competitive performance.

Additional translations, scalings and rotations of the train-

ing set considerably improve generalization. At the beginning

of each epoch, each image in the training set is deformed

using random but bounded values for translation, rotation and

scaling (see Table III). Values for translation, rotation and

scaling are drawn from a uniform distribution in a specified

range, i.e. ±T% of the image size for translation, 1±S/100
for scaling and ±R◦ for rotation. The final image is obtained



TABLE II

ERROR RATES OF A CNN TRAINED ON PREPROCESSED GRAY-SCALE

IMAGES. THE TRAINING DATA IS RANDOMLY TRANSLATED (T), SCALED

(S) AND ROTATED (R).

Deformation Test error rate[%]
T[%] S[%] R[◦] no ±1σ ±2σ CLAHE

0 0 0 3.43 3.65 3.18 2.73

5 0 0 2.28 2.32 1.79 1.77

5 10 10 2.10 2.42 1.82 1.53

10 5 5 2.13 1.97 1.74 1.55

10 10 10 1.79 2.02 1.42 1.36

using bilinear interpolation of the distorted input image.

From all tried normalization methods, CLAHE yields the

best result.

TABLE III

ERROR RATES OF A CNN TRAINED ON PREPROCESSED COLOR IMAGES.

THE TRAINING DATA IS RANDOMLY TRANSLATED (T), SCALED (S) AND

ROTATED (R).

Deformation Test error rate[%]
T[%] S[%] R[◦] no ±1σ ±2σ CLAHE

0 0 0 2.83 2.98 2.78 2.32

5 0 0 1.76 2.11 1.91 1.42

5 10 10 1.41 1.99 1.61 1.86

10 5 5 1.88 1.80 1.85 1.42

10 10 10 1.66 1.88 1.58 1.27

In Fig. 3 we show the weights from the first layer of a

CNN. We train a CNN with bigger filters (9x9) only for

displaying purposes. The learned filters respond to blobs,

edges and to other shapes in the input image.

Fig. 3. The learned filters (kernels) of the first convolutional layer of a
CNN. The layer has 100 maps each connected to all three R-G-B maps
from the input layer through 300 9x9 kernels. Every displayed filter is the
superposition of 3 filters corresponding to the R, G and B color channels.

C. Committee of a CNN and an MLP

We train various MLPs on the provided features, since the

feature descriptors might offer complementary information

with respect to the CNNs fed with raw pixel intensities. We

only use HOG and HAAR features because recognition rates

of MLPs trained on HUE features are inadequate. Table IV

summarizes results of various MLPs with one and two hidden

layers. The MLPs are trained in batch mode using a scaled

conjugate gradient algorithm. The MLP architecture is not

crucial; results for HOG features are very similar for the var-

ious architectures. Unsurprisingly, high-dimensional HAAR

features (11584 dimensions) call for bigger MLPs. Hence

HAAR-trained MLPs are also omitted from the committee.

TABLE IV

ERROR RATES [%] OF THREE DIFFERENT MLPS TRAINED ON THE

PROVIDED HOG (HOG01, HOG02 AND HOG03), AND HAAR FEATURE

DESCRIPTORS. MLP1: 1 HIDDEN LAYER WITH 200 HIDDEN UNITS;

MLP2: 1 HIDDEN LAYER WITH 500 HIDDEN UNITS; MLP3 2 HIDDEN

LAYERS WITH 500 AND 250 HIDDEN UNITS.

HOG01 HOG02 HOG03 HAAR

MLP1 6.86 4.55 5.96 12.92
MLP2 6.77 4.58 5.78 12.34
MLP3 7.18 4.84 5.88 10.94

Since both CNNs and MLPs approximate posterior class

probabilities, we can easily form a committee by averaging

their outputs. In Table V we list committee results for

MLPs trained on all three HOG feature descriptors and

a CNN trained on randomly translated, scaled and rotated

CLAHE color images (Tab. III). For all committees, a slight

performance boost is observed, with the best committee

reaching a recognition rate of 99.15%.

TABLE V

ERROR RATES [%] OF VARIOUS COMMITTEES OF CNNS LISTED IN

TABLES II, III AND MLPS LISTED IN TABLE (IV).

HOG01 HOG02 HOG03

MLP1 / CNN 0.95 0.92 1.01
MLP2 / CNN 0.95 1.00 0.97
MLP3 / CNN 0.95 0.96 0.85

In Figure 4 we plot the errors of the committee’s CNN

together with those of the best committee from Table V.

Disappointingly, both the CNN and the committee wrongly

classify many ”no vehicles” traffic signs (class 15), which

seem easy to recognize. Closer inspection of the CNNs

output activations, however, reveals that almost all those

signs are confused with the ”no overtaking” sign (class 9).

And indeed, CLAHE introduces artifacts that makes these

two classes hard to distinguish. Most of the remaining errors

are either due to bad illumination conditions, blurry images

or destroyed traffic signs.

IV. CONCLUSIONS

The best of our CNNs for the German traffic sign recog-

nition benchmark achieves a 98.73% recognition rate, avoid-

ing the cumbersome computation of handcrafted features.

Further improvements are obtained using a committee of a

CNN and an MLP (up to 99.15% recognition rate). Whereas

the CNNs are trained on raw pixel intensities, the MLPs

are trained on feature descriptors offering complementary



Fig. 4. CLAHE errors of the CNN used to build the best committee (left) together with the errors of the corresponding committee (right).

information. Although error rates of the best MLPs are 3-

4% above those of the best CNNs, a committee consistently

outperforms the individual classifiers.

REFERENCES

[1] K. Fukushima, “Neocognitron: A self-organizing neural network for
a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[2] J. Schmidhuber, M. Eldracher, and B. Foltin, “Semilinear predictability
minimization produces well-known feature detectors,” Neural Compu-

tation, vol. 8, no. 4, pp. 773–786, 1996.

[3] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: A strategy employed by V1?” Vision Research, vol. 37,
no. 23, pp. 3311–3325, December 1997.

[4] P. O. Hoyer and A. Hyvärinen, “Independent component analysis
applied to feature extraction from colour and stero images,” Network:

Computation in Neural Systems, vol. 11, no. 3, pp. 191–210, 2000.

[5] M. Riesenhuber and T. Poggio, “Hierarchical models of object recog-
nition in cortex,” Nat. Neurosci., vol. 2, no. 11, pp. 1019–1025, 1999.

[6] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features
inspired by visual cortex,” in Proc. of Computer Vision and Pattern

Recognition Conference, 2007.

[7] J. Mutch and D. G. Lowe, “Object class recognition and localization
using sparse features with limited receptive fields,” Int. J. Comput.

Vision, vol. 56, no. 6, pp. 503–511, 2008.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, November 1998.

[9] S. Behnke, Hierarchical Neural Networks for Image Interpretation,
ser. Lecture Notes in Computer Science. Springer, 2003, vol. 2766.

[10] P. Simard, D. Steinkraus, and J. Platt, “Best practices for convolutional
neural networks applied to visual document analysis,” in Seventh

International Conference on Document Analysis and Recognition,
2003.

[11] K. Chellapilla, S. Puri, and P. Simard, “High performance convo-
lutional neural networks for document processing,” in International

Workshop on Frontiers in Handwriting Recognition, 2006.
[12] R. Uetz and S. Behnke, “Large-scale object recognition with CUDA-

accelerated hierarchical neural networks,” in IEEE International Con-

ference on Intelligent Computing and Intelligent Systems (ICIS), 2009.
[13] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability

of GPU-based convolutional neural networks,” in 18th Euromicro

Conference on Parallel, Distributed, and Network-Based Processing,
2010.

[14] N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox, “A high-
throughput screening approach to discovering good forms of biolog-
ically inspired visual representation.” PLoS computational biology,
vol. 5, no. 11, p. e1000579, Nov. 2009.

[15] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German
Traffic Sign Recognition Benchmark: A multi-class classification com-
petition,” in International Joint Conference on Neural Networks, 2011,
accepted.

[16] D. H. Wiesel and T. N. Hubel, “Receptive fields of single neurones in
the cat’s striate cortex,” J. Physiol., vol. 148, pp. 574–591, 1959.

[17] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, high performance convolutional neural networks for
image classification,” in International Joint Conference on Artificial

Intelligence, 2011, accepted.
[18] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling op-

erations in convolutional architectures for object recognition,” in
International Conference on Artificial Neural Networks, 2010.

[19] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc., 2010.

[20] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep big simple neural nets for handwritten digit recognition,” Neural

Computation, vol. 22, no. 12, pp. 3207–3220, 2010.


