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Abstract— Broadcasting in wireless networks, unlike wired
networks, inherently reaches several nodes with a single trans-
mission. For omnidirectional wireless broadcast to a node, all
nodes closer will also be reached. This property can be used to
compute routing trees which minimize the sum of the transmitter
powers.

In this paper we present a mixed integer programming for-
mulation and a simulated annealing algorithm for the problem.
Extensive experimental results for the heuristic approach are
presented. They show that the algorithm we propose is capable
of improving the results of state-of-the-art algorithms for most of
the problems considered. The solutions provided by the simulated
annealing algorithm can be improved by applying a very fast
post-optimization procedure. This leads to the best known mean
results for the problems considered.

I. I NTRODUCTION

Among the most crucial issues related to ad-hoc and sensor
networks is that of operation in limited energy environments,
since devices are usually equipped with battery with a limited
lifetime.

Since radio signals have non-linear attenuation properties,
it is very energy-consuming to transmit a signal far away.
Another drawback of long-range transmissions is that they tend
to produce widespread interference over the network, and for
this reason they should be avoided.

The previous issues can be seen as correlated, and they
can be handled together by taking advantage of the so-called
wireless multicast advantageproperty (see, Wieselthier et al.
[1]). This property is based on the observation that, in wireless
networks, devices are usually equipped with omnidirectional
antennae, and for this reason multiple nodes can be reached by
a single transmission. In the example of Figure 1a, nodesj and
k are closer to nodei than nodem, then the signal originating
in node i, and directed to nodem, will be received also by
nodesj and k, since they are within the transmission range
of a communication from nodei to nodem.

For a given network with an identified source node, the
MPB (minimum power broadcast) problem is to assign trans-
mission powers to the nodes in such a way that the network
is connected and the total power consumption is minimized.
The MPB problem in wireless networks is shown to be NP-
complete in Cagalj et al. [2], and this implies that polynomial
time algorithms are unlikely to exist. Some mixed integer

Fig. 1. (a) Communication model.(b) Costs for mathematical formulation
MIP . cij is the power required to reachj from i, while cik is the additional
power required to reachk when j is already reached fromi. Analogously,
cim is the additional power required to reach nodem from i while k is
already reached.

programming formulations for the problem are described in
Das et al. [3].

Wieselthier et al. [1] first observed that the so called “node
based” approach is more suitable for wireless environment
than the previously adopted “link-based” algorithms. They
developed theBroadcast Incremental Power (BIP)algorithm,
which is a simple sub-optimal heuristic for constructing min-
imum power broadcast trees in wireless networks. In this
algorithm, new nodes are added to the tree on a minimum
incremental cost basis, until all intended destination nodes are
included. It was subsequently shown in Wan et al. [4] that the
BIP algorithm has an approximation ratio between13/3 and
12. Other techniques that have been suggested for solving this
problem include an internal nodes based broadcasting produce
by Stojmenovic et al. [5], an evolutionary approach by Mark
et al. [6], a localized algorithm by Cartigny et al. [7], aswarm
based procedure by Das et al. [8] (Ant Colony System, ACS,
see also Gambardella and Dorigo [9]). This last algorithm
was hybridized within acluster-merge(CM) method presented
in Das et al. [10]. Some heuristic approaches for improving
solutions provided by other methods was presented in Das et
al. [11]. Most of these heuristic techniques are described in
detail in Das et al. [12].

The rest of the paper is organized as follows. In Section II,
we outline the network model. A mixed integer programming
formulation, based on a novel (for the problem) incremental
cost mechanism, is described in Section III. The simulated
annealing paradigm and its adaptation to theMPB problem
is presented in Section IV. Computational results are presented



in Section V, while Section VI contains conclusions.

II. N ETWORK MODEL

We assume a fixedN -node network with a specified source
node which has to broadcast a message to all other nodes in
the network. Any node can be used as a relay node to reach
other nodes in the network. All nodes are assumed to have
omnidirectional antennae, so that if nodei transmits to node
j, all nodes closer toi thanj will also receive the transmission.

The signal propagation we adopt, which is the most com-
mon one in the literature (see, for example, Wieselthier et al.
[1], Das et al. [12], Montemanni and Gambardella [13] and
Montemanni et al. [14]), works as follows. For a nodei of the
network, the power required to reach another nodej is given
by:

pij = (dij)κ (1)

where dij is the Euclidean distance between nodesi and j
and2 ≤ κ ≤ 4 is the channel loss exponent.

We assume that there is no constraint on maximum trans-
mission power. However, the algorithm we discuss in this
paper can be extended straightforwardly to the case where this
assumption does not hold. If, for example, nodei cannot reach
nodej even when it is transmitting at its maximum power (i.e.
dκ

ij > maximum power ofi), thenpij can be redefined as+∞.
We consider a centralized implementation where construc-

tion of the routing tree is done at the source node, which
has complete knowledge of the locations of all nodes in the
network. Finally, we assume that power expenditures due to
signal reception and processing are negligible compared to
signal transmission and hence thecost of a routing tree is
equal to the sum of transmitter powers corresponding to the
set of edges chosen in the tree.

III. M IXED INTEGER LINEAR PROGRAMMING

FORMULATION

In this section we present a mixed integer programming
formulation for theMPB problem.

Differently from the mathematical formulations previously
appeared (see, for example, Das et al. [3]), formulationMIP
is based on an incremental mechanism over the variables
representing transmission powers. This mechanism has been
already used to formulate theMinimum power symmetric
connectivity problem(see Montemanni and Gambardella [13],
[15] and Montemanni et al. [14]), and its use guarantees a
better formulation in terms of linear relaxation, which means
shorter computation times to solve the original mixed integer
program.

A dummy arc(i, i) with pii = 0 is inserted intoA for each
i ∈ V . pij is defined by equation (1) wheni 6= j.

In order to describe the new mathematical formulations, we
need the following definition.

Definition 1: Given (i, j) ∈ A, we define theancestorof
(i, j) as

ai
j =

{
i if pij = mink∈V {pik}
argmaxk∈V {pik|pik < pij} otherwise

(2)

(MIP ) Min
∑

(i,j)∈A

cijyij (3)

s.t. yij ≤ yiai
j

∀(i, j) ∈ A, ai
j 6= i (4)

xij ≤ (|V | − 1)yij ∀(i, j) ∈ A (5)

∑

(i,j)∈A

xij −
∑

(k,i)∈A

xki =

{
|V | − 1 if i = s

−1 otherwise
∀i ∈ V (6)

xij ∈ R ∀(i, j) ∈ A (7)

yij ∈ {0, 1} ∀(i, j) ∈ A (8)

Fig. 2. The mixed integer programming formulationMIP .

According to this definition,(i, ai
j) is the arc originated in

nodei with the highest cost such thatpiai
j

< pij . In case an
ancestordoes not exist for arc(i, j), vertexi is returned, i.e.
the dummy arc(i, i) is addressed.

In the example of Figure 1a, arc(i, k) is the ancestor of arc
(i,m), (i, j) is the ancestor of(i, k) and the dummy arc(i, i)
is returned as the ancestor of(i, j).

The mixed integer programming formulationMIP , pre-
sented in Figure 2, is based on a network flow model (see
Magnanti and Wolsey [16]). Variablexij represents the flow
on arc(i, j). Variableyij is 1 when nodei has a transmission
power which allows it to reach nodej, yij = 0 otherwise.

The costs associated with these variable in the objective
function (3) are connected with the incremental mechanism
described above, and are given by the following formula:

cij = pij − piai
j
∀(i, j) ∈ A (9)

cij is equal to the power required to establish a transmission
from nodesi to nodej (pij) minus the power required by
nodesi to reach nodeai

j (piai
j
). In Figure 1b the costs arising

from the example of Figure 1a are depicted.
Constraints (4) realize the incremental mechanism by forc-

ing the variables associated with arc(i, ai
j) to assume value

1 when the variable associated with arc(i, j) has value 1, i.e.
the arcs originated in the same node are activated in increasing
order of p. Inequalities (5) connect the flow variablesx to
y variables. Equations (6) define the flow problem, while
(7)s and (8)s are domain definition constraints. We refer the
interested reader to Magnanti and Wolsey [16] for a more
detailed description of the spanning tree formulation behind
the formulation presented above.

A family of facet defining valid inequalities can be added
to formulation MIP . They contribute to make the linear
relaxation of the formulation tighter, and consequently help
to speed up solvers while solvingMIP .

∑

(j,i)∈A

yji ≥ 1 ∀i ∈ V \{s} (10)

Inequalities (10) specify that,∀ i ∈ V \{s} there must be
at least one node transmitting at a power which allows it to



reachi. Every feasible solution to theMPB must present this
characteristic.

IV. SIMULATED ANNEALING ALGORITHM

A. General description

Simulated annealing is a metaheuristic algorithm derived
from thermodynamic principles. It has been applied originally
to combinatorial optimization in Kirkpatrick et al. [17]. It can
be used to find (near) minimum cost solutions1 of difficult
problems characterized by vast search spaces, on which it is
impossible to obtain the optimal solution by running exact
algorithms.

The search proceeds with the cost function reducing most
of the time, but it is allowed to increase sometimes to permit
escape from local minima which are not global minima. The
analogy with thermodynamics, and specifically with the way
that liquids freeze and crystalize, or metals cool and anneal, is
in the strategy adopted to accept or not accept cost-increasing
solutions. At high temperatures, the molecules of a liquid
move freely with respect to one another. If a liquid metal is
cooled quickly (i.e. quenched), it does not reach a minimum
energy state but a somewhat higher energy state corresponding,
in the mathematical sense, to a suboptimal solution. On the
other hand, if the liquid is cooled slowly, thermal mobility is
restricted. The atoms are often able to line themselves up and
form a pure crystal that is completely regular. The crystal is the
state of minimum energy for the system, which corresponds to
the optimal solution in a mathematical optimization problem.
The algorithm is based on the connection of the physical
concept of temperature with the mathematical concept of
the probability of accepting a cost-increasing solution. The
probability will be high initially and will decrease slowly, like
the temperature in the annealing process which produces the
regular crystal.

In the next section a mapping of the paradigm to theMPB
problem will be described.

B. A simulated annealing algorithm for theMPB problem

Each solution for the MPB problem is represented by
the set of transmission powers assigned to the nodes of the
network, while the fitness value of each solution (analogous
to the energy of the system in the thermodynamic case) is
represented by the sum of the transmission powers of all the
nodes.

In our algorithm, only solutions which provide a connected
broadcasting tree (i.e., feasible solutions) are considered. This
means that the algorithm moves from a connected broadcasting
tree to another. The goal is to find a solution with minimum
cost.

The starting solution for the SA algorithm is obtained from
that provided by the BIP algorithm (see Wieselthier et al.
[1]), a fast polynomial time constructive heuristic method. In
order to provide the SA algorithm a richer search space, this

1Here and in the following we suppose the methods to be applied to mini-
mization problems. It is trivial to adapt the descriptions for the maximization
case.

solution is perturbed in such a way that it remains in the
attraction-basin of the solution provided by BIP algorithm,
but less deep inside the corresponding local minimum valley.
This helps the algorithm to move to different local optima
easily. The perturbation phase works as follows. Each nodei is
considered and if it is not already transmitting at its maximum
possible power (i.e. to reach the node farthest away from it,
subject to its eventual maximum power constraint) then, with
probability pp, its power is increased in such a way that node
i can reach one more node. It is important to observe that with
the given perturbation strategy, each initial solution is feasible
since transmission powers can only be augmented (i.e. solution
cost can only increase), starting from the values provided by
BIP algorithm, which is feasible by definition.

Preliminary tests showed that the starting solution obtained
as described above usually provides a better final solution than
those obtained by computing (and eventually perturbing) the
Minimum Spanning Tree(i.e. ignoring the wireless multicast
advantage) using Prim’s algorithm [18], or by running the
Stochastic tree generationalgorithm presented in Marks et al
[6].

The SA algorithm then enters an iterative state, where the
simulation of the annealing process is carried out. In this phase
the broadcasting tree is repeatedly disconnected and repaired.
The disconnect and repair strategies we adopt can be seen
as a probabilistic version of ther-shrink tree-improvement
algorithm described in Das et al. [11] and are explained in
detail below.

In the remainder of this section, we will refer to the current
solution asSO. During the first iteration,SO is initialized
to the solution obtained by perturbing the heuristic solution
provided by the BIP algorithm.

At each iteration of the simulated annealing algorithm, the
following steps are carried out:

• A random nodei is selected among the ones transmitting
in the current solutionSO.

• The power of nodei is decreased in such a way that it can
reach one less node than in solutionSO (notice that this
could cause nodei to stop transmitting). We will refer to
the node which is not reached anymore by nodei as j.

• If solution SN is still providing a feasible broadcasting
tree - this happens ifi was using more power than
necessary in solutionSO - no operation is carried out
on solutionSN .

• If solution SN does not provide a feasible broadcasting
tree anymore, the broadcasting subtree not containing
nodej - we will refer to asSubT - is identified and one
of its nodes,k, is selected, according to the following
mechanism. With probabilitypr, node k is selected at
random among those withpkj < +∞, while with
probability (1 − pr) it is selected as the node ofSubT
which reconnects the broadcasting tree with the minimum
increment in power.

• The new solutionSN is accepted with probability given



Fig. 3. Example of iteration of the SA algorithm.

by:

min
{

1, e−
Cost(SN )−Cost(SO)

t

}
(11)

whereCost(S) is a function returning the total transmission
power (cost) of solutionS.

A (simplified) example of iteration of the SA algorithm is
presented in Figure 3. In the example, for simplicity, only some
arcs are considered (we suppose the others have cost +∞) and
transmission powers required to connect nodes (associated to
arcs) are not proportional to distances. Starting from the top-
left corner and moving clockwise, a transmitting node (B)
of the current solution is randomly selected and its power is
reduced in such a way that it can reach one node less (the
power of B is reduced from 4 to 3). The subtree containing
nodesD andE is now disconnected from the other nodes, and
there are two ways to reconnect it (we do not take into account
the reinsertion of the arc just removed): to increase the power
of nodeA from 6 to 7 (arc(A,D)) or to increase the power
of node C from 0 to 5 (arc(C, E)). In the example, node
A is selected. The new connected structure so obtained has
the same cost (11) of the original solution, and according to
formula (11), it is accepted to become the new current solution.

It is important to observe that in the final state of the
example of Figure 3, nodeB is still transmitting with power
3, while the solution would remain feasible even without the
contribution of nodeB (i.e. B not transmitting) and the total
cost would be smaller (8 instead of 11). This characteristic
of considering also solutions which are not fully optimized
is very important for the SA algorithm we propose, since
this strategy permits to extensively explore the search space,
looking for interesting attraction basins, without being trapped
into deep local minima. A confirmation to this hypothesis
will be given by some computational experiments presented
in Section V.

Note that by using formula (11), not only improving so-
lutions are accepted, but also solutions that do not improve
the current one are sometimes accepted. Their acceptance

probability is regulated by variablet, which is analogous
to temperature in the real annealing process. Accepting non-
improving solutions helps the algorithm to escape from local
minima.

Temperaturet, which initially assumes the value given
by parametertinit, is decreased every timeCT consecutive
iterations are carried out without improvements to the best
solution retrieved so far. This simulates the annealing process.
The following rule is adopted to regulate parametert:

t := α t (12)

where 0 < α < 1 is a user defined parameter regulating
(together with parameterCT ) the speed of the annealing
process.

In the beginning, the temperaturet is high and most of the
new configurations are accepted. As the algorithm proceeds,
t is reduced until it reaches a value where non-improving
configurations are all rejected. Whent goes below a given
threshold,Tt, the SA algorithm is stopped.

The post-optimization algorithmSweep(see Wieselthier et
al. [1]), which aims to reduce the power of nodes transmitting
at unnecessary high power, is run after the SA algorithm
terminates. It is important to observe that the computation time
required by the sweep algorithm is negligible for the problems
considered.

A simplified pseudo-code of the simulated annealing algo-
rithm is presented in Figure 4.

V. COMPUTATIONAL RESULTS

The simulated annealing algorithm was tested on 25, 50, 75,
100, 150 and 200-node networks in a 5× 5 grid. In each case,
50 networks were randomly generated and the tree powers
were averaged to obtain the mean tree power.

Parameterκ of equation (1) was chosen to be equal to 2
for all cases. Tests for the SA algorithm were carried out on a
computer equipped with an Intel Celeron 1.3 GHz processor
and 256 MB of memory.

The parameter settings adopted for the simulations are
summarized in Table I. It is important to observe that these
parameter values guarantee quick solving times (no more
than a few seconds for the biggest problems). This is very
encouraging also in the light of the result of some preliminary
tests. They suggest that solving formulationMIP (reinforced
with inequalities (10)) takes on average one hour for each
instance of the smallest problems (the commercial solver
CPLEX2 has been used), making this last approach impossible
to use for real problems. Tests not reported in this paper also
suggest that the simulated annealing based algorithm is not
very sensitive to the changes in parameter values, which are
almost independent from the problem dimensions.

Table II aims to show the benefit of our implementation
of the SA algorithm. Only networks with up to 100 nodes
are considered here. We compare its results (columnSection

2http://www.cplex.com.



SO := BIP();
For i := 1 to N ;

If (rand(0,1)< pp)
increase the power ofi in solutionSO;

BestS := SO;
t := tinit;
C := 0;
While (t < Tt)

If(C > CT )
t := α t;

SN := SO;
C := C + 1;
i := random transmitting node ofSN ;
decrease the power ofi in SN

(nodej is not reached anymore byi);
If (SN is a feasible solution)

SO := SN ;
Else

SubT := subtree ofSN not containingj;
If (rand(0,1)< pr)

k := random node inSubT ;
Else

k := node inSubT which reconnects
solutionSN with the minimum
increase in power;

If(rand(0,1)< e−
Cost(SN )−Cost(SO)

t )
SO := SN ;

If ( Cost(SN ) < Cost(BestS) )
BestS := SN ;
C := 0;

ReturnBestS;

Fig. 4. Simulated annealing algorithm for theMPB problem.

TABLE I

PARAMETER SETTING FOR THE SIMULATED ANNEALING ALGORITHM.

Parameter Meaning Value
pp Perturbation probability (initial solution) 0.3
pr Random selection probability for reconnection 0.2

tinit Initial temperature 0.2
CT Iteration interval for temperature update 30000
α Annealing parameter 0.9
Tt Stopping criterion (temperature threshold) 0.1

IV-B of the table) with those of a modified version of the
algorithm where after each change in the solution (i.e. during
each iteration), the sweep algorithm (see Section IV-B, near
the end) is run, and the solution is brought to a more deep local
optimum. The solution so obtained is used for the comparison
with the old one in formula (11) (columnSweep at each
iterationof the table). The superiority of the implementation of
the SA algorithm we described in Section IV-B (i.e. without
local optimization at each iteration) is clear. A justification
for this could be that the other version of the SA algorithm
tends to be trapped into local minimum, from which it does
not manage to come out with a single movement. This does
not happen to the SA algorithm described in Section IV-B,
which also accept redundant solutions, i.e. with unnecessary
transmission power at some nodes. This allows the method to

TABLE II

MEAN TREE POWERS OBTAINED BY DIFFERENT IMPLEMENTATIONS OF

THE SIMULATED ANNEALING ALGORITHM .

N Sweep at each iteration Section IV-B
25 11.08 9.98
50 11.10 9.67
75 11.14 9.84
100 11.19 9.94

TABLE III

MEAN TREE POWERS OBTAINED BY DIFFERENT ALGORITHMS.

N BIP BIP + BIP + ACS CM + SA SA +
sweep 1-shrink 1-shrink sweep

25 12.46 12.14 11.25 10.21 10.23 9.98 9.95
50 11.67 11.45 10.68 10.04 9.90 9.67 9.65
75 11.63 11.37 10.67 - 9.88 9.84 9.74
100 11.60 11.36 10.55 - 9.87 9.94 9.82
150 11.31 11.07 - - - 10.45 10.35
200 11.27 11.04 - - - 11.01 10.25

float among different attraction basins, which leads to a better
exploration of the search-space.

It is worth to observe that running the sweep algorithm at
each iteration also slows down quite considerably the whole
algorithm.

A comparison of our SA approach with some state-of-the-
art algorithms recently appeared is presented in Table III. In
the first column the different networks considered are listed.
In the remaining columns the mean tree powers for different
algorithms are presented. In particular BIP, BIP followed by
the sweep algorithm (see Wieselthier et al. [1]), BIP followed
by the1-shrink algorithm (see Das et al. [11]), ACS (see Das
et al. [8]) and CM (see Das et al. [10]) followed by the1-
shrink algorithm (see Das et al. [11]) are considered together
with the SA algorithm, which is the one discussed in this
paper. The last column contains the results obtained by SA
followed by the sweep algorithm. Percentage improvements
in the mean tree powers over the BIP solutions are shown in
Table IV. Entries of the tables marked with “-” correspond to
combination for which no result is available.

From Table III and Table IV it can be seen that the SA
algorithm is able to substantially improve the results achieved
by the other algorithms for all the problems apart from those

TABLE IV

PERCENTAGE IMPROVEMENTS(%) IN MEAN TREE POWER OVERBIP

ALGORITHM .

N BIP + BIP + ACS CM + SA SA +
sweep 1-shrink 1-shrink sweep

25 2.57 9.71 18.06 17.90 19.90 20.14
50 1.89 8.48 13.93 15.17 17.14 17.31
75 2.24 8.25 - 15.05 15.39 16.25
100 2.07 9.05 - 14.91 14.31 15.34
150 2.12 - - - 7.60 8.49
200 2.04 - - - 2.31 9.05



Fig. 5. Percentage improvements (%) in mean tree power of SA + sweep
over BIP.

with 100 nodes. It works particularly well on small/medium
size problems. On the other hand, it is comparable to the
CM + 1-shrink algorithm for problems with 100 nodes. No
comparison with the other algorithms (apart from BIP and
BIP + sweep) is possible for problems with more than 100
nodes.

A small further improvement in the solutions provided
by SA algorithm can be obtained by running the sweep
algorithm, which - as observed in Section IV-B - has negligible
computation times, on them. This improvement confirms the
hypothesis we formulated in Section IV-B, i.e. that SA tends
to produce solutions which are not fully optimized to local
minima. As explained before, we believe that this property
plays an important role in the performance of the algorithm we
propose: SA is able to investigate the search-space searching
for good attraction basins, without concentrating too much on
local minima, then the sweep algorithm is able to integrate the
behavior of SA, bringing these solutions down to their local
minima. In fact, running sweep after SA leads to the best mean
results for all of the problems, also for those with|V | = 100.

A final, important, observation is about the improvements
over the BIP algorithm, reported in Table IV. From the table
it clearly appears that the improvements over BIP algorithm
guaranteed by the other algorithms decreases when the num-
ber of nodes considered increases. This phenomenon is also
depicted in the chart of Figure 5, where the improvements
guaranteed by SA + sweep over BIP are reported. A linear
trend-line has been also added to better read the chart. A
justification for the phenomenon is that the wireless advantage
property is gradually lost as the density increases, since many
nodes are packed in the (small) grid. This causes long-distance
transmissions to be not convenient, and solutions similar to
minimum spanning trees - like those provided by the BIP
algorithm - tend to be close to optimality. This vanishes the
effort of more complex algorithms to heavily improve the
average results of BIP.

VI. CONCLUSION

In this paper, we have presented a new mixed integer
programming formulation and a new heuristic approach for
the minimum power broadcast problem in wireless networks.
The heuristic algorithm is based on the simulated annealing
paradigm and which proves to be very suitable for the problem

under consideration.
Experimental simulations show that the simulated annealing

algorithm is able to provide high quality solutions, which are
significantly better than those generated by the BIP algorithm.
The solutions are also better than the best results reported thus
far in the literature.
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