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Abstract

An aboundant literature on vehicle routing problems is available. How-

ever, most of the work deals with static problems, where all data are known

in advance, i.e. before the optimization has started.

The technological advances of the last few years give rise to a new class

of problems, namely the dynamic vehicle routing problems, where new or-

ders are received as time progresses and must be dynamically incorporated

into an evolving schedule.

In this paper a dynamic vehicle routing problem is examined and a

solving strategy, based on the Ant Colony System paradigm, is proposed.

Some new public domain benchmark problems are defined, and the

algorithm we propose is tested on them.

Finally, the method we present is applied to a realistic case study, set

up in the city of Lugano (Switzerland).
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1 Introduction

In the Vehicle Routing Problem (VRP) a fleet of vehicles with limited capacity

has to be routed in order to visit a set of customers at a minimum cost (generally

the total travel time). In the static VRP all the orders are known a priori.

Dynamic Vehicle Routing Problems (DVRP), sometimes referred to as On-

line Vehicle Routing Problems, have recently arisen thanks to the advances in

communication and information technologies that allow information to be ob-

tained and processed in real time. In this case, some of the orders are known

in advance before the start of the working day, but as the day progresses, new

orders arrive and the system has to incorporate them into an evolving schedule.

The existence of a communication system between the dispatcher (where the

tours are calculated, e.g. the headquarter of the company) and the drivers is

assumed. The dispatcher can periodically communicate to the drivers the new

visits assigned to them. In this way, during the day, each driver always has a

knowledge about the next customers assigned to her/him.

In this paper we consider the case where vehicles do not have to go back

to the depot in order to treat new orders assigned to them when they have

already left the headquarter. In our model we also take into account capacity

constraints for the vehicles. Mainly three families of real problems presenting

these characteristics can be identified:

• feeder systems. Local dial-a-ride systems typically aiming at feeding

another, wider area, transportation system at a particular transfer location

(see, for example, Gendreau and Potvin [12]). Vehicles are empty when

they leave the depot.

• courier service problems (e.g. Federal Express). Parcels are collected

at customer locations and brought back to a central depot for further

processing and shipping. Vehicles are empty when they leave the depot.

• fungible items / consumable goods distribution (e.g. distribution

of fuel for heating plants). Vehicles are filled at the depot before leaving
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and unload goods at customer locations.

We also assume that it is not possible to use statistical information to forecast

future orders. This assumption excludes the application of methods developed

for the stochastic vehicle routing problem (see, for example, Gendreau et al. [10]

and [11]).

It is interesting to observe that the approach we propose can easily handle

dynamic travel times update, based on real-time traffic information. Travel

times are however keep constant in all the experiments presented in this paper.

A problem similar to the one we consider in this paper has been studied in

Gendreau et al. [9]. The main difference between our model and that used in

[9] is that we take into account vehicle capacities, that are not considered in

[9], although apparently it would have not been difficult to incorporate them.

In Ichoua et al. [16] the approach described in [9] is integrated with a vehicle

diversion mechanism. In practice, it is possible to divert a vehicle away from its

current destination in response to a new customer request. We do not consider

this option in our algorithm.

Hvattum et al. [15] presented an approach for problems where statistical

information about orders appearance is available.

Savelsbergh and Sol [22] (see also Sol [23]) presented a planning module

designed for a transportation company, which embeds a dynamic V RP module.

Kilby et al [17], which adopt the same model we use, presented a study

on how the modification of some parameters, concerning problem dynamism,

impacts on the performance of a simple heuristic algorithm they implemented

(more details are available in Section 4.1).

Guntsch and Middendorf [14] (see also [13]) propose an Ant heuristic algo-

rithm for a Dynamic Traveling Salesman Problem (DTSP).

A survey on results achieved on the different types of DVRPs can be found

in Gendreau and Potvin [12] (see also Psaraftis [19] and [20]).

In this paper we propose a solving technique that exploits some charac-

teristics of the Ant Colony System optimization paradigm to smoothly save
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information about promising solutions when the optimization problem evolves

because of the arrival of new orders.

In Section 2 a formal description of the problem is given. Section 3 is de-

voted to the description of the approach we propose. In Section 4 a set of

benchmarks is described and computational results are presented. A study on

a real-world DVRP problem, set up on the road network of the city of Lugano,

with customers data provided by a local fuel distribution company, is proposed

in Section 5. Conclusions are given in Section 6.

2 Problem description

The static vehicle routing problem can be described as follows: n customers

must be served from a (unique) depot. Each customer i asks for a quantity qi of

goods. A fleet of v vehicles, each vehicle a with a capacity1 Qa, is available to

deliver goods. A service time si is associated with each customer. It represents

the time required to service him/her. Therefore, a VRP solution is a collection

of tours.

The VRP can be modelled in mathematical terms through a complete

weighted digraph G = (V,A), where V = {0, 1, . . . , n} is a set of nodes rep-

resenting the depot (0) and the customers (1, . . . , n), and A = {(i, j)|i, j ∈ V }
is a set of arcs, each one with associated a minimum travel time ttij . The quan-

tity of goods qi requested by each customer i (i > 0) is associated with the

corresponding vertex. Labels Q1, . . . , Qv, corresponding to vehicles capacities,

are finally associated with the starting locations of the vehicles, i.e. vertex 0

(the depot).

The goal is to find a feasible set of tours with the minimum total travel

time. A set of tours is feasible if each node is visited exactly once (i.e. it is

included into exactly one tour), each tour a starts and ends at the depot (vertex

0), and the sum of the quantities associated with the vertices contained in it,

never exceeds the corresponding vehicle capacity Qa.
1In the classic VRP the capacity would be the same for all the vehicles.
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The dynamic vehicle routing problem is strongly related to the static V RP .

The main difference is that new orders arrive when the working day has already

started, dynamically changing the optimization problem. The DV RP can be

consequently modelled as a sequence of static V RP -like instances (see Section

3). In particular each static V RP will contain all the customers known at that

time, but not yet served.

3 The ACS-DVRP algorithm

The algorithm we propose for the DVRP has been developed to run in a cen-

tralized fashion by the people in charge of orders dispatching. We refer to the

phase where an order is communicated to a driver as commitment phase. In our

strategy, the commitment cannot be retracted, i.e. once an order is committed

to a driver, this assignment cannot be changed. It is important to observe that,

on the other hand, our approach constantly provides a solution covering all the

known orders. Among these orders, the assignment of those not yet committed,

can be retracted.

Our approach is based on the idea of dividing the working day into nts time

slices with equal length T
nts

- where T is the lenght of the working day - and to

postpone the processing of each new order arrived during a time slice to the end

of it. The idea has been proposed in Kilby et al. [17]. During each time slice,

a problem very similar to a static V RP , but with vehicles with heterogeneous

capacities and starting locations, is created, and optimization is carried out.

In each of these problems, the aim is to minimize the total travel time while

serving all the known orders.

The concept of time slice has been introduced to bound the time dedicated

to each static problem. A different strategy may be to stop and restart the

optimizer each time a new event occurs (i.e. a new order arrives or a decision

has to be committed to a vehicle, see Gendreau et al. [9]). The drawback of

such an approach is that the time dedicated to each static problem would not be

known in advance, and consequently optimization may be interrupted before a

5



good local minimum is reached, producing unsatisfactory results. On the other

hand, a strategy like the one adopted in [9] is more suitable for problems where

urgent orders are likely to exist. This is not the case of the problems we treat,

where time windows on orders are not handled.

The concept of cut-off time is also considered in our approach. Orders

received after time Tco, which is a parameter defined by the user, are postponed

to the following working day. This practice is very common in real companies.

It is also important to observe that, in the model we present, all the received

orders are accepted by the company. A mechanism to filter orders (i.e. to reject

some of them) could be inserted in our architecture, but it does not exist in the

current implementation.

An advanced commitment time Tac is also consider in our system. In practice,

an order has to be committed to a driver at least Tac seconds prior to the planned

time of departure from the last location visited before that of the order itself.

This advanced commitment time has been considered to give the drivers an

appropriate reaction time after having been committed new orders.

There are three main elements in our architecture. They are the following

ones:

• events manager. It collects new orders and keeps trace of already served

orders and of the position of the vehicles. The event manager uses these

information to construct a sequence of static VRP -like instances. It is

also in charge of the commitment of orders to the drivers.

• ACS (Ant Colony System) algorithm. It is used to heuristically solve

the static V RP -like instances generated by the events manager.

• pheromone conservation procedure. It is a crucial element of the

architecture we propose. It is used to efficiently pass on information about

properties of good solutions from a time slice to the following one.

Figure 1 depicts the architecture we propose. The three main elements have a

bold border, and their interactions with the other components are drawn.
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Figure 1: Architecture of the ACS-DVRP algorithm.
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The following subsections are devoted to the detailed description of the three

elements listed above.

3.1 Events manager

The events manager is the interface between the architecture and the external

world. New orders from customers are handled by this module, and commit-

ments of orders to drivers are managed by it.

Based on the division of the working day into time slices, and based on

parameters Tco and Tac, the events manager creates static problems and runs

in sequence the pheromone conservation procedure and the ACS algorithm on

these static problems. Based on the solutions provided by the ACS algorithm,

the events manager finally decides about commitments.

The static problem considered during the first time slice (i.e. at the be-

ginning of the working day) only deals with orders known from the previous

working day. The next static problems will consider all the orders received by

the system at the beginning of the time slices, and which have not been com-

mitted to drivers yet (committed orders are part of the past, but will be stored

in the final solution). In these problems, each vehicle starts from the location of

the last customer committed to it, with a starting time corresponding to the end

of the servicing time for this customer, and with a capacity corresponding to the

residual capacity of the vehicle, after it has served all the customers previously

committed to it.

At the end of each time slice, the best solution found for the corresponding

static problem is examined and orders with a processing time starting within

the next T
nts

+ Tac seconds are committed to the respective drivers. Note that

the processing time of an order starts when the vehicle to which it is assigned,

has to leave from its previous customer. Note that no order can be planned

to start in the first Tac seconds of each time slot, since this would violate the

advanced commitment time constraint.

An exception to the commitment strategy described above is represented
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by return journeys to the depot. A return journey is committed to a vehicle

only in two circumstances: the current time is greater than or equal to Tco and

all the customers have been served, or the vehicle has used all its capacity. In

practice, a vehicle will wait at its last committed customer in case its actual

next destination is the depot and none of the two conditions described above is

satisfied. This is done because tours may be replanned (due to new orders) and

new customers might be committed to vehicles.

A pseudo-code for the event manager module is presented in Figure 2. The

set PendOrds initially contains the orders known from the previous day. The

variable Time is initialized to 0, while the location of all the vehicles is ini-

tially set at the depot. An iterative statement is then entered. A static prob-

lem (StaticPro), containing orders in PendOrds and covering the time window

[Time + Tac; Time + Tac + T
nts

] ([Time;Time + Tac + T
nts

] in case Time= 0), is

created and solved (with the procedure that will be described in Section 3.2),

and some commitments (CommOrds) are done accordingly to the solution of

StaticPro. PendOrds is updated together with starting positions, capacities and

travel times of the vehicles. The pheromone matrix is finally updated, according

to the Pheromone conservation strategy that will be described in Section 3.3.

These operations are repeated until PendOrds = ∅ and Time > Tco. After the

completion of the iterative statement, the depot is committed as last destination

to all the vehicles.

3.2 An ACS algorithm for V RP -like problems

The Ant Colony System (ACS ) algorithm is an element of the Ant Colony

Optimization (ACO) family of algorithms (Dorigo et al. [4], Bonabeau et al.

[1]). The first ACO algorithm, Ant System (AS ), has been proposed by Colorni,

Dorigo and Maniezzo (see [3] and [5]) and is based on a computational paradigm

inspired by the way real ant colonies function. The main underlying idea was to

parallelize search over several constructive computational threads. A dynamic

memory structure, which incorporates information on the effectiveness of pre-

9



Procedure EventsManager
Time := 0;
The starting position of each vehicle is set at the depot ;
PendOrds := orders known from the day before;
While (PendOrds 6= ∅ or Time < Tco )

If (Time > 0)
StaticProb := problem with orders in PendOrds and starting time Time+Tac;

Else
StaticProb := problem with orders in PendOrds and starting time Time;

EndIf
Run ACS on StaticProb;
CommOrds := orders with processing time ≥ Time+ T

nts
+Tac;

Commit orders in CommOrd ;
PendOrds := PendOrds \ CommOrds;

PendOrds := PendOrds ∪
{

orders appeared in the last T
nts

seconds
}

;

Time := Time +Tts;
Update starting positions, capacities of vehicles and travel times;
Update pheromone matrix;

EndWhile
Commit the depot to all the vehicles;

Figure 2: Pseudo-code of the Events manager procedure.

viously obtained results, guides the construction process of each thread. The

behavior of each single agent is inspired by the behavior of real ants.

The ACS algorithm has been originally proposed by Gambardella and Dorigo

in [7]. We apply this paradigm to the static vehicle routing problems faced

within a DVRP. The method is similar to the MACS-VRPTW algorithm de-

scribed in Gambardella et al. [8], which is one of the state-of-the-art algorithm

for the vehicle routing problem with time windows (V RPTW ) and was able to

provide the best known solutions for many benchmarks2.

In order to simplify the description of the algorithm, we will consider v

dummy depots (one for each vehicle of the fleet) and we will refer to them as

d1, . . . , dv. Solutions retrieved by ants will be represented as long, single tours.

In this context, nodes contained within two consecutive dummy depots da and

db (with a, b ∈ {1, . . . , v}) form the (partial) tour associated with vehicle a. The

2Up to date results are available at:

http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html.
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partial tour associated with vehicle b will start from the dummy depot db, which

corresponds to the location of the last customer committed to vehicle b. The

starting time from db corresponds to the end of the serving time for the last

customer committed to vehicle b, while the capacity of b will be equal to the

residual capacity of b, i.e. Qb minus the quantity ordered by customers already

committed to vehicle b.

The main element of the algorithm are ants, simple computational agents

that individually and iteratively construct solutions for the problem. At each

step, every ant k computes a set of feasible expansions to its current partial

solution and selects one of these probabilistically, according to a probability dis-

tribution specified as follows. For ant k the probability pk
ij of visiting customer

j after customer i (i.e. the last visited customer) depends on the combination

of two values:

• the attractiveness ηij of arc (i, j), as computed by some heuristic indicating

the a priori desirability of that move. In our case ηij = 1
ttij

, i.e. it depends

on the travel time between customer i and customer j;

• the pheromone level τij of arc (i, j), indicating how proficient it has been

in the past to visit j after i is a solution; it represents therefore an a

posteriori indication of the desirability of that move.

Pheromone trails are updated at each iteration. The level of those associated

with arcs contained in “good” solutions are increased. The specific formula

for defining the probability distribution makes use of a set Fk
i which contains

feasible customers to extend the current partial solution of ant k.

The probability for ant k to append arc (i, j) to its partial solution is then

given by:

pk
ij =





τij(ηij)
β

∑
l∈Fk

i
(τil(ηil)β)

if j ∈ Fk
i

0 otherwise
(1)

where the sum is over all the feasible moves, β is a parameter controlling the

relative importance of the trail τij of arc (i, j) versus the actual attractiveness
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ηij of the same arc. In this manner pk
ij is a trade-off between the apparent

desirability and information from the past. Ant k will select customer j :=

argmaxl∈Fk
i
{pk

il} (exploitation) with probability q, while with probability (1 −
q) each move (i, j) is selected with a probability given by (1) (exploration).

Parameter q (0 ≤ q ≤ 1) determines the relative importance of exploitation

versus exploration.

When ant k moves from i to j, a local updating is performed on the

pheromone matrix, according to the following rule:

τij = (1− ρ)τij + ρτ0 (2)

where τ0 is the initial value of trails (defined by the user) used for the first

static VRP and for entries of the pheromone matrix involving new customers

in the following problems (see Section 3.3), and ρ (0 ≤ ρ ≤ 1) is a parameter

regulating pheromone evaporation. It mimics what happens in the case of real

ants.

An interesting aspect of the local updating is that while edges are visited by

ants, equation (2) makes the trail intensity diminish, making them less and less

attractive, and favoring therefore the exploration of not yet visited edges and

diversity in solution generation.

Once a complete solution is available, it is tentatively improved using a local

search procedure. We used a very simple greedy algorithm, which iteratively

selects a customer and tries to move it into another position within its tour or

within another tour. A parameter regulating the maximum computation time

for this local search, tls, has be specified by the user.

Once the m ants of the colony have completed their computation, the best

known solution is used to globally modify the pheromone trail. In this way a

“preferred route” is memorized in the pheromone trail matrix and future ants

will use this information to generate new solutions in a neighborhood of this

preferred route. The pheromone matrix is updated as follows:
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Procedure ACS
BestCost := ∞;
For each arc (i, j)

τij := τ0;
EndFor
While (computation time < T

nts
)

For k := 1 to m
While (Ant k has not completed its solution)

Select the next customer j;
Update the trail level τij (Equation (2));

EndWhile
Run a local search (maximum computation time = tls);
Cost := Cost of the current solution;
If (Cost < CostBest)

CostBest := Cost ;
BestSol := current solution;

EndIf
EndFor
For each move (i, j) in solution BestSol

Update the trail level τij (Equation 3);
EndFor

EndWhile

Figure 3: Pseudo-code of the ACS procedure.

τij = (1− ρ)τij +
ρ

CostBest
∀(i, j) ∈ BestSol (3)

where CostBest is the total travel time of solution BestSol , the best tour

generated by the algorithm since the beginning of the computation.

The process is iterated by starting again m ants until a termination condition

is met. In our simulations the natural termination criterion is to set a maximum

computation time of T
nts

seconds, which is defined as the length of each time

slice in our application, i.e. we use all the available time.

Pseudo-code of the ACS procedure for the static problems faced in a DVRP,

is presented in Figure 3.

3.3 Pheromone conservation procedure

The use of the ACS paradigm to solve the static problems produces a very

important side-effect, which is a key-element of our algorithm for the DV RP .
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Once a time slice is finished and the respective static problem has been solved

by the ACS algorithm, the pheromone matrix contains encrypted information

about characteristics of good solutions for this problems. In particular, pairs of

customers which are visited in sequence in good solutions, will have high values

in the corresponding entries of the pheromone matrix.

This information can be passed on to the static problem corresponding to

the next time slice, since the two problems are potentially very similar. This

operation prevents optimization to restart each time from scratch and heavily

contributes to the good performance guaranteed by the approach we propose

(see Section 4.2).

The strategy we follow to transfer information is inspired by Guntsch and

Middendorf [13] and [14]. A new parameter γr is introduced to regulate

pheromone conservation. For each pair of customers which appear both in the

old and in the new static problem, the corresponding pheromone matrix entry

is initialized to the following value:

τij = (1− γr)τold
ij + γrτ0 (4)

where τold
ij is the value of τij in the old static problem. In fact, pheromone

values are not completely reinitialized, but a trace of old values remains.

Entries of the new pheromone matrix corresponding to pairs of customers

involving new customers are initialized to τ0.

4 Computational results

This section is devoted the the experimental evaluation of the ACS-DVRP al-

gorithm on some simulated scenarios.

The benchmarks adopted will be described in detail in Section 4.1; Section

4.2 will document the parameter tuning phase for ACS-DVRP, while in Section

4.3 the results achieved by the algorithm will be presented together with those

of a basic algorithm based on the GRASP paradigm.
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The algorithms have been coded in ANSI C, and all the tests have been

carried out on a 1.5GHz/256MB Intel Pentium 4 machine.

4.1 Benchmarks description

The dynamic problems adopted in this paper have been originally proposed in

Kilby et al. [17]3. They are derived from some very popular static VRP bench-

mark datasets, namely 12 problems are taken from Taillard [24], 7 problems

are from Christofides and Beasley [2] and 2 problems are from Fisher et al. [6].

These problems range from 50 to 199 customers. The number of customers

can be inferred from the name of each instance. In order to obtain dynamic

problems, Kilby et al. added to these problem the following features:

• length of the working day. We will refer to this parameter as T , like

anticipated in Section 3.

• appearance time of each order. It contains, for each order, the mo-

ment of the working day, when the order becomes known to the dispatcher.

• duration of each order. It represent, for each order, the time required

to serve the corresponding customer.

• number of vehicles. It contains the dimension, in number of trucks, of

the fleet available for serving the customers. The number of vehicles is set

to 50 for each problem. This setting guarantees that it is possible to serve

all the orders for the problems considered.

More details about the dynamic problems can be found in Kilby et al [17].

Kilby et al. [17] presented a study on how changes in parameters Tco (i.e.

the cut-off time, after which orders are postponed to the following day) and Tac

(i.e. the advanced commitment time, modelling how much in advance orders

have to be committed to drivers) affect the performance of dynamic algorithms

in general. Since our target is to univocally define a set of benchmarks on which
3The problems are available at http://www.dcs.st-and.ac.uk/˜apes/apedata.html.
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dynamic algorithms can be compared (such a set of problems is not available

in the literature), we fixed the value of these two parameters. We adopted the

following values, which have been chosen according to the suggestions provided

in Kilby et al. [17]: Tco = 0.5 · T and Tac = 0.

In the application of the methodology we propose to a real problem, ACS-

DVRP is suppose to run for the whole working day. Since in this section our

aim is to run simulations, and it would be very time consuming to carry out

only a single run of the algorithm per day, we chose to map each working day

into 1500 seconds of CPU time (i.e. T = 1500 seconds and customer appearance

and serving times are changed proportionally).

4.2 Parameter setting for the ACS-DVRP algorithm

Some parameters have to be tuned in the ACS-DVRP framework. Most of them

are those of the ACS algorithm used to tackle the static V RP -like problems

generated by the events manager.

From a previous study presented in Gambardella et al. [8] for the MACS-

VRPTW algorithm, it is known that a good parameter setting for ACS algo-

rithms applied to classic vehicle routing problems is the following one: qo = 0.9,

β = 1, ρ = 0.1, a small value for m (number of ants), e.g. m = 3, and

τ0 = 1
n×Cost(PI) , where Cost(PI) is the cost of a solution retrieved by a greedy

heuristic algorithm. Since each one of our static problems is (almost) a clas-

sic VRP, we use these settings and in particular we initially solve each static

problem with a greedy post-insertion algorithm (like the one described in [8])

in order to obtain Cost(PI), and consequently τ0.

Parameters tls, which model the time dedicated to local search during each

iteration of the ACS algorithm, has also to be set. We decided to set tls = T
6·nts

,

and to consequently tune parameter nts. This last parameter is crucial for

algorithm ACS-DVRP, since too large values would imply that the optimization

is restarted too often, without local minima can be reached. On the other hand,

too small values would force the method to carry out long optimizations on
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problems which are not up to date, because the most recent information would

be ignored. In this case very good local minima might be reached for the

problems investigated, but these problems do not contain updated information,

and consequently the optimization effort is somehow vanished. For this reason,

a careful tuning for parameter nts is required. We carried out some tests, that

are summarized in Table 1. For these experiments we set γr = 0.3 (this value

was suggested by some preliminary tests).

Three values for nts (i.e. 10, 25 and 50) and three problems are considered

in Table 1. For each combination (problem, value of nts) five runs of algorithm

ACS-DVRP have been carried out and three values are reported in the corre-

sponding entry of the table: Min, Max and Avg, that respectively represent the

best, the worst and the average total travel times found over the five runs.

Table 1: Calibration of parameter nts (number of time slices).
nts

T
nts

tls c100 f71 tai75a
Min 1004.58 311.95 1880.11

10 150 25 Max 1145.20 399.26 2105.14
Avg 1083.64 362.93 1963.19
Min 973.26 311.18 1843.08

25 60 10 Max 1100.61 420.14 2043.82
Avg 1066.16 348.69 1945.20
Min 1131.95 333.25 1966.92

50 30 5 Max 1228.97 452.73 2133.87
Avg 1185.25 417.74 2019.82

Table 1 suggests that a good tradeoff between reactivity to dynamic events

and accurate optimization of the static V RP -like problems, is reached with

nts = 25. This setting guarantees the best performance of algorithm ACS-

DVRP for the benchmarks considered. Consequently we will adopt this setting

in the remainder of this section.

The last parameter which requires to be tuned is γr, the parameter used by

the pheromone conservation procedure (see Section 3.3). Some tests have been

carried out for experimentally finding good values for the parameter. They are

summarized in Table 2, where the results obtained on three benchmarks with
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four different values of γr are presented. In particular the values 0.1, 0.3, 0.5

and 1.0 are considered. For each of these values, five runs have been carried out

on each problem and for each pair (problem, value of γr) three quantities are

reported: Min, Max and Avg. They are respectively the best, the worst and the

average total travel times found over the five runs.

Table 2: Tuning of γr (parameter for pheromone conservation).
γr c100 f71 tai75a

Min 1072.44 352.77 1928.18
0.1 Max 1157.43 419.21 2220.75

Avg 1116.13 383.27 2016.78
Min 973.26 311.18 1843.08

0.3 Max 1100.61 420.14 2043.82
Avg 1066.16 348.69 1945.20
Min 1039.36 360.20 1847.41

0.5 Max 1135.26 443.16 2054.91
Avg 1087.90 389.00 1962.66
Min 1079.12 367.32 1873.69

1.0 Max 1133.15 431.53 2102.58
Avg 1098.99 399.18 1971.91

From Table 2 the setting γr = 0.3 clearly appears to be the most promising.

In the remaining tests γr will consequently be set to 0.3.

It is also interesting to compare the results obtained with γr = 0.3 and

γr = 1.0 (i.e. no pheromone conservation). When γr = 0.3 is used, the results

are always considerably better and this highlights the important role played by

pheromone conservation in our algorithm.

4.3 Comparison with other algorithms

In this section we aim to evaluate the computational results of the ACS-DVRP

algorithm. For comparison reasons we implemented a basic GRASP algorithm

(we will refer to it as GRASP −DV RP ). The algorithm GRASP-DVRP will

be described in detail in Section 4.3.1, while the computational results of the

two algorithms will be presented in in Section 4.3.2.
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4.3.1 Algorithm GRASP-DVRP

The approach is based on an architecture similar to that described in Section

3.2 for the ACS-DVRP algorithm. The main differences are that here a GRASP

(Greedy Randomized Adaptive Search Procedure, see Resende and Ribeiro [21])

module is used instead of the ACS algorithm to tackle the static V RP -like

problems, and that, consequently, no pheromone conservation strategy exists.

In particular, the GRASP procedure works by repeatedly carrying out the

following operations for the time corresponding to a time slice:

• initial tours are generated by iteratively selecting the next customers to

visit at random among those that have a travel time from the last selected

location in the interval [ttmin, ttmin + δG(ttmax − ttmin)], where δG is a

parameter and ttmin and ttmax are the minimum and maximum feasible

(in terms of vehicle capacity) travel times out of the last selected location.

The procedure is repeated until a complete solution is build. Notice that

when δG = 0 the construction strategy is completely greedy, while δG = 1

means that the next customer is selected completely at random among the

feasible ones. For the experiments reported in Section 4.3.2, we will set

δG = 0.75, according to some preliminary tests that indicated this setting

as the most promising one.

• the same local search procedure described in Section 3.2 for the ACS

algorithm is run for tls on the solution so obtained, in order to improve it.

• if the solution so obtained is the best retrieved so far, it becomes the new

best solution.

It is important to observe that a better designed, and perhaps more sophisticated

implementation of the GRASP algorithm (see, for example, Kontoravdis and

Bard [18]) for the construction phase, would probably bring to better results.
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4.3.2 Results

In Table 3 the results obtained by the algorithms described in Sections 3.2 and

4.3.1 are compared. For each problem, five runs of each algorithm have been

considered. In Table 3 the best (Min), the worst (Max ) and the average (Avg)

travel time retrieved over the five runs are reported.

Table 3: Computational results.

Problem GRASP-DVRP ACS-DVRP
Min Max Avg Min Max Avg

c100 1080.33 1169.67 1119.06 973.26 1100.61 1066.16
c100b 978.39 1173.01 1022.12 944.23 1123.52 1023.60
c120 1546.50 1754.00 1643.15 1416.45 1622.12 1525.15
c150 1468.36 1541.54 1501.35 1345.73 1522.45 1455.50
c199 1774.33 1956.76 1898.20 1771.04 1998.87 1844.82
c50 696.92 757.97 719.56 631.30 756.17 681.86
c75 1066.59 1142.32 1079.16 1009.38 1086.65 1042.39
f134 15433.84 17325.73 16458.47 15135.51 17305.69 16083.56
f71 359.16 429.64 376.66 311.18 420.14 348.69

tai100a 2427.07 2583.02 2510.29 2375.92 2575.70 2428.38
tai100b 2302.95 2636.05 2512.27 2283.97 2455.55 2347.90
tai100c 1599.19 1800.85 1704.40 1562.30 1804.20 1655.91
tai100d 1973.03 2165.39 2087.55 2008.13 2141.67 2060.72
tai150a 3787.53 4165.42 3899.16 3644.78 4214.00 3840.18
tai150b 3313.03 3655.63 3485.79 3166.88 3451.69 3327.47
tai150c 3110.10 3635.17 3219.27 2811.48 3226.73 3016.14
tai150d 3159.21 3541.27 3298.76 3058.87 3382.73 3203.75
tai75a 1911.48 2116.95 2005.44 1843.08 2043.82 1945.20
tai75b 1582.24 1934.35 1758.88 1535.43 1923.64 1704.06
tai75c 1596.17 1859.71 1674.37 1574.98 1842.42 1653.58
tai75d 1545.21 1641.91 1588.73 1472.35 1647.15 1529.00
Total 52731.63 58986.36 55562.64 50855.94 57645.52 53784.02

Table 3 shows that the ACS-DVRP algorithm is able to provide higher

quality solutions than GRASP-DVRP. They are, on average, 3.56% better in

terms of best results, 2.27% better in terms of worst results, and 3.20% better

in terms of average results.

It is also interesting to observe that, for all the problems considered, the best

solution found by the ACS-DVRP algorithm over five runs, is always better of
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the best one retrieved by the GRASP-DVRP algorithm.

5 A case study

In this section we summarize the results obtained by the ACS-DVRP algorithm

on a realistic case study, set up in the city of Lugano, Canton Ticino, Switzer-

land. The aim of the study is twofold: first we want to show that the approach

we propose is suitable to be applied to real world problems. Second we want to

empirically show that parameter nts - that regulates the number of time slices -

has to be tuned also in case of real world problems, in order to obtain the best

possible results.

In Figure 4 the road network of Lugano is depicted. The locations of a depot

(white square) and of 50 customers (black circles) have been provided by a

local fuel distribution company. Travel times among them have been calculated

as classic shortest paths over the road network. A working day of 8 hours

(28800 seconds) is considered, while a service time of 10 minutes (600 seconds)

is set up for each customer. Customers appear during the working day with

orders ranging in [1, 31]. A fleet of 10 vehicles with capacity 160 is finally

considered. The dimension of the fleet is calibrated on the orders expected by

the fuel distribution company, and it results to be well dimensioned for the case

study presented here. Cut-off time Tco has been set to 14400 seconds, while the

advanced commitment time Tac has been set to 288 seconds. Parameter nts will

be varied, being the argument of the study we propose.
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Parameters q0, β, ρ and γr and m are set up as described in Section 4.2.

In Table 4 we presents the results obtained by the ACS-DVRP algorithm in

different experiments, where the number of time slices (namely parameter nts)

is varied. Parameter tls is adjusted according to the values of nts in such a way

that tls ≈ T
10·nts

.

In Table 4 the first three rows define the settings of the experiments, i.e. the

values of parameters nts, T
nts

and tls. The forth row shows the total travel time

of the solutions found by the ACS-DVRP algorithm.

Table 4: Experimental results on the case study of Lugano.
nts 200 100 50 25 10 5
T

nts
144 288 576 1152 2880 5760

tls 15 30 60 120 240 480
Travel time 12702 12422 10399 9744 10733 11201

Table 4 confirms, first of all, that the approach we propose in this paper is

suitable to be applied to real world problems. Table 4 also suggests that a careful

tuning of parameter nts can lead to better results. In particular, it is shown

that, for the case study analyzed, good values for nts are in the range [10, 50].

The setting nts = 25 seems to be the best choice. It is finally interesting to

observe that the setting nts = 25 was the most promising also for the problems

studied is Section 4. As explained in Section 4.2, too large values for nts do not

lead to satisfactory results because optimization is restarted too often, without

good local minima can be reached. On the other hand, when nts is too small

the system is not able to take advantage of new information.

6 Conclusion

A dynamic vehicle routing problem has been studied in this paper. A solving

strategy for this problem has been described. It is based on the partition of

the working day into time slices. A sequence of static vehicle routing problems

is then generated. An Ant Colony System algorithm has been used to solve
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these problems. The properties of ACS have been also exploited to transfer

information about good solutions from a time slice to the following one.

A computational study on a newly defined set of benchmarks, finally shows

that the method we propose is able to achieve good results both on artificial

and real problems.
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