Learning Fine Motion by Using the Hierarchical Extended Kohonen Map

Cristina Versino* and Luca Maria Gambardella

IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland cristina@idsia.ch, http://www.idsia.ch/~cristina

Abstract. A Hierarchical Extended Kohonen Map (HEKM) learns to associate actions to perceptions under the supervision of a planner: they cooperate to solve path finding problems. We argue for the utility of using the hierarchical version of the KM instead of the "flat" KM. We measure the benefits of cooperative learning due to the interaction of neighboring neurons in the HEKM. We highlight a beneficial side-effect obtained by transferring motion skill from the planner to the HEKM, namely, smoothness of motion.

1 Introduction

Robotics research devotes considerable attention to the problem of path finding. This is the problem of moving a robot from a starting position to a goal avoiding collisions. Moreover, the robot path should be as *short* and *smooth* as possible. Traditionally, path finders are either model-based or sensor-based. While modelbased systems address the path finding problem globally using a model of the workspace, sensor-based systems consider it locally, and rely on robot sensors to avoid obstacles. Both methods have limitations, which are rather complementary. By integrating the two methods, we can mitigate their respective drawbacks. Thus, in [9] we have described a model-based system (a planner [3] working on an artificial potential field) and a sensor-based system (a Hierarchical Extended Kohonen Map) which cooperate to solve the path finding problem. Along related lines, several authors [7, 4, 5, 6] have proposed to automatically build the sensorbased system as the result of a learning process, where a local planner plays the role of the teacher. In particular, [4, 6] employed a Self-Organizing Map (SOM) and [5] used a dynamical variant of SOM (DSOM) based on a Growing Neural Gas network [2]. In these works, the decision of using a SOM-like network seems to be justified by its data topology-conserving character which is supposed to favor in some way the learning of suitable < perception, action > pairs. None of these works provide experimental evidence for this reasonable, but not obvious, claim.

In this paper we describe a SOM-like neural network which learns to associate actions to perceptions under the supervision of a planning system. By reporting

^{*} Supported by the No. 2129-042413.94/1 project of the Fonds National de la Recherche Scientifique, Berne, Suisse.

this experiment we make the following contributions. First, we argue for the utility of using a hierarchical version of SOM instead of the basic SOM. Second, we measure explicitly the effect of cooperative learning due to the interaction of neighboring neurons. Third, we highlight a beneficial side-effect which can be obtained by transferring motion knowledge from the planner to the SOM.

2 Hierarchical Extended Kohonen Map

In our experiment the SOM-like network learns < perception, action > pairs produced by the planner [3] while solving instances² of the path finding problem. A perception is made of a vector o of readings of 24 obstacle proximity sensors, together with the relative goal direction g, a 2 dimensional vector of unitary length. A planner action a is a triple representing, an x-translation, a y-translation, and a rotation with respect to the robot's current position and orientation. Both the xy-translations and the rotation take discrete values, and can be either positive, negative or null.

The SOM is a Hierarchical Extended Kohonen Map (HEKM) [8]. The map is "hierarchical" because it processes the input perception in sequence (see below for explanation); it is "extended" because it is trained on the output action in a supervised fashion. Essentially, the network operation is divided into two steps. Given an input perception, the HEKM first determines which is the most similar perception out of the ones experienced sofar (matching step); and second, it triggers the action associated to that perception (triggering step). During training, the network action is compared to the action proposed by the planner, and the supervised learning procedure takes place. The perception matching step is carried out in two stages as well. First, o is processed by a KM super-net. Second, q is processed by a KM sub-net which is associated to the winning neuron in the super-net. Therefore, the overall network architecture is a hierarchical arrangement of subordinated sub-nets: there is a sub-net for each neuron in the super-net. The network action is retrieved as the result of this two-stage competition process. There are three reasons for preferring the hierarchical architecture to a "flat" one. First, it avoids unnecessary repetition of o weights for different q directions, which would be costly in terms of memory requirements. Second, it deals naturally with the economic input representation of g as a 2 dimensional vector. A flat network would need either a more distributed codification for g(as in [7]) or a weightning of g (as in [4, 5]) so that during the matching step gdoes not lose importance with respect to o, whose dimensionality is rather high. Third, by processing the input information in two stages, we hope to simplify the adaptation process of the SOM to the perception data distribution.

A portion of the weights of the trained HEKM is depicted in Figure 1. In this experiment, the super-net is a 4×6 grid of neurons, while each sub-net is an array of 10 neurons. The upper drawing shows the super-net weights. They represent prototypical obstacle perceptions. As an example, unit³ #0 represents

² In this experiment we don't consider the problem of recovering from local minima.

³ Units are numbered from the upper-left corner to the right.

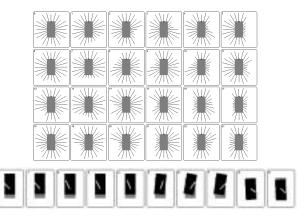


Fig. 1. The obstacle perceptions learnt by the super-net (upper drawing). Goal directions and actions learnt by sub-net 17 (lower drawing).

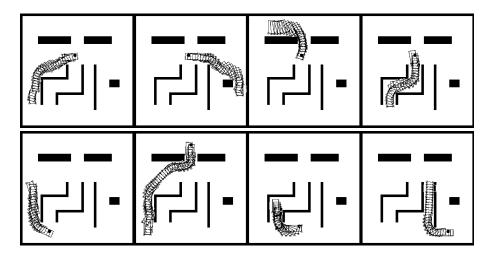


Fig. 2. The robot solving the path finding problem with the fixed goal used during the training phase (first row) and with new goal positions (second row).

the perception of free-space, unit #5 represents the perception of a wall on the right-hand side, unit #7 represents the perception of a wall behind the robot's back. It is possible to observe the data topology-preserving character of the KM: perception similarity varies in a continuous way on the map. The lower drawing in Figure 1 shows the weights of sub-net #17, which is associated to the perception of a narrow corridor. For each neuron, we represent the learnt goal direction (as a white vector) and the learnt action (the gray rectangle is the robot's initial configuration, the black rectangle is the robot's configuration after having performed the action). Again, the data topology-preserving character of the KM can be appreciated in this sub-net.

Figure 2 show some instances of path finding solved by the HEKM in cooperation with the planner. In these trajectories the planner takes control only when the action proposed by the HEKM would lead to a collision. In the first row of the Figure, the goal position (black circle) is fixed and it is the same used to generate the training examples for the HEKM. The second row depicts other trajectories with new goal positions. These runs prove that the motion skill acquired by the HEKM is independent from the chosen goal.

3 Why to Use a SOM-like Network?

We would like now to discuss the following claim: the data topology-preserving character of the HEKM could favor the learning of fine motion.

This statement can be proved experimentally by performing two separate training sessions. In the first session, the neighborhood parameters (one for the super-net, one for the sub-nets) are set to 0, while in second session they are set to values other than 0 (4 and 5, respectively). In this way, we can study the effect of cooperation during learning.

To evaluate the two methods, an error criterion and a performance criterion are used. The error measure is the mean squared error between the network output action and the target action proposed by the planner, while the performance criterion is the percentage of optimal actions learnt by the network. By definition, the optimal actions are those proposed by the planner.

Let us comment on the plots of error and performance as a function of the number of training cycles (Figure 3). As far as the error is concerned (left plot), one can see that without cooperation (curve with black dots) a certain error level is reached quite rapidly, but afterwards, no significant improvement is observed. On the contrary, with cooperation (curve with white dots) it takes more time to reach the very same error level, but the final error is lower. This type of behavior seems to be typical for cooperating agents, as it reported in [1]. In our experiment, a possible explanation for this could be that, when the cooperation between the neurons is active, it takes more time to find a good "compromise" to

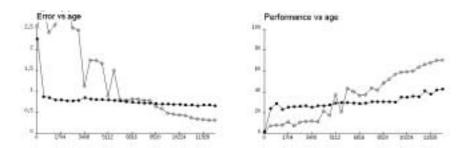


Fig. 3. Error (left) and performance (right) without cooperation (black dots) and with cooperation (white dots).

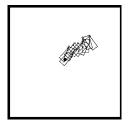


Fig. 4. The planner (left) and the HEKM (right) working as stand-alone systems.

satisfy competing learning needs. However, once the compromise is met, the final result gets improved. A corresponding behavior is observed in the performance curves (right plot). With no cooperation a certain performance level is achieved quite rapidly (42%), but after that point no further improvement occurs. With cooperation, the same performance level is obtained later, but the final result is more satisfactory (65%).

4 Planner versus HEKM

We conclude by highlighting an interesting side-effect which can be obtained by transferring motion knowledge from the planner to the HEKM.

Our planner is a discrete system. By the term "discrete" we refer to the fact that, at each step of the robot trajectory, the planner generates a finite number of neighboring configurations, and chooses, among them, the one which approaches the goal closest while avoiding collisions. The HEKM, on the contrary, tends to produce actions which look like being continuous. That is because the action learnt by the network for a given perception is a kind of average action performed by the planner in similar perceptual states. To illustrate this point, we let the planner and the HEKM solve the same path finding problem as stand-alone systems (Figure 4). One can immediately appreciate qualitative differences in the two paths. The discrete nature of the planner is evident in the left plot: the robot motion is optimal in terms of path length, but quite abrupt. On the contrary, in the HEKM path (right plot) smoothness has been traded against optimality. This observation can also account for the sub-optimal performance level reached by the HEKM (Figure 3) at the end of training.

5 Conclusions

We have presented a HEKM which learns fine motion under the control of a planner. First, we have discussed the utility of using a hierarchical KM instead of the usual "flat" version. The HEKM is more economic in terms of the way memory cells are used. It avoids unnecessary weight repetitions and allows for compact input representations. Clearly, one limitation of the current architecture is the fixed number of neurons. A growing network could be used instead

[5, 2]. Second, we have measured the effect of cooperative learning due to the interaction between adjacent neurons. We found that with cooperation learning is slowed down on the short run. But the benefits appear later on, resulting in a more satisfactory final performance. Our interpretation is that, at the beginning of learning, neighboring neurons work to meet a compromise to competing needs: this effort becomes rewarding on the long run. Third, we have pointed out the complementary nature of the paths generated by the planner and by the HEKM as stand-alone systems. The HEKM produces sub-optimal but smooth solutions, whereas the planner seeks for optimality while sacrificing the continuity of motion. The integration of these two philosophies leads to fruitful results. Our future work will include the implementation of these ideas on a physical robot.

Acknowledgements

Thanks to José del R. Millán, Vicente Ruiz de Angulo and Jürgen Schmidhuber for their comments. Thanks to *Neuristique* (France) for providing the SN neural network simulator.

References

- Clearwater, S.H., Hogg, T., Huberman, B.A. (1992) Cooperative Problem Solving. In Huberman, B.A., Editor, Computation: The Micro and the Macro View., World Scientific.
- Fritzke, B. (1995) A Growing Neural Gas Network Learns Topologies. In Tesauro, G., Touretzky, D.S., Leen, T.K., Editors, Advances in Neural Information Processing Systems 7, MIT Press, Cambridge MA, pp. 625-632.
- 3. Gambardella, L.M., Versino, C. (1994) Learning High-Level Navigation Strategies from Sensor Information and Planner Experience. *Proc. PerAc94, From Perception to Action Conference*, Lausanne, Switzerland, September 7–9, pp. 428–431.
- Heikkonen, J., Koikkalainen, P., Oja, E. (1993) Motion Behavior Learning by Self-Organization. Proc. ICANN93, International Conference on Artificial Neural Networks, Amsterdam, The Netherlands, September 13–16, pp.262–267.
- Heikkonen, J., Millán, J. del R., Cuesta, E. (1995) Incremental Learning from Basic Reflexes in an Autonomous Mobile Robot. Proc. EANN95, International Conference on Engineering Applications of Neural Networks, Otaniemi, Espoo, Finland, August 21–23, pp. 119–126.
- 6. Knobbe, A.J., Kok, J.N., Overmars, M.H. (1995) Robot Motion Planning in Unknown Environments Using Neural Networks. *Proc. ICANN95*, *International Conference on Artificial Neural Networks*, Paris, France, October 9–13, pp. 375–380.
- 7. Millán, J. del R. (1995) Reinforcement Learning of Goal-Directed Obstacle-Avoiding Reaction Strategies in an Autonomous Mobile Robot. *Robotics and Autonomous Systems*, 15(3), pp. 275–299.
- 8. Ritter, H., Martinetz, T., Schulten, K. (1992) Neural Computation and Self-Organizing Maps. An Introduction. Addison-Wesley Publishing Comp.
- 9. Versino, C., Gambardella, L.M. (1995) Learning Fine Motion in Robotics by Using Hierarchical Neural Networks. *IDSIA-5-1995 Technical Report*.