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Abstract. A Hierarchical Extended Kohonen Map (HEKM) learns to
associate actions to perceptions under the supervision of a planner: they
cooperate to solve path �nding problems. We argue for the utility of
using the hierarchical version of the KM instead of the \
at" KM. We
measure the bene�ts of cooperative learning due to the interaction of
neighboring neurons in the HEKM. We highlight a bene�cial side-e�ect
obtained by transferring motion skill from the planner to the HEKM,
namely, smoothness of motion.

1 Introduction

Robotics research devotes considerable attention to the problem of path �nding.
This is the problem of moving a robot from a starting position to a goal avoiding
collisions. Moreover, the robot path should be as short and smooth as possible.
Traditionally, path �nders are either model-based or sensor-based. While model-
based systems address the path �nding problem globally using a model of the
workspace, sensor-based systems consider it locally, and rely on robot sensors to
avoid obstacles. Both methods have limitations, which are rather complementary.
By integrating the two methods, we can mitigate their respective drawbacks.
Thus, in [9] we have described a model-based system (a planner [3] working on
an arti�cial potential �eld) and a sensor-based system (a Hierarchical Extended
Kohonen Map) which cooperate to solve the path �nding problem. Along related
lines, several authors [7, 4, 5, 6] have proposed to automatically build the sensor-
based system as the result of a learning process, where a local planner plays the
role of the teacher. In particular, [4, 6] employed a Self-Organizing Map (SOM)
and [5] used a dynamical variant of SOM (DSOM) based on a Growing Neural
Gas network [2]. In these works, the decision of using a SOM-like network seems
to be justi�ed by its data topology-conserving character which is supposed to
favor in some way the learning of suitable < perception; action > pairs. None of
these works provide experimental evidence for this reasonable, but not obvious,
claim.

In this paper we describe a SOM-like neural network which learns to associate
actions to perceptions under the supervision of a planning system. By reporting
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this experiment we make the following contributions. First, we argue for the
utility of using a hierarchical version of SOM instead of the basic SOM. Second,
we measure explicitly the e�ect of cooperative learning due to the interaction
of neighboring neurons. Third, we highlight a bene�cial side-e�ect which can be
obtained by transferring motion knowledge from the planner to the SOM.

2 Hierarchical Extended Kohonen Map

In our experiment the SOM-like network learns < perception; action > pairs
produced by the planner [3] while solving instances2 of the path �nding prob-
lem. A perception is made of a vector o of readings of 24 obstacle proximity
sensors, together with the relative goal direction g, a 2 dimensional vector of
unitary length. A planner action a is a triple representing, an x-translation, a
y-translation, and a rotation with respect to the robot's current position and
orientation. Both the xy-translations and the rotation take discrete values, and
can be either positive, negative or null.

The SOM is a Hierarchical Extended Kohonen Map (HEKM) [8]. The map is
\hierarchical" because it processes the input perception in sequence (see below
for explanation); it is \extended" because it is trained on the output action in a
supervised fashion. Essentialy, the network operation is divided into two steps.
Given an input perception, the HEKM �rst determines which is the most simi-
lar perception out of the ones experienced sofar (matching step); and second, it
triggers the action associated to that perception (triggering step). During train-
ing, the network action is compared to the action proposed by the planner, and
the supervised learning procedure takes place. The perception matching step is
carried out in two stages as well. First, o is processed by a KM super-net. Sec-
ond, g is processed by a KM sub-net which is associated to the winning neuron
in the super-net. Therefore, the overall network architecture is a hierarchical
arrangement of subordinated sub-nets: there is a sub-net for each neuron in the
super-net. The network action is retrieved as the result of this two-stage compe-
tition process. There are three reasons for preferring the hierarchical architecture
to a \
at" one. First, it avoids unnecessary repetition of o weights for di�erent
g directions, which would be costly in terms of memory requirements. Second, it
deals naturally with the economic input representation of g as a 2 dimensional
vector. A 
at network would need either a more distributed codi�cation for g

(as in [7]) or a weightning of g (as in [4, 5]) so that during the matching step g

does not lose importance with respect to o, whose dimensionality is rather high.
Third, by processing the input information in two stages, we hope to simplify
the adaptation process of the SOM to the perception data distribution.

A portion of the weights of the trained HEKM is depicted in Figure 1. In
this experiment, the super-net is a 4� 6 grid of neurons, while each sub-net is
an array of 10 neurons. The upper drawing shows the super-net weights. They
represent prototypical obstacle perceptions. As an example, unit3 #0 represents

2 In this experiment we don't consider the problem of recovering from local minima.
3 Units are numbered from the upper-left corner to the right.



Fig. 1. The obstacle perceptions learnt by the super-net (upper drawing). Goal direc-
tions and actions learnt by sub-net 17 (lower drawing).

Fig. 2. The robot solving the path �nding problem with the �xed goal used during the
training phase (�rst row) and with new goal positions (second row).

the perception of free-space, unit #5 represents the perception of a wall on
the right-hand side, unit #7 represents the perception of a wall behind the
robot's back. It is possible to observe the data topology-preserving character of
the KM: perception similarity varies in a continuous way on the map. The lower
drawing in Figure 1 shows the weights of sub-net #17, which is associated to
the perception of a narrow corridor. For each neuron, we represent the learnt
goal direction (as a white vector) and the learnt action (the gray rectangle is the
robot's initial con�guration, the black rectangle is the robot's con�guration after
having performed the action). Again, the data topology-preserving character of
the KM can be appreciated in this sub-net.



Figure 2 show some instances of path �nding solved by the HEKM in co-
operation with the planner. In these trajectories the planner takes control only
when the action proposed by the HEKM would lead to a collision. In the �rst
row of the Figure, the goal position (black circle) is �xed and it is the same
used to generate the training examples for the HEKM. The second row depicts
other trajectories with new goal positions. These runs prove that the motion
skill acquired by the HEKM is independent from the chosen goal.

3 Why to Use a SOM-like Network?

We would like now to discuss the following claim: the data topology-preserving
character of the HEKM could favor the learning of �ne motion.

This statement can be proved experimentally by performing two separate
training sessions. In the �rst session, the neighborhood parameters (one for the
super-net, one for the sub-nets) are set to 0, while in second session they are
set to values other than 0 (4 and 5, respectively). In this way, we can study the
e�ect of cooperation during learning.

To evaluate the two methods, an error criterion and a performance criterion
are used. The error measure is the mean squared error between the network
output action and the target action proposed by the planner, while the perfor-
mance criterion is the percentage of optimal actions learnt by the network. By
de�nition, the optimal actions are those proposed by the planner.

Let us comment on the plots of error and performance as a function of the
number of training cycles (Figure 3). As far as the error is concerned (left plot),
one can see that without cooperation (curve with black dots) a certain error level
is reached quite rapidly, but afterwards, no signi�cant improvement is observed.
On the contrary, with cooperation (curve with white dots) it takes more time
to reach the very same error level, but the �nal error is lower. This type of
behavior seems to be typical for cooperating agents, as it reported in [1]. In our
experiment, a possible explanation for this could be that, when the cooperation
between the neurons is active, it takes more time to �nd a good \compromise" to

Fig. 3. Error (left) and performance (right) without cooperation (black dots) and with
cooperation (white dots).



Fig. 4. The planner (left) and the HEKM (right) working as stand-alone systems.

satisfy competing learning needs. However, once the compromise is met, the �nal
result gets improved. A corresponding behavior is observed in the performance
curves (right plot). With no cooperation a certain performance level is achieved
quite rapidly (42%), but after that point no further improvement occurs. With
cooperation, the same performance level is obtained later, but the �nal result is
more satisfactory (65%).

4 Planner versus HEKM

We conclude by highlighting an interesting side-e�ect which can be obtained by
transferring motion knowledge from the planner to the HEKM.

Our planner is a discrete system. By the term \discrete" we refer to the fact
that, at each step of the robot trajectory, the planner generates a �nite number of
neighboring con�gurations, and chooses, among them, the one which approaches
the goal closest while avoiding collisions. The HEKM, on the contrary, tends to
produce actions which look like being continuous. That is because the action
learnt by the network for a given perception is a kind of average action performed
by the planner in similar perceptual states. To illustrate this point, we let the
planner and the HEKM solve the same path �nding problem as stand-alone

systems (Figure 4). One can immediately appreciate qualitative di�erences in
the two paths. The discrete nature of the planner is evident in the left plot:
the robot motion is optimal in terms of path length, but quite abrupt. On the
contrary, in the HEKM path (right plot) smoothness has been traded against
optimality. This observation can also account for the sub-optimal performance
level reached by the HEKM (Figure 3) at the end of training.

5 Conclusions

We have presented a HEKM which learns �ne motion under the control of a
planner. First, we have discussed the utility of using a hierarchical KM instead
of the usual \
at" version. The HEKM is more economic in terms of the way
memory cells are used. It avoids unnecessary weight repetitions and allows for
compact input representations. Clearly, one limitation of the current architec-
ture is the �xed number of neurons. A growing network could be used instead



[5, 2]. Second, we have measured the e�ect of cooperative learning due to the
interaction between adjacent neurons. We found that with cooperation learning
is slowed down on the short run. But the bene�ts appear later on, resulting in
a more satisfactory �nal performance. Our interpretation is that, at the begin-
ning of learning, neighboring neurons work to meet a compromise to competing
needs: this e�ort becomes rewarding on the long run. Third, we have pointed
out the complementary nature of the paths generated by the planner and by the
HEKM as stand-alone systems. The HEKM produces sub-optimal but smooth
solutions, whereas the planner seeks for optimality while sacri�cing the continu-
ity of motion. The integration of these two philosophies leads to fruitful results.
Our future work will include the implementation of these ideas on a physical
robot.
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