
Ultimate Cognition à la Gödel

Jürgen Schmidhuber

Published online: 5 March 2009
! Springer Science+Business Media, LLC 2009

Abstract ‘‘All life is problem solving,’’ said Popper. To
deal with arbitrary problems in arbitrary environments, an

ultimate cognitive agent should use its limited hardware in

the ‘‘best’’ and ‘‘most efficient’’ possible way. Can we
formally nail down this informal statement, and derive a

mathematically rigorous blueprint of ultimate cognition?

Yes, we can, using Kurt Gödel’s celebrated self-reference
trick of 1931 in a new way. Gödel exhibited the limits of

mathematics and computation by creating a formula that

speaks about itself, claiming to be unprovable by an
algorithmic theorem prover: either the formula is true but

unprovable, or math itself is flawed in an algorithmic sense.

Here we describe an agent-controlling program that speaks
about itself, ready to rewrite itself in arbitrary fashion once

it has found a proof that the rewrite is useful according to a

user-defined utility function. Any such a rewrite is neces-
sarily globally optimal—no local maxima!—since this

proof necessarily must have demonstrated the uselessness

of continuing the proof search for even better rewrites. Our
self-referential program will optimally speed up its proof

searcher and other program parts, but only if the speed up’s
utility is indeed provable—even ultimate cognition has

limits of the Gödelian kind.

Keywords Universal cognitive systems !
Ultimate cognition ! Optimal general problem solver !

Self-reference ! Goedel machine !
Global optimality theorem ! AI becoming a formal science

Introduction and Outline

In the previous millennium Karl Popper already realized that
‘‘all life is problem solving‘‘ [37]. Early work on artificial
general problem solvers [35, 39, 75], however, was heuristic by

nature,without anygeneral proofs of theoretic optimality.More
recent algorithms for problem solving/machine cognition/

reinforcement learning (RL) [24, 73] are also restricted inmany

ways, and hardwired: although some of them are designed to
improve some limited type of policy through experience, they

are not self-referential in the sense that they are not part of the

modifiable policy, and cannot improve themselves in a theo-
retically sound way. While recent work on ‘‘consciousness’’

[1, 2, 7, 15, 66, 69] often does address certain aspects of self-

reference, it does not provide an optimal way of using it for the
central issue of problem solving. In general, currently humans

are still needed to create new/better problem solving algorithms
and to prove their usefulness under appropriate assumptions.

Here we will eliminate the restrictive need for human effort

in the most general way possible, leaving all the work
including the proof search to an ultimate self-referential cog-

nitive system that can rewrite and improve itself in arbitrary

computable ways and in a most efficient fashion. To attack this
‘‘Grand Problem of Artificial Intelligence’’ [53], we introduce
a novel class of optimal, fully self-referential [14] general

problem solvers calledGödel machines [54–58, 60, 62].1 They
J. Schmidhuber (&)
IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland
e-mail: juergen@idsia.ch
URL: http://www.idsia.ch/*juergen

J. Schmidhuber
TU München, Boltzmannstr. 3, 85748 Garching bei München,
Germany

1 Or ‘Goedel machine’, to avoid the Umlaut. But ‘Godel machine’
would not be quite correct. Not to be confused with what Penrose
calls, in a different context, ‘Gödel’s putative theorem-proving
machine’ [36]!

123

Cogn Comput (2009) 1:177–193

DOI 10.1007/s12559-009-9014-y

are universal cognitive agents that interact with some (partially

observable) environment and can in principle modify them-
selves without essential limits apart from the limits of

computability. Their initial algorithm is not hardwired; it can

completely rewrite itself, but only if a proof searcher embed-
ded within the initial algorithm can first prove that the rewrite

is useful, given a formalized utility function reflecting com-

putation time and expected future success (e.g., rewards). We
will see that self-rewrites due to this approach are actually

globally optimal (Theorem 4.1, ‘‘Global optimality theorem’’
section), relative to Gödel’s well-known fundamental restric-

tions of provability [14]. These restrictions should not worry

us; if there is no proof of some self-rewrite’s utility, then
humans cannot do much either.

The initial proof searcher is O()-optimal (has an optimal

order of complexity) in the sense of Theorem 5.1, ‘‘Bias-
optimal proof search’’ section. Unlike hardwired systems

such as Hutter’s [20, 21] and Levin’s [28, 30] (see

‘‘Relations to previous work’’ section), however, a Gödel
machine can in principle speed up any part of its initial

software, including its proof searcher, to meet arbitrary
formalizable notions of optimality beyond those express-
ible in the O()-notation. Our approach yields the first

theoretically sound, fully self-referential, optimal, general

problem solvers—the ultimate cognitive agents.

Outline The following section presents basic concepts

and fundamental limitations, the essential details of a self-

referential axiomatic system are shown in the section
‘‘Essential details of one representative Gödel machine’’,

followed by the section ‘‘Global Optimality Theorem’’, and

the O()-optimal (Theorem 5.1) initial proof searcher is
explained in the section ‘‘Bias-optimal proof searcher’’.

The section ‘‘Discussion and previous work’’ provides
examples and relations to previous work, and briefly

discusses issues such as a technical justification of

consciousness.

Overview/Basic Ideas/Limitations

Many traditional problems of computer science require just

one problem-defining input at the beginning of the problem
solving process. For example, the initial input may be a

large integer, and the goal may be to factorize it. In what

follows, however, we will also consider the more general
case where the problem solution requires interaction with a

dynamic, initially unknown environment that produces a

continual stream of inputs and feedback signals, such as in
autonomous robot control tasks, where the goal may be to

maximize expected cumulative future reward of an

embedded agent [24]. This may require the solution of
essentially arbitrary problems (examples in the section

‘‘Example applications’’ formulate traditional problems as

special cases).

Set-up and Formal Goal

Our hardware could be an artificial recurrent neural net-

work (RNN) [65] whose computational power in principle

matches the one of any traditional computer [42, 67], or a
universal or space-bounded Turing machine (TM) [74], or

the abstract model of a personal computer. The hardware
has a single life which consists of discrete cycles or time

steps t ¼ 1; 2; . . .: Its total lifetime T may or may not be

known in advance. In what follows, the value of any time-
varying variable Q at time t will be denoted by Q(t).

During each cycle our hardware executes an elementary

operation which affects its variable state s 2 S # B$

(without loss of generality, B$ is the set of possible bit-

strings over the binary alphabet B ¼ f0; 1gÞ and possibly

also the variable environmental state Env 2 E (here we
need not yet specify the problem-dependent set EÞ: There is
a hardwired state transition function F : S & E ! S: For
t[1; sðtÞ ¼ Fðsðt (1Þ;Envðt (1ÞÞ is the state at a point
where the hardware operation of cycle t - 1 is finished, but

the one of t has not started yet. Env(t) may depend on past

output actions encoded in s(t - 1) and is simultaneously
updated or (probabilistically) computed by the possibly

reactive environment.

In order to talk conveniently about programs and data,
we will often attach names to certain string variables

encoded as components or substrings of s. Of particular

interest are the three variables called time, x, y, and p:

1. At time t, variable time holds a unique binary

representation of t. We initialize timeð1Þ ¼ ‘1’, the
bitstring consisting only of a one. The hardware

increments time from one cycle to the next. This

requires at most O(log t) and on average only O(1)
computational steps.

2. Variable x holds the inputs from the environment to the

Gödel machine. For t[1, x(t) may differ from x(t - 1)
only if a program running on the Gödel machine has

executed a special input-requesting instruction at time

t - 1. In general, the delays between successive inputs
should be sufficiently large so that programs can perform

certain elementary computations on an input, such as

copying it into internal storage (a reserved part of s)
before the next input arrives.

3. Variable y holds the outputs of the Gödel machine. y(t)
is an output bitstring which may subsequently influ-
ence the environment, where y(1) = ‘00 by default. For

example, y(t) could be interpreted as a control signal

for an environment-manipulating robot whose actions
may have an effect on future inputs.

178 Cogn Comput (2009) 1:177–193

123

4. p(1) is the initial software: a program implementing

the original (sub-optimal) policy for interacting with

the environment, represented as a substring e(1) of
p(1), plus the original policy for searching proofs.

Details will be discussed below.

At any given time tð1) t) TÞ the goal is to maximize
future success or utility. A typical ‘‘value to go’’ utility

function is of the form uðs;EnvÞ : S & E ! R; where R is

the set of real numbers:

uðs;EnvÞ ¼ El

XT

s¼time

rðsÞ j s;Env

" #

; ð1Þ

where r(t) is a real-valued reward input (encoded within
s(t)) at time t, Elð! j !Þ denotes the conditional expectation

operator with respect to some possibly unknown distribu-

tion l from a set M of possible distributions (M reflects
whatever is known about the possibly probabilistic reac-

tions of the environment), and the above-mentioned

time = time(s) is a function of state s which uniquely
identifies the current cycle. Note that we take into account

the possibility of extending the expected lifespan through

appropriate actions.
Alternative formalizable utility functions could favor

improvement of worst case instead of expected future

performance, or higher reward intake per time interval and
so on. Clearly, most classic problems of computer science

can be formulated in this framework—see examples in the

section ‘‘Example applications.’’

Basic Idea of Gödel Machine

Our machine becomes a self-referential [14] Gödel
machine by loading it with a particular form of machine-

dependent, self-modifying code p. In the RNN case p may
correspond to an initial neural activation pattern, in the TM

case to a symbol string. The initial code p(1) at time step 1

includes a (typically sub-optimal) problem solving sub-
routine e(1) for interacting with the environment, such as

any traditional RL algorithm [24], and a general proof

searcher subroutine (see ‘‘Bias-optimal proof search’’ sec-
tion) that systematically makes pairs (switchprog, proof)
(variable substrings of s) until it finds a proof of a target
theorem which essentially states:‘the immediate rewrite of
p through current program switchprog on the given
machine implies higher utility than leaving p as is’. Then it
executes switchprog, which may completely rewrite p,
including the proof searcher. The section ‘‘Essential details

of one representative Gödel machine’’ will explain details
of the necessary initial axiomatic system A encoded in

p(1). Compare Fig. 1.

The Global optimality theorem (Theorem 4.1, ‘‘Glob-
ally optimality theorem’’ section) shows that this

self-improvement strategy is not greedy: since the utility of

‘leaving p as is’ implicitly evaluates all possible alternative
switchprogs which an unmodified p might find later, we

obtain a globally optimal self-change—the current
switchprog represents the best of all possible relevant self-
changes, relative to the given resource limitations and

initial proof search strategy.

Proof Techniques and an O()-Optimal Initial Proof

Searcher

The ‘‘Bias-optimal proof search’’ section will present an

O()-optimal initialization of the proof searcher, that is, one
with an optimal order of complexity (Theorem 5.1). Still,

there will remain a lot of room for self-improvement hid-

den by the O()-notation. The searcher uses an online
extension of Universal Search [28, 30] to systematically

test online proof techniques, which are proof-generating

programs that may read parts of state s (similarly, mathe-
maticians are often more interested in proof techniques

than in theorems). In order to prove target theorems as

above, proof techniques may invoke special instructions for
generating axioms and applying inference rules to prolong

the current proof by theorems. Here an axiomatic system A
encoded in p(1) includes axioms describing (a) how any
instruction invoked by a program running on the given

hardware will change the machine’s state s (including

instruction pointers, etc.) from one step to the next (such
that proof techniques can reason about the effects of any

program including the proof searcher), (b) the initial

temporary storage of e(1)

initial problem solver e(1) for
interaction with environment

axioms for hard−
ware, initial soft−
ware, environment,
costs & goals

proof technique
tester

initial
proof
searcher:

currently tested
proof technique

switchbit

switchprog

proof

temporary storage
of proof technique

storage
writable
by proof
searcher:

output y

input x

time

other hardware variables

w
ri

ta
bl

e
by

 s
w

itc
hp

ro
g

pr
oo

f t
ec

hn
iq

ue
s

w
ri

ta
bl

e
by

st
or

ag
e

re
ad

ab
le

 b
y

pr
oo

f t
ec

hn
iq

ue
s

E
N

V
IR

O
N

M
E

N
T

in
iti

al
 s

of
tw

ar
e

p(
1)

w
ri

ta
bl

e
ha

rd
w

ar
e−

Fig. 1 Storage snapshot of a not yet self-improved example Gödel
machine, with the initial software still intact. See text for details

Cogn Comput (2009) 1:177–193 179

123

program p(1) itself (section ‘‘Essential details of one rep-

resentative Gödel machine’’ will show that this is possible
without introducing circularity), (c) stochastic environ-

mental properties, (d) the formal utility function u, e.g.,
Eq.1, which takes into account computational costs of all
actions including proof search.

Limitations of Gödel Machines

The fundamental limitations are closely related to those
first identified by Gödel’s celebrated paper on self-refer-

ential formulae [14]. Any formal system that encompasses

arithmetics (or ZFC, etc.) is either flawed or allows for
unprovable but true statements. Hence, even a Gödel

machine with unlimited computational resources must

ignore those self-improvements whose effectiveness it
cannot prove, e.g., for lack of sufficiently powerful axioms

in A: In particular, one can construct pathological exam-

ples of environments and utility functions that make it
impossible for the machine to ever prove a target theorem.

Compare Rice’s theorem [38] or Blum’s speed-up theorem

[5, 6] based on certain incomputable predicates. Similarly,
a realistic Gödel machine with limited resources cannot

profit from self-improvements whose usefulness it cannot

prove within its time and space constraints.
Nevertheless, unlike previous methods, it can in prin-

ciple exploit at least the provably good speed-ups of any
part of its initial software, including those parts responsible
for huge (but problem class-independent) slowdowns

ignored by the earlier approaches [20, 21] (see section

‘‘Possible types of Gödel machine self-improvements’’).

Essential Details of One Representative Gödel Machine

Notation. Unless stated otherwise or obvious, throughout

the article newly introduced variables and functions are
assumed to cover the range implicit in the context. l(q)
denotes the number of bits in a bitstring q; qn the nth bit of

q; k the empty string (where lðkÞ ¼ 0Þ; qm:n ¼ k if m[n
and qmqmþ1. . .qn otherwise (where q0 :¼ q0:0 :¼ kÞ:

Theorem proving requires an axiom scheme yielding an

enumerable set of axioms of a formal logic system A
whose formulas and theorems are symbol strings over some

finite alphabet that may include traditional symbols of logic

(such as !;^;¼; ð; Þ; 8; 9; . . .; c1; c2; . . .; f1; f2; . . .Þ; proba-
bility theory (such as Eð!Þ; the expectation operator),

arithmetics ðþ;(; =;¼;
P

;\; . . .Þ; string manipulation (in

particular, symbols for representing any part of state s at
any time, such as s7:88ð5555Þ: A proof is a sequence of

theorems, each either an axiom or inferred from previous

theorems by applying one of the inference rules such as
modus ponens combined with unification, e.g., [13].

The remainder of this article will omit standard

knowledge to be found in any proof theory textbook.
Instead of listing all axioms of a particular A in a tedious

fashion, we will focus on the novel and critical details: how

to overcome potential problems with self-reference and
how to deal with the potentially delicate online generation

of proofs that talk about and affect the currently running

proof generator itself.

Proof Techniques

Brute force proof searchers (used in Hutter’s work [20, 21];

see section ‘‘Relations to previous work’’ for a review)
systematically generate all proofs in order of their sizes. In

order to produce a certain proof, this takes time exponential

in proof size. Instead our O()-optimal p(1) will produce
many proofs with low algorithmic complexity [26, 31, 70]

much more quickly. It systematically tests (see ‘‘Bias-

optimal proof search’’ section) programs called proof
techniques written in universal language L implemented

within p(1). For example, L may be a variant of PROLOG

[10] or the universal FORTH [34]—inspired programming
language used in recent work on optimal search [54]. A

proof technique is composed of instructions that allow any

part of s to be read, such as inputs encoded in variable x (a
substring of s) or the code of p(1). It may write on sp; a part
of s reserved for temporary results. It also may rewrite

switchprog, and produce an incrementally growing proof
placed in the string variable proof stored somewhere in s.
proof and sp are reset to the empty string at the beginning

of each new proof technique test. Apart from standard
arithmetic and function-defining instructions [54] that

modify sp; the programming language L includes special

instructions (for details see section ‘‘Important instructions
used by proof techniques’’) for prolonging the current proof
by correct theorems, for setting switchprog, and for

checking whether a provably optimal p-modifying program
was found and should be executed now. Certain long

proofs can be produced by short proof techniques.

Important Instructions Used by Proof Techniques

The nature of the six proof-modifying instructions below
(there are no others) makes it impossible to insert an

incorrect theorem into proof, thus trivializing proof veri-

fication. Let us first provide a brief overview of the most
important instructions: get-axiom(n) appends the nth pos-

sible axiom to the current proof, apply-rule(k, m, n)
applies the kth inference rule to the mth and nth theorem in
the current proof (appending the result), set-switch-
prog(m,n) sets switchprog :¼ spm:n; and check() tests

whether the last theorem in proof is a target theorem

180 Cogn Comput (2009) 1:177–193

123

showing that a self-rewrite through switchprog would be

useful. The details are as follows.

1. get-axiom(n) takes as argument an integer n computed

by a prefix of the currently tested proof technique with
the help of arithmetic instructions such as those used in

previous work [54]. Then it appends the nth axiom (if

it exists, according to the axiom scheme below) as a
theorem to the current theorem sequence in proof. The
initial axiom scheme encodes:

(a) Hardware axioms describing the hardware, for-
mally specifying how certain components of s
(other than environmental inputs x) may change

from one cycle to the next. For example, if the
hardware is a TM2 [74], then s(t) is a bitstring

that encodes the current contents of all tapes of

the TM, the positions of its scanning heads, and
the current internal state of the TM’s finite state

automaton, while F specifies the TM’s look-up
table which maps any possible combination of

internal state and bits above scanning heads to a

new internal state and an action such as: replace
some head’s current bit by 1/0, increment (right

shift) or decrement (left shift) some scanning

head, read and copy next input bit to cell above
input tape’s scanning head, and so on.

Alternatively, if the hardware is given by the

abstract model of a modern microprocessor with
limited storage, s(t) will encode the current

storage contents, register values, instruction

pointers, and so on.
For instance, the following axiom could describe

how some 64-bit hardware’s instruction pointer

stored in s1:64 is continually incremented as long
as there is no overflow and the value of s65 does

not indicate that a jump to some other address

should take place:

ð8t8n : ½ðn\264(1Þ^ð n[0Þ^ð t[1Þ^ð t\TÞ
^ ðstring2numðs1:64ðtÞÞ ¼ nÞ^ð s65ðtÞ ¼ ‘0’Þ,
! ðstring2numðs1:64ðtþ 1ÞÞ ¼ nþ 1ÞÞ

Here the semantics of used symbols such as ‘(’ and ‘[’

and ‘?’ (implies) are the traditional ones, while ‘string2-
num’ symbolizes a function translating bitstrings into

numbers. It is clear that any abstract hardware model can

be fully axiomatized in a similar way.

(b) Reward axioms defining the computational costs

of any hardware instruction, and physical costs of

output actions, such as control signals y(t)
encoded in s(t). Related axioms assign values to

certain input events (encoded in variable x, a

substring of s) representing reward or punishment
(e.g., when a Gödel machine-controlled robot

bumps into an obstacle). Additional axioms

define the total value of the Gödel machine’s
life as a scalar-valued function of all rewards

(e.g., their sum) and costs experienced between

cycles 1 and T, and so on. For example, assume
that s17:18 can be changed only through external

inputs; the following example axiom says that the

total reward increases by 3 whenever such an
input equals ‘11’ (unexplained symbols carry the

obvious meaning):

ð8t18t2 : ½ðt1\t2Þ ^ð t1 - 1Þ
^ ðt2) TÞ ^ð s17:18ðt2Þ ¼ ‘11’Þ,
! ½Rðt1; t2Þ ¼ Rðt1; t2 (1Þ þ 3,Þ;

where Rðt1; t2Þ is interpreted as the cumulative reward

between times t1 and t2: It is clear that any formal scheme
for producing rewards can be fully axiomatized in a similar

way.

(c) Environment axioms restricting the way the
environment will produce new inputs (encoded

within certain substrings of s) in reaction to

sequences of outputs y encoded in s. For example,
it may be known in advance that the environment

is sampled from an unknown probability distri-

bution l contained in a given set M of possible
distributions (compare Eq. 1). For example, M
may contain all distributions that are computable,

given the previous history [20, 70, 71], or at least
limit-computable [48, 50]. Or, more restrictively,

the environment may be some unknown but

deterministic computer program [46, 78] sampled
from the Speed Prior [51] which assigns low

probability to environments that are hard to

compute by any method. Or the interface to the
environment is Markovian [43], that is, the

current input always uniquely identifies the

environmental state—a lot of work has already
been done on this special case [4, 40, 73]. Even

more restrictively, the environment may evolve
in completely predictable fashion known in

advance. All such prior assumptions are perfectly

formalizable in an appropriate A (otherwise we
could not write scientific papers about them).

(d) Uncertainty axioms; string manipulation axioms.

Does the exact business of formal proof search

2 Turing reformulated Gödel’s unprovability results in terms of TMs
[74] which subsequently became the most widely used abstract model
of computation. It is well known that there are universal TMs that in a
certain sense can emulate any other TM or any other known
computer. Gödel’s integer-based formal language can be used to
describe any universal TM, and vice versa.

Cogn Comput (2009) 1:177–193 181

123

really make sense in the uncertain real world?

Yes, it does. We just need to insert into p(1) the
standard axioms for representing uncertainty and
for dealing with probabilistic settings and

expected rewards, and so on. Compare the

definition of utility as an expected value in Eq.
1. Also note that the machine learning literature

is full of human-generated proofs of properties of

methods for dealing with stochastic environ-
ments.

Standard axioms for arithmetics and calculus and

probability theory [25] and statistics and string
manipulation (in conjunction with the hardware

axioms and environment axioms) allow for con-

structing proofs concerning (possibly uncertain)
properties of future values of s(t) as well as bounds
on expected remaining lifetime/costs/rewards,

given some time s and certain hypothetical values
for components of s(s), and so on. An example

theorem saying something about expected proper-

ties of future inputs x might look like this:

ð8t18l 2 M : ½ð1) t1Þ ^ð t1 þ 15597\TÞ
^ ðs5:9ðt1Þ ¼ ‘01011’Þ
^ ðx40:44ðt1Þ ¼ ‘00000’Þ,
! ð9t : ½ðt1\t\t1 þ 15597Þ
^ ðPlðx17:22ðtÞ ¼ ‘011011’ j sðt1ÞÞ

[
998

1000
Þ,ÞÞ;

wherePlð:j:Þ represents a conditional probabilitywith respect
to an axiomatized prior distribution l from a set of distribu-
tionsM described by the environment axioms (Item (c)).

Given a particular formalizable hardware (Item (a)) and for-

malizable assumptions about the possibly probabilistic
environment (Item (c)), obviously one can fully axiomatize

everything that is needed for proof-based reasoning about past

and future machine states.
(e) Initial state axioms: Information about how to

reconstruct the initial state s(1) or parts thereof,

such that the proof searcher can build proofs
including axioms of the type

ðsm:nð1Þ ¼ zÞ; e.g. : ðs7:9ð1Þ ¼ ‘010’Þ:

Here and in the remainder of the article we use bold font in
formulas to indicate syntactic place holders (such asm,n,z)
for symbol strings representing variables (such as m,n,z)
whose semantics are explained in the text—in the present
context z is the bitstring sm:nð1Þ:
Note that it is no fundamental problem to fully encode both

the hardware description and the initial hardware-describ-
ing p within p itself. To see this, observe that some

software may include a program that can print the software.

(f) Utility axioms describing the overall goal in the

form of utility function u; e.g., Eq. 1 in ‘‘Set-up

and formal goal’’ section.

2. apply-rule(k, m, n) takes as arguments the index k (if
it exists) of an inference rule such as modus ponens
(stored in a list of possible inference rules encoded
within p(1)) and the indices m, n of two previously

proven theorems (numbered in order of their creation)

in the current proof. If applicable, the corresponding
inference rule is applied to the addressed theorems and

the resulting theorem appended to proof. Otherwise the
currently tested proof technique is interrupted. This
ensures that proof is never fed with invalid proofs.

3. delete-theorem(m) deletes the mth theorem in the

currently stored proof, thus freeing storage such that
proof-storing parts of s can be reused and the maximal

proof size is not necessarily limited by storage

constraints. Theorems deleted from proof, however,
cannot be addressed any more by apply-rule to

produce further prolongations of proof.
4. set-switchprog(m,n) replaces switchprog by spm:n;

provided that spm:n is indeed a non-empty substring of

sp, the storage writable by proof techniques.

5. check() verifies whether the goal of the proof search
has been reached. First it tests whether the last theorem

(if any) in proof has the form of a target theorem. A
target theorem states that given the current axioma-

tized utility function u (Eq. 1), the utility of a switch

from p to the current switchprog would be higher than
the utility of continuing the execution of p (which

would keep searching for alternative switchprogs).
Target theorems are symbol strings (encoded in s) of
the (decoded) form

ðu½sðt1Þ . ðswitchbitðt1Þ ¼ ‘1’Þ;Envðt1Þ,[
ðu½sðt1Þ . ðswitchbitðt1Þ ¼ ‘0’Þ;Envðt1Þ,Þ

ð2Þ

where the variable t1 (represented by syntactic place holder
t1Þ stands for a time step, while all other symbols belong to

the alphabet of the theorem-proving calculus, that is, the set

of possible target theorems is parameterized only by t1.
Here the calculus should permit the notation sðt1Þ .
ðswitchbitðt1Þ ¼ ‘b’Þ as a shortcut for the state obtained

when we replace switchbit(t1), the true value of the variable
bit switchbit (encoded in s) at time t1, by b2f0; 1g: This
will facilitate the formulation of theorems that compare

values conditioned on various alternative hypothetical
properties of s(t1). (Note that s(t1) may be only partially

known by the current proof technique even in environ-

ments where s(t1) and switchbit(t1) are fully predetermined
for all valid t1.)
The purpose of introducing t1 is to deal with hardware-

specific temporal delays that may be involved in checking

182 Cogn Comput (2009) 1:177–193

123

and switching—it may take a significant amount of time to

match abstract symbol strings found during proof search to

the Gödel machine’s real current state. If a target theorem
has been found, check() uses a simple prewired subroutine

(also encoded in p(1), of course) to check whether there is

enough time left to set variable switchbit (originally 0) to 1
before the continually increasing time will equal t1. If this
subroutine returns a negative result, check() exits. Other-
wise it sets switchbit: = 1 (there is no other way of
changing switchbit). Then it repeatedly tests time until

time[t1; to make sure the condition of formula (2) was
fulfilled at t1. Then it transfers control to switchprog (there

is no other way of calling switchprog). The switchprog may

subsequently rewrite all parts of s, excluding hardware-
reserved parts such as time and x, but including p.
6. state2theorem(m, n) takes two integer arguments m, n

and tries to transform the current contents of sm:n into a
theorem of the form

ðsm:nðt1Þ ¼ zÞ; e:g: : ðs6:9ð7775555Þ ¼ ‘1001’Þ;

where t1 represents a time measured (by checking time)
shortly after state2theorem was invoked, and z the bistring
sm:nðt1Þ (recall the special case t1 ¼ 1 of Item 5). So we

accept the time-labeled current observable contents of any

part of s as a theorem that does not have to be proven in an
alternative way from, say, the initial state s(1), because the
computation so far has already demonstrated that the the-

orem is true. Thus we may exploit information conveyed
by environmental inputs, and the fact that sometimes (but

not always) the fastest way to determine the output of a

program is to run it.
This non-traditional online interface between syntax and
semantics requires special care though. We must avoid
inconsistent results through parts of s that change while
being read. For example, the present value of a quickly
changing instruction pointer IP (continually updated by
the hardware) may be essentially unreadable in the sense
that the execution of the reading subroutine itself will
already modify IP many times. For convenience, the (typ-
ically limited) hardware could be set up such that it stores
the contents of fast hardware variables every c cycles in a
reserved part of s, such that an appropriate variant of
state2theorem() could at least translate certain recent
values of fast variables into theorems. This, however, will
not abolish al1 problems associated with self-observations.
For example, the sm:n to be read might also contain the
reading procedure’s own, temporary, constantly changing
string pointer variables, and so on.3 To address such

problems on computers with limited memory, state2theo-
rem first uses some fixed protocol (encoded in p(1), of
course) to check whether the current sm:n is readable at all
or whether it might change if it were read by the remaining
code of state2theorem. If so, or if m, n, are not in the proper
range, then the instruction has no further effect. Otherwise it
appends an observed theorem of the form ðsm:nðt1Þ ¼ zÞ to
proof. For example, if the current time is 7770000, then the
invocation of state2theorem(6,9) might return the theorem
ðs6:9ð7775555Þ ¼ ‘10010Þ; where 7775555(7770000 ¼
5555 reflects the time needed by state2theorem to perform
the initial check and to read leading bits off the continually
increasing time (reading time also costs time) such that it can
be sure that 7775555 is a recent proper time label following
the start of state2theorem.

The axiomatic system A is a defining parameter of a

given Gödel machine. Clearly, A must be strong enough to
permit proofs of target theorems. In particular, the theory

of uncertainty axioms (Item (d)) must be sufficiently rich.

This is no fundamental problem: we simply insert all tra-
ditional axioms of probability theory [25].

Global Optimality Theorem

Intuitively, at any given time p should execute some self-
modification algorithm (via instruction check()—Item 5

above) only if it is the ‘best’ of all possible self-modifi-

cations, given the utility function, which typically depends
on available resources, such as storage size and remaining

lifetime. At first glance, however, target theorem (2) seems

to implicitly talk about just one single modification algo-
rithm, namely, switchprog(t1) as set by the systematic proof

searcher at time t1. Isn’t this type of local search greedy?
Couldn’t it lead to a local optimum instead of a global one?

No, it cannot, according to the following global optimality

theorem.

Globally Optimal Self-Changes, Given u
and A Encoded in p

Theorem 4.1 Given any formalizable utility function u
(Eq. 1), and assuming consistency of the underlying formal
system A; any self-change of p obtained through execution
of some program switchprog identified through the proof of

3 We see that certain parts of the current s may not be directly
observable without changing the observable itself. Sometimes,
however, axioms and previous observations will allow the Gödel
machine to deduce time-dependent storage contents that are not
directly observable. For instance, by analyzing the code being

Footnote 3 continued
executed through instruction pointer IP in the example above, the
value of IP at certain times may be predictable (or postdictable, after
the fact). The values of other variables at given times, however, may
not be deducible at all. Such limits of self-observability are remi-
niscent of Heisenberg’s celebrated uncertainty principle [16], which
states that certain physical measurements are necessarily imprecise,
since the measuring process affects the measured quantity.

Cogn Comput (2009) 1:177–193 183

123

a target theorem (2) is globally optimal in the following
sense: the utility of starting the execution of the present
switchprog is higher than the utility of waiting for the proof
searcher to produce an alternative switchprog later.

Proof Target theorem (2) implicitly talks about all the

other switchprogs that the proof searcher could produce in
the future. To see this, consider the two alternatives of the

binary decision: (1) either execute the current switchprog
(set switchbit = 1), or (2) keep searching for proofs and
switchprogs (set switchbit = 0) until the systematic

searcher comes up with an even better switchprog. Obvi-
ously the second alternative concerns all (possibly
infinitely many) potential switchprogs to be considered

later. That is, if the current switchprog were not the ‘best’,

then the proof searcher would not be able to prove that
setting switchbit and executing switchprog will cause

higher expected reward than discarding switchprog,
assuming consistency of A: Q.E.D.

In order to rephrase this a bit: the target theorem (2)

seems to refer only to the very first self-change, which may
completely rewrite the proof-search subroutine. What is it

that prevents later self-changes from being destructive?

Well, the first self-change will be executed only if it is
provably useful (in the sense of the present untility function

u) for all future self-changes (for which the present self-

change is setting the stage). This is actually one of the main
points of the whole self-referential set-up.

The initial proof searcher of section ‘‘Bias-optimal proof

search’’ already generates all possible proofs and switch-
progs in O()-optimal fashion. Nevertheless, since it is part

of p(1), its proofs can speak about the proof searcher itself,

possibly triggering proof searcher rewrites resulting in
better than merely O()-optimal performance.

Global Optimality and Recursive Meta-Levels

One of themost important aspects of our fully self-referential

set-up is the following. Any proof of a target theorem auto-
matically proves that the corresponding self-modification is

good for all further self-modifications affected by the present

one, in recursive fashion. In that sense all possible ‘‘meta-
levels‘‘ of the self-referential system are collapsed into one.

Rewriting the Utility Function

Can’t the Gödel machine switch to a program switchprog
that rewrites the utility function to a ‘‘bogus’’ utility
function that makes unfounded promises of big rewards in

the near future? No, it cannot. It should be obvious that
rewrites of the utility function can happen only if the Gödel

machine first can prove that the rewrite is useful according

to the present utility function.

Alternative Relaxed Target Theorem

We may replace the target theorem (2) by the following
alternative target theorem:

ðu½sðt1Þ . ðswitchbitðt1Þ ¼‘1’Þ;Envðt1Þ, -
u½sðt1Þ . ðswitchbitðt1Þ ¼‘0’Þ;Envðt1Þ,Þ

ð3Þ

The only difference to the original target theorem (2) is that
the ‘‘[‘‘ sign became a ‘‘C’’ sign. That is, the Gödel

machine will change itself as soon as it has found a proof

that the change will not make things worse. A Global
optimality theorem similar to Theorem 4.1 holds; simply

replace the last phrase in Theorem 4.1 by: the utility of
starting the execution of the present switchprog is at least
as high as the utility of waiting for the proof searcher to
produce an alternative switchprog later.

How Difficult is it to Prove Target Theorems?

This depends on the tasks and the initial axioms A; of
course. It is straight-forward to devise simple tasks and

corresponding consistent A such that there are short and

trivial proofs of target theorems.
Even when we initialize the initial problem solver e(1)

by an asymptotically optimal, rather general method such

as Hutter’s AIXI(t,l) [20, 23], it may be straightforward to
prove that switching to another strategy is useful, espe-

cially when A contains additional prior knowledge in form

of axiomatic assumptions beyond those made by AIXI(t,l).
The latter needs a very time-consuming but constant set-up

phase whose costs disappear in the O()-notation but not in a
utility function such as the u of Eq. 1. For example, simply
construct an environment where maximal reward is

achieved by performing a never-ending sequence of simple

but rewarding actions, say, repeatedly pressing a lever, plus
a very simple axiomatic system A that permits a short

proof showing that it is useful to interrupt the non-

rewarding set-up phase and start pressing the lever.
On the other hand, it is possible to construct situations

where it is impossible to prove target theorems, for exam-

ple, by using results of undecidability theory, e.g., [5, 6, 14,
38]. In particular, adopting the extreme notion of triviality

embodied by Rice’s theorem [38] (any nontrivial property
over general functions is undecidable), only trivial
improvements of a given strategy may be provably useful.

This notion of triviality, however, clearly does not reflect

what is intuitively regarded as trivial by scientists. Although
many theorems of the machine learning literature in par-

ticular, and the computer science literature in general, are

limited to functional properties that are trivial in the sense
of Rice, they are widely regarded as non-trivial in an intu-
itive sense. In fact, the infinite domains of function classes

184 Cogn Comput (2009) 1:177–193

123

addressed by Rice’s theorem are irrelevant not only for

most scientists dealing with real world problems but also for
a typical Gödel machine dealing with a limited number of

events that may occur within its limited life time. In general,

in between the obviously trivial and the obviously non-
trivial cases there are many less obvious ones. The point is:

usually we do not know in advance whether it is possible or

not to change a given initial problem solver in a provably
good way. The traditional approach is to invest human

research effort into finding out. A Gödel machine, however,
can do this by itself, without essential limits apart from

those of computability and provability.

Note that to prove a target theorem, a proof technique does
not necessarily have to compute the true expected utilities of

switching and not switching—it just needs to determine

which is higher. For example, it may be easy to prove that
speeding up a subroutine of the proof searcher by a factor of 2

will certainly be worth the negligible (compared to lifetime

T) time needed to execute the subroutine-changing algo-
rithm, no matter what is the precise utility of the switch.

What About Non-Computable Environments?

The Gödel machine software can produce only computable

mappings from input sequences to output sequences. What
if the environment is non-computable? Many physicists

and other scientists (exceptions: [46, 48, 59, 61, 77, 78])

actually seem to assume the real world makes use of all the
real numbers, most of which are incomputable. Neverthe-

less, theorems and proofs are just finite symbol strings, and

all treatises of physics contain only computable axioms and
theorems, even when some of the theorems can be inter-

preted as making statements about uncountably many

objects, such as all the real numbers. (Note though that the
Löwenheim-Skolem Theorem [32, 68] implies that any

first-order theory with an uncountable model such as the

real numbers also has a countable model.) In general,
formal descriptions of non-computable objects do not at all
present a fundamental problem—they may still allow for

finding a strategy that provably maximizes utility. If so, a
Gödel machine can exploit this. If not, then humans will

not have a fundamental advantage over Gödel machines.

Bias-Optimal Proof Search

Here we construct an initial p(1) that is O()-optimal in a

certain limited sense to be described below, but still might be

improved as it is not necessarily optimal in the sense of the
given u (for example, the u of Eq. 1 neither mentions nor

cares for O()-optimality). Our bias-optimal proof search

(BIOPS) is essentially an application of Universal Search
[28, 30] to proof search. One novelty, however, is this:

previous practical variants and extensions of Universal
Search have been applied [45, 47, 54, 64] to offline program
search tasks where the program inputs are fixed such that the

same program always produces the same results. In our

online setting, however, BIOPS has to take into account that
the same proof technique started at different times may yield

different proofs, as it may read parts of s (e.g., inputs) that
change as the machine’s life proceeds.

Online Universal Search in Proof Space

BIOPS starts with a probability distribution P (the initial

bias) on the proof techniques w that one can write in L;
e.g., PðwÞ ¼ K(lðwÞ for programs composed from K pos-

sible instructions [30]. BIOPS is near-bias-optimal [54] in
the sense that it will not spend much more time on any
proof technique than it deserves, according to its probabi-

listic bias, namely, not much more than its probability

times the total search time:

Definition 5.1 (bias-optimal searchers [54]) Let R be a

problem class, C be a search space of solution candidates

(where any problem r 2 R should have a solution in CÞ;
Pðq j rÞ be a task-dependent bias in the form of conditional

probability distributions on the candidates q 2 C: Suppose
that we also have a predefined procedure that creates and
tests any given q on any r 2 R within time t(q,r) (typically
unknown in advance). Then a searcher is n-bias-optimal
ðn- 1Þ if for any maximal total search time Ttotal [0 it is
guaranteed to solve any problem r 2 R if it has a solution
p 2 C satisfying tðp; rÞ)Pðp j rÞTtotal=n: It is bias-optimal
if n = 1.

Method 5.1 (BIOPS) In phase ði ¼ 1; 2; 3; . . .Þ DO: FOR

all self-delimiting [30] proof techniques w 2 L satisfying
PðwÞ- 2(i DO:

1. Run w until halt or error (such as division by zero) or
2iPðwÞ steps consumed.

2. Undo effects of w on sp (does not cost significantly

more time than executing w).
A proof technique w can interrupt Method 5.1 only by

invoking instruction check() (Item 5), which may

transfer control to switchprog (which possibly even
will delete or rewrite Method 5.1). Since the initial p
runs on the formalized hardware, and since proof

techniques tested by p can read p and other parts of s,
they can produce proofs concerning the (expected)

performance of p and BIOPS itself. Method 5.1 at least

has the optimal order of computational complexity in
the following sense.

Theorem 5.1 If independently of variable time(s) some
unknown fast proof technique w would require at most f(k)

Cogn Comput (2009) 1:177–193 185

123

steps to produce a proof of difficulty measure k (an integer
depending on the nature of the task to be solved), then
Method 5.1 will need at most O(f(k)) steps.

Proof It is easy to see that Method 5.1 will need at most

O(f(k)/P(w)) = O(f(k)) steps—the constant factor 1/P(w)
does not depend on k. Q.E.D.

The initial proof search itself is merely O()-optimal.

Note again, however, that the proofs themselves may
concern quite different, arbitrary formalizable notions of

optimality (stronger than those expressible in the O()-
notation) embodied by the given, problem-specific, for-
malized utility function u, in particular, the maximum

future reward in the sense of Eq. 1. This may provoke

useful, constant-affecting rewrites of the initial proof
searcher despite its limited (yet popular and widely used)

notion of O()-optimality. Once a useful rewrite has been

found and executed after some initial fraction of the Gödel
machine ’s total lifetime, the restrictions of O()-optimality

need not be an issue any more.

How a Surviving Proof Searcher may Use the Optimal

Ordered Problem Solver to Solve Remaining Proof

Search Tasks

The following is not essential for this article. Let us assume

that the execution of the switchprog corresponding to the first
found target theorem has not rewritten the code of p itself—
the current p is still equal to p(1)—and has reset switchbit and
returned control to p such that it can continue where it was
interrupted. In that case the BIOPS subroutine of p(1) can use
the Optimal Ordered Problem Solver (OOPS) [54] to accel-

erate the search for the nth target theorem (n[1) by reusing
proof techniques for earlier found target theorems where

possible. The basic ideas are as follows (details: [54]).

Whenever a target theorem has been proven, p(1) free-
zes the corresponding proof technique: it becomes non-

writable by proof techniques to be tested in later proof

search tasks, but remains readable, such that it can be copy
edited and/or invoked as a subprogram by future proof

techniques. We also allow prefixes of proof techniques to

temporarily rewrite the probability distribution on their
suffixes [54], thus essentially rewriting the probability-

based search procedure (an incremental extension of

Method 5.1) based on previous experience. As a side effect
we metasearch for faster search procedures, which can

greatly accelerate the learning of new tasks [54].

Given a new proof search task, BIOPS performs OOPS by
spending half the total search time on a variant of Method

5.1 that searches only among self-delimiting [9, 29] proof
techniques starting with the most recently frozen proof

technique. The rest of the time is spent on fresh proof

techniques with arbitrary prefixes (which may reuse

previously frozen proof techniques though) [54]. (We

could also search for a generalizing proof technique solv-
ing all proof search tasks so far. In the first half of the

search we would not have to test proof techniques on tasks

other than the most recent one, since we already know that
their prefixes solve the previous tasks [54].)

It can be shown that OOPS is essentially 8-bias-optimal
(see Definition 5.1) given either the initial bias or inter-
mediate biases due to frozen solutions to previous tasks

[54]. This result immediately carries over to BIOPS. In order
to summarize, BIOPS essentially allocates part of the total

search time for a new task to proof techniques that exploit

previous successful proof techniques in computable ways.
If the new task can be solved faster by copy editing/

invoking previously frozen proof techniques than by

solving the new proof search task from scratch, then BIOPS

will discover this and profit thereof. If not, then at least it

will not be significantly slowed down by the previous

solutions—BIOPS will remain 8-bias-optimal.
Recall, however, that BIOPS is not the only possible way

of initializing the Gödel machine’s proof searcher. The

global optimality Theorem 4.1 (see ‘‘Global optimality
theorem’’ section) expresses optimality with respect to

whichever initial proof searcher we choose.

Discussion and Previous Work

Here we list a few examples of possible types of self-

improvements, Gödel machine applicability to various

tasks defined by various utility functions and environments,
probabilistic hardware, and relations to previous work. We

also briefly discuss self-reference and consciousness.

Possible Types of Gödel Machine Self-Improvements

Which provably useful self-modifications are possible?
There are few limits to what a Gödel machine might do.

1. In one of the simplest cases it might leave its basic
proof searcher intact and just change the ratio of time-

sharing between the proof searching subroutine and the

subpolicy e—those parts of p responsible for interac-
tion with the environment.

2. Or the Gödel machine might modify e only. For

example, the initial e(1) may be a program that regularly
stores limited memories of past events somewhere in s;
this might allow p to derive that it would be useful to

modify e such that ewill conduct certain experiments to
increase the knowledge about the environment, and use

the resulting information to increase reward intake. In

this sense the Gödel machine embodies a principled
way of dealing with the exploration versus exploitation

186 Cogn Comput (2009) 1:177–193

123

problem [24]. Note that the expected utility (Eq. 1) of

conducting some experiment may exceed the one of not

conducting it, even when the experimental outcome
later suggests to keep acting in line with the previous e.

3. The Gödel machine might also modify its very axioms to

speed things up, provided this is provably useful accord-
ing to the old axioms. For example, it might find a proof

that the original axioms should be replaced or augmented

by theorems derivable from the original axioms.
4. The Gödel machine might even change its own utility

function and target theorem, but can do so only if their

new values are provably better according to the old
ones.

5. In many cases we do not expect the Gödel machine to

replace its proof searcher by code that completely
abandons the search for proofs. Instead we expect that

only certain subroutines of the proof searcher will be

sped up—compare the example in section ‘‘How
difficult is it to prove target theorems?’’—or that

perhaps just the order of generated proofs will be

modified in problem-specific fashion. This could be
done by modifying the probability distribution on the

proof techniques of the initial bias-optimal proof

searcher from the ‘‘Bias-optimal proof search’’ section.
6. In general, the utility of limited rewrites may often be

easier to prove than the one of total rewrites. For

example, suppose it is 8.00 pm and our Gödel
machine-controlled agent’s permanent goal is to

maximize future expected reward, using the (alterna-

tive) target theorem (3). Part thereof is to avoid
hunger. There is nothing in its fridge, and shops close

down at 8.30 pm. It does not have time to optimize its

way to the supermarket in every little detail, but if it
does not get going right now it will stay hungry tonight

(in principle such near-future consequences of actions

should be easily provable, possibly even in a way
related to how humans prove advantages of potential

actions to themselves). That is, if the agent’s previous

policy did not already include, say, an automatic daily
evening trip to the supermarket, the policy provably

should be rewritten at least in a very limited and

simple way right now, while there is still time, such
that the agent will surely get some food tonight,

without affecting less urgent future behavior that can

be optimized/decided later, such as details of the route
to the food, or of tomorrow’s actions.

7. In certain uninteresting environments reward is max-

imized by becoming dumb. For example, a given task
may require to repeatedly and forever execute the

same pleasure center-activating action, as quickly as
possible. In such cases the Gödel machine may delete

most of its more time-consuming initial software

including the proof searcher.

8. Note that there is no reason why a Gödel machine

should not augment its own hardware. Suppose its

lifetime is known to be 100 years. Given a hard
problem and axioms restricting the possible behaviors

of the environment, the Gödel machine might find a

proof that its expected cumulative reward will increase
if it invests 10 years into building faster computational

hardware, by exploiting the physical resources of its

environment.

Example Applications

Traditional examples that do not involve significant inter-

action with a probabilistic environment are easily dealt

with in our reward-based framework:

Example 6.1 (Time-limited NP-hard optimization) The

initial input to the Gödel machine is the representation of a
connected graph with a large number of nodes linked by

edges of various lengths. Within given time T it should find

a cyclic path connecting all nodes. The only real-valued
reward will occur at time T. It equals 1 divided by the

length of the best path found so far (0 if none was found).

There are no other inputs. The by-product of maximizing
expected reward is to find the shortest path findable within

the limited time, given the initial bias.

Example 6.2 (Fast theorem proving) Prove or disprove as

quickly as possible that all even integers[2 are the sum of

two primes (Goldbach’s conjecture). The reward is 1/t,
where t is the time required to produce and verify the first

such proof.

More general cases are as follows.

Example 6.3 (Maximizing expected reward with bounded
resources) A cognitive robot that needs at least 1 l of
gasoline per hour interacts with a partially unknown

environment, trying to find hidden, limited gasoline depots

to occasionally refuel its tank. It is rewarded in proportion
to its lifetime, and dies after at most 100 years or as soon as

its tank is empty or it falls off a cliff, and so on. The

probabilistic environmental reactions are initially unknown
but assumed to be sampled from the axiomatized Speed

Prior [51], according to which hard-to-compute environ-

mental reactions are unlikely. This permits a computable
strategy for making near-optimal predictions [51]. One by-

product of maximizing expected reward is to maximize

expected lifetime.

Example 6.4 (Optimize any suboptimal problem solver)
Given any formalizable problem, implement a suboptimal
but known problem solver as software on the Gödel

machine hardware, and let the proof searcher of ‘‘Bias-

optimal proof search’’ section run in parallel.

Cogn Comput (2009) 1:177–193 187

123

Probabilistic Gödel Machine Hardware

Above we have focused on an example deterministic
machine living in a possibly probabilistic environment. It is

straightforward to extend this to computers whose actions

are computed in probabilistic fashion, given the current
state. Then the expectation calculus used for probabilistic

aspects of the environment simply has to be extended to the

hardware itself, and the mechanism for verifying proofs has
to take into account that there is no such thing as a certain

theorem—at best there are formal statements which are

true with such and such probability. In fact, this may be the
most realistic approach as any physical hardware is error-

prone, which should be taken into account by realistic

probabilistic Gödel machines.
Probabilistic settings also automatically avoid certain

issues of axiomatic consistency. For example, predictions

proven to come true with probability less than 1.0 do not
necessarily cause contradictions even when they do not

match the observations.

Relations to Previous Work

Despite (or maybe because of) the ambitiousness and
potential power of self-improving machines, there has been

little work in this vein outside our own labs at IDSIA and

TU München. Here we will list essential differences
between the Gödel machine and our previous approaches to

‘learning to learn,’ ‘metalearning,’ self-improvement, self-

optimization, and so on.
The most closely related approaches are Hutter’s

HSEARCH and AIXI(t,l). For historical reasons, however, we
will first discuss Levin’s Universal Search and Hutter’s
AIXI.

Gödel Machine Versus Universal Search

Unlike the fully self-referential Gödel machine, Levin’s

Universal Search [28, 30] has a hardwired, unmodifiable
meta-algorithm that cannot improve itself. It is asymptot-

ically optimal for inversion problems whose solutions can

be quickly verified in O(n) time (where n is the solution
size), but it will always suffer from the same huge constant

slowdown factors (typically / 101000Þ buried in the O()-
notation. The self-improvements of a Gödel machine,
however, can be more than merely O()-optimal, since its

utility function may formalize a stonger type of optimality

that does not ignore huge constants just because they are
constant—compare the utility function of Eq. 1.

Furthermore, the Gödel machine is applicable to general
lifelong RL tasks [24] where Universal Search is not
asymptotically optimal, and not even applicable, since in

RL the evaluation of some behavior’s value in principle

consumes the learner’s entire life! So the naive test of

whether a program is good or not would consume the entire
life. That is, we could test only one program; afterwards

life would be over.

Therefore, to achieve their objective, general RL
machines must do things that Universal Search does not

do, such as predicting future tasks and rewards. This partly

motivates Hutter’s universal RL machine AIXI, to be dis-
cussed next.

Gödel Machine Versus AIXI

Unlike Gödel machines, Hutter’s recent AIXI model [20,
23] generally needs unlimited computational resources per

input update. It combines Solomonoff’s universal predic-

tion scheme [70, 71] with an expectimax computation. In
discrete cycle k ¼ 1; 2; 3; . . .; action y(k) results in per-

ception x(k) and reward r(k), both sampled from the

unknown (reactive) environmental probability distribu-
tion l. AIXI defines a mixture distribution n as a weighted

sum of distributions m 2 M; where M is any class of

distributions that includes the true environment l. For
example, M may be a sum of all computable distributions

[70, 71], where the sum of the weights does not exceed 1.

In cycle k ? 1, AIXI selects as next action the first in an
action sequence maximizing n-predicted reward up to some

given horizon. Recent work [22] demonstrated AIXI’s

optimal use of observations as follows. The Bayes-optimal
policy pn based on the mixture n is self-optimizing in the

sense that its average utility value converges asymptoti-

cally for all l 2 M to the optimal value achieved by the
(infeasible) Bayes-optimal policy pl which knows l in

advance. The necessary condition that M admits self-

optimizing policies is also sufficient. Furthermore, pn is
Pareto-optimal in the sense that there is no other policy

yielding higher or equal value in all environments m 2 M
and a strictly higher value in at least one [22].

While AIXI clarifies certain theoretical limits of machine

learning, it is computationally intractable, especially when

M includes all computable distributions. This drawback
motivated work on the time-bounded, asymptotically

optimal AIXI(t,l) system [20] and the related HSEARCH [21],

both to be discussed next.

Gödel Machine Versus HSEARCH and AIXI(t,l)

Now we come to the most closely related previous work; so

we will go an extra length to point out the main novelties of

the Gödel machine.
Hutter’s non-self-referential but still O()-optimal ‘fast-

est’ algorithm for all well-defined problems HSEARCH [21]

uses a hardwired brute force proof searcher and ignores
the costs of proof search. Assume discrete input/output

188 Cogn Comput (2009) 1:177–193

123

domains X/Y, a formal problem specification f : X!Y (say,

a functional description of how integers are decomposed
into their prime factors), and a particular x [X (say, an

integer to be factorized). HSEARCH orders all proofs of an

appropriate axiomatic system by size to find programs q
that for all z2X provably compute f(z) within time bound

tq(z). Simultaneously it spends most of its time on exe-

cuting the q with the best currently proven time bound
tq(x). It turns out that HSEARCH is as fast as the fastest
algorithm that provably computes f(z) for all z [X, save for
a constant factor smaller than 1 ? e (arbitrary e[0) and

an f-specific but x-independent additive constant [21]. This
constant may be enormous though.

Hutter’s AIXI(t,l) [20] is related. In discrete cycle k ¼
1; 2; 3; . . . of AIXI(t,l)’s lifetime, action y(k) results in per-

ception x(k) and reward r(k), where all quantities may
depend on the complete history. Using a universal com-

puter such as a TM, AIXI(t,l) needs an initial offline setup

phase (prior to interaction with the environment) where it
uses a hardwired brute force proof searcher to examine all

proofs of length at most L, filtering out those that identify

programs (of maximal size l and maximal runtime t per
cycle) which not only could interact with the environment

but which for all possible interaction histories also cor-

rectly predict a lower bound of their own expected future
reward. In cycle k, AIXI(t,l) then runs all programs identi-

fied in the setup phase (at most 2l), finds the one with

highest self-rating, and executes its corresponding action.
The problem-independent setup time (where almost all of

the work is done) is OðL!2LÞ: The online time per cycle is

Oðt!2lÞ: Both are constant but typically huge.
Advantages and Novelty of the Gödel Machine. There

are major differences between the Gödel machine and

Hutter’s HSEARCH [21] and AIXI(t,l) [20], including the
following.

(a) The theorem provers of HSEARCH and AIXI(t,l) are
hardwired, non-self-referential, unmodifiable meta-

algorithms that cannot improve themselves. That is,

they will always suffer from the same huge constant
slowdowns (typically / 101000) buried in the O()-
notation. But there is nothing in principle that prevents

the truly self-referential code of a Gödel machine from
proving and exploiting drastic reductions of such

constants, in the best possible way that provably

constitutes an improvement, if there is any.
(b) The demonstration of the O()-optimality of HSEARCH

and AIXI(t,l) depends on a clever allocation of

computation time to some of their unmodifiable
meta-algorithms. Our global optimality theorem

(Theorem 4.1, ‘‘Global optimality theorem’’ section),

however, is justified through a quite different type of
reasoning which indeed exploits and crucially

depends on the fact that there is no unmodifiable

software at all, and that the proof searcher itself is

readable, modifiable, and can be improved. This is
also the reason why its self-improvements can be

more than merely O()-optimal.

(c) HSEARCH uses a ‘‘trick‘‘ of proving more than is
necessary which also disappears in the sometimes

quite misleading O()-notation: it wastes time on

finding programs that provably compute f(z) for all
z2X even when the current f ðxÞðx 2 XÞ is the only

object of interest. A Gödel machine, however, needs

to prove only what is relevant to its goal formalized
by u. For example, the general u of Eq. 1 completely

ignores the limited concept of O()-optimality, but

instead formalizes a stronger type of optimality that
does not ignore huge constants just because they are

constant.

(d) Both the Gödel machine and AIXI(t,l) can maximize
expected reward (HSEARCH cannot). But the Gödel

machine is more flexible as we may plug in any type

of formalizable utility function (e.g., worst case
reward), and unlike AIXI(t,l) it does not require an

enumerable environmental distribution.

Nevertheless, we may use AIXI(t,l) or HSEARCH or other
less general methods to initialize the substring e of p which

is responsible for interaction with the environment. The
Gödel machine will replace e(1) as soon as it finds a

provably better strategy.

It is the self-referential aspects of the Gödel machine
that relieve us of much of the burden of careful algorithm

design required for AIXI(t,l) and HSEARCH. They make the

Gödel machine both conceptually simpler and more
general.

Gödel Machine Versus OOPS

The OOPS [52, 54] (used by BIOPS in the section ‘‘How a

surviving proof searcher may use the optimal ordered
problem solver to solve remaining proof search tasks’’)

extends Universal Search. It is a bias-optimal (see Defi-

nition 5.1) way of searching for a program that solves each
problem in an ordered sequence of problems of a rather

general type, continually organizing and managing and

reusing earlier acquired knowledge. Solomonoff recently
also proposed related ideas for a scientist’s assistant [72]
that modifies the probability distribution of Universal
Search [28] based on experience.

Like Universal Search, OOPS is not directly applicable to

RL problems. A provably optimal RL machine must

somehow prove properties of otherwise un-testable
behaviors (such as: what is the expected reward of this

behavior which one cannot naively test as there is not

Cogn Comput (2009) 1:177–193 189

123

enough time). That is part of what the Gödel machine does:

it tries to greatly cut testing time, replacing naive time-
consuming tests by much faster proofs of predictable test

outcomes whenever this is possible.

Proof verification itself can be performed very quickly.
In particular, verifying the correctness of a found proof

typically does not consume the remaining life. Hence the

Gödel machine may use OOPS as a bias-optimal proof-
searching submodule (see section ‘‘How a surviving proof

searcher may use the optimal ordered problem solver to
solve remaining proof search tasks’’). Since the proofs

themselves may concern quite different, arbitrary notions

of optimality (not just bias-optimality), the Gödel machine
is more general than plain OOPS. But it is not just an

extension of OOPS. Instead of OOPS it may as well use non-

bias-optimal alternative methods to initialize its proof
searcher. On the other hand, OOPS is not just a precursor of

the Gödel machine. It is a stand-alone, incremental, bias-

optimal way of allocating runtime to programs that reuse
previously successful programs, and is applicable to many

traditional problems, including but not limited to proof

search.

Gödel Machine Versus Success-Story Algorithm and Other
Metalearners

A learner’s modifiable components are called its policy. An

algorithm that modifies the policy is a learning algorithm. If
the learning algorithm has modifiable components repre-

sented as part of the policy, then we speak of a self-modifying

policy (SMP) [63]. SMPs can modify the way they modify
themselves, and so on. The Gödel machine has an SMP.

In previous practical work we used the success-story
algorithm (SSA) to force some (stochastic) SMP to trigger
better and better self-modifications [49, 63, 64]. During the

learner’s life-time, SSA is occasionally called at times

computed according to SMP itself. SSA uses backtracking
to undo those SMP-generated SMP-modifications that have

not been empirically observed to trigger lifelong reward

accelerations (measured up until the current SSA call—this
evaluates the long-term effects of SMP-modifications set-

ting the stage for later SMP-modifications). SMP-

modifications that survive SSA represent a lifelong success
history. Until the next SSA call, they build the basis for

additional SMP-modifications. Solely by self-modifications

our SMP/SSA-based learners solved a complex task in a
partially observable environment whose state space is far

bigger than most found in the literature [63].

The Gödel machine’s training algorithm is theoretically
much more powerful than SSA though. SSA empirically

measures the usefulness of previous self-modifications, and

does not necessarily encourage provably optimal ones.
Similar drawbacks hold for Lenat’s human-assisted, non-

autonomous, self-modifying learner [27], our Meta-Genetic

Programming [41] extending Cramer’s Genetic Program-
ming [3, 11], our metalearning economies [41] extending

Holland’s machine learning economies [19], and gradient-

based metalearners for continuous program spaces of dif-
ferentiable RNNs [17, 44]. All these methods, however,

could be used to seed p(1) with an initial policy.

Gödel Machines and Consciousness

In recent years the topic of self-reference and consciousness

in cognitive systems has gained some credibility as a serious

research issue, at least in philosophy and neuroscience, e.g.,
[1, 2, 7, 12, 15, 66, 69]. However, there has been a lack of

technical justifications of consciousness: so far nobody has

shown that self-reference and consciousness are provably
useful for solving problems, although problem solving is

considered of central importance in philosophy [37].

In a certain sense, the fully self-referential Gödel machine
may be viewed as providing just such a technical justification

[56]. It may be called ‘‘conscious’’ or ‘‘self-aware’’ in the

sense that its entire behavior is open to self-introspection,
and modifiable. It may ‘step outside of itself’ [18] by exe-

cuting self-changes that are provably good, where the proof

searcher itself is subject to analysis and change through the
proof techniques it tests. And this type of total self-reference

is precisely the reason for its optimality as a problem solver,

in the sense of Theorem 4.1.

No Free Lunch?

Don’t the ‘‘no free lunch theorems’’ [76] say that it is

impossible to construct universal problem solvers? No,

they do not. They refer to the very special case of problems
sampled from i.i.d. uniform distributions on finite problem

spaces. See the discussion of no free lunch theorems in an

earlier paper [54].

Summary

In 1931, Kurt Gödel laid the foundations of theoretical

computer science, using elementary arithmetics to build a
universal programming language for encoding arbitrary

proofs, given an arbitrary enumerable set of axioms. He

went on to construct self-referential formal statements that
claim their own unprovability, using Cantor’s diagonal-

ization trick [8] to demonstrate that formal systems such as

traditional mathematics are either flawed in a certain sense
or contain unprovable but true statements [14]. Since

Gödel’s exhibition of the fundamental limits of proof and

computation, and Konrad Zuse’s subsequent construction
of the first working programmable computer (1935–1941),

190 Cogn Comput (2009) 1:177–193

123

there has been a lot of work on specialized algorithms

solving problems taken from more or less general problem
classes. Apparently, however, one remarkable fact has until

recently escaped the attention of computer scientists: it is

possible to use self-referential proof systems to build
optimally efficient yet conceptually very simple universal

problem solvers—ultimate cognitive agents.

The initial software p(1) of our Gödel machine runs an
initial, typically sub-optimal problem solver, e.g., one of

Hutter’s approaches [20, 21] which have at least an optimal
order of complexity, or some less general method [24].

Simultaneously, it runs anO()-optimal initial proof searcher

using an online variant of Universal Search to test proof
techniques, which are programs able to compute proofs

concerning the system’s own future performance, based on

an axiomatic systemA encoded in p(1), describing a formal
utility function u, the hardware and p(1) itself. If there is no
provably good, globally optimal way of rewriting p(1) at all,
then humans will not find one either. But if there is one, then
p(1) itself can find and exploit it. This approach yields the

first class of theoretically sound, fully self-referential, opti-

mally efficient, general, problem solving cognitive systems.
Although current theorem proving computers have just a

fraction of the raw computational power of a human brain

and cannot yet prove non-trivial theorems in reasonable
time without human intervention at crucial decision points,

more and more important mathematical proofs (four color

theorem, etc.) heavily depend on automated proof search.
And traditional theorem provers do not even make use of

our novel notions of proof techniques and O()-optimal

BIOPS. Of course, some proofs are indeed hard to find, but
here humans and Gödel machines face the same funda-

mental limitations.

After the theoretical discussion from ‘‘Introduction and
outline’’ to ‘‘Bias-optimal proof search’’ sections, one

practical question remains: to build a particular, especially

practical Gödel machine with small initial constant over-
head, which generally useful theorems should one add as

axioms to A (as initial bias) such that the initial searcher

does not have to prove them from scratch? If our cognitive
agent can execute only a fixed number of computational

instructions per unit time interval (say, 10 trillion ele-

mentary operations per second), what is the best way of
using them in the initial phase of his Gödel machine, before

the first self-rewrite?

Concluding Remarks: General AI and Cognitive
Computation Becoming a Formal Science

There are at least two convincing ways of doing cognitive

systems research: (1) construct a (possibly heuristic)
machine or algorithm that somehow (it does not really

matter how) solves a previously unsolved interesting and

cognitively challenging problem, such as beating the best
human player of Go (success will outshine any lack of

theory). Or (2) prove that a particular novel algorithm is

optimal for an important class of AI problems.
It is the nature of heuristics (case (1)) that they lack

staying power, as they may soon get replaced by next

year’s even better heuristics. Theorems (case (2)), how-
ever, are for eternity. That’s why formal sciences prefer

theorems.
For example, after a heuristics-dominated initial phase,

probability theory became a formal science centuries ago,

and totally formal in 1933 with Kolmogorov’s axioms [25],
shortly after Gödel’s paper [14]. Old but provably optimal

techniques of probability theory are still in every day’s use,

and in fact highly significant for modern AI, while many
initially successful heuristic approaches eventually became

unfashionable, of interest mainly to the historians of the

field.
Similarly, the first 50 years of attempts at ‘‘general AI’’

and ‘‘general cognitive computation’’ have been dominated

by heuristic approaches, e.g., [33, 35, 39, 75]. Traditionally
many theoretical computer scientists have regarded the

field with contempt for its lack of hard theoretical results.

In recent years things have changed, however. As discussed
in this article, the new millennium brought the first math-

ematically sound, asymptotically optimal, universal

problem solvers, providing a new, rigorous foundation for
the previously largely heuristic field of General AI and

embedded cognitive agents, identifying the limits of both

human and artificial intelligence, and providing a yardstick
for any future approach to general cognitive systems [58,

60, 62]. The field is becoming a real formal science!

Acknowledgments Thanks to Alexey Chernov, Marcus Hutter, Jan
Poland, Ray Solomonoff, Sepp Hochreiter, Shane Legg, Leonid
Levin, Alex Graves, Matteo Gagliolo, Viktor Zhumatiy, Ben Goert-
zel, Will Pearson, and Faustino Gomez for useful comments on drafts
or summaries or earlier versions of this article. I am also grateful to
many others who asked questions during Gödel machine talks or sent
comments by email.

References

1. Aleksander I. The world in my mind, my mind in the world: key
mechanisms of consciousness in humans, animals and machines.
Exeter: Imprint Academic; 2005.

2. Baars B, Gage NM. Cognition, brain and consciousness: an intro-
duction to cognitive neuroscience. London: Elsevier/Academic
Press; 2007.

3. Banzhaf W, Nordin P, Keller RE, Francone FD. Genetic
programming—an introduction. San Francisco, CA: Morgan
Kaufmann Publishers; 1998.

4. Bellman R. Adaptive control processes. NY: Princeton University
Press; 1961.

Cogn Comput (2009) 1:177–193 191

123

5. Blum M. A machine-independent theory of the complexity of
recursive functions. J ACM. 1967;14(2):322–36.

6. Blum M. On effective procedures for speeding up algorithms. J
ACM. 1971; 18(2):290–305.

7. Butz M. How and why the brain lays the foundations for a
conscious self. Constructivist Found. 2008; 4(1):1–14.

8. Cantor G. Über eine Eigenschaft des Inbegriffes aller reellen
algebraischen Zahlen. Crelle’s Journal für Mathematik 1874;
77:258–63.

9. Chaitin GJ. A theory of program size formally identical to
information theory. J ACM. 1975; 22:329–40.

10. Clocksin WF, Mellish CS. Programming in Prolog. 3rd ed. NY:
Springer-Verlag; 1987.

11. Cramer NL. A representation for the adaptive generation of
simple sequential programs. In: Grefenstette, JJ, editor, Pro-
ceedings of an international conference on genetic algorithms and
their applications, Carnegie-Mellon University, July 24–26.
Hillsdale, NJ: Lawrence Erlbaum Associates; 1985.

12. Crick F, Koch C. Consciousness and neuroscience. Cerebral
Cortex. 1998;8:97–107.

13. Fitting MC. First-order logic and automated theorem proving.
Graduate texts in computer science. 2nd ed. Berlin: Springer-
Verlag; 1996.

14. Gödel K. Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I. Monatshefte für Math-
ematik und Physik 1931;38:173–98.

15. Haikonen P. The cognitive approach to conscious machines.
London: Imprint Academic; 2003.

16. Heisenberg W. Über den anschaulichen Inhalt der quantentheo-
retischen Kinematik und Mechanik. Zeitschrift für Physik
1925;33:879–93.

17. Hochreiter S, Younger AS, Conwell PR. Learning to learn using
gradient descent. In Lecture Notes on Computer Science 2130,
Proceedings of the international conference on artificial neural
networks (ICANN-2001). Heidelberg: Springer; 2001. p. 87–94.

18. Hofstadter DR. Gödel, Escher, Bach: an eternal golden braid.
NY: Basic Books; 1979.

19. Holland JH. Properties of the bucket brigade. In: Proceedings of
an international conference on genetic algorithms. Hillsdale, NJ:
Lawrence Erlbaum; 1985.

20. Hutter M. Towards a universal theory of artificial intelligence
based on algorithmic probability and sequential decisions. In:
Proceedings of the 12th European conference on machine learning
(ECML-2001); 2001. p. 226–38 (On J. Schmidhuber’s SNF grant
20-61847).

21. Hutter M. The fastest and shortest algorithm for all well-defined
problems. Int J Found Comput Sci. 2002;13(3):431–43 (On J.
Schmidhuber’s SNF grant 20-61847).

22. Hutter M. Self-optimizing and Pareto-optimal policies in general
environments based onBayes-mixtures. In: Kivinen J and SloanRH,
editors. Proceedings of the 15th annual conference on computational
learning theory (COLT 2002), Lecture Notes in Artificial Intelli-
gence. Sydney, Australia: Springer; 2002. p. 364–79 (On J.
Schmidhuber’s SNF grant 20-61847).

23. Hutter M. Universal artificial Intelligence: sequential decisions
based on algorithmic probability. Berlin: Springer; 2004.

24. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning:
a survey. J AI Res. 1996;4:237–85.

25. Kolmogorov AN. Grundbegriffe der Wahrscheinlichkeitsrech-
nung. Berlin: Springer; 1933.

26. Kolmogorov AN. Three approaches to the quantitative definition
of information. Probl Inf Transm. 1965;1:1–11.

27. Lenat D. Theory formation by heuristic search. Mach Learn.
1983;21.

28. Levin LA. Universal sequential search problems. Probl Inf
Transm. 1973;9(3):265–66.

29. Levin LA. Laws of information (nongrowth) and aspects of the
foundation of probability theory. Probl Inf Transm. 1974;10(3):
206–10.

30. Levin LA. Randomness conservation inequalities: information
and independence in mathematical theories. Inf Control. 1984;61:
15–37.

31. Li M, Vitányi PMB. An introduction to Kolmogorov complexity
and its applications. 2nd ed. NY: Springer; 1997.

32. Löwenheim L. Über Möglichkeiten im Relativkalkül. Mathe-
matische Annalen. 1915;76:447–70.

33. Mitchell T. Machine learning. NY: McGraw Hill; 1997.
34. Moore CH, Leach GC. FORTH—a language for interactive

computing. Amsterdam: Mohasco Industries Inc.; 1970.
35. Newell A, Simon H. GPS, a program that simulates human

thought. In: Feigenbaum E, Feldman J, editors. Computers and
thought. New York: McGraw-Hill; 1963. p. 279–93.

36. Penrose R. Shadows of the mind. Oxford: Oxford University
Press; 1994.

37. Popper KR. All life is problem solving. London: Routledge;
1999.

38. Rice HG. Classes of recursively enumerable sets and their decision
problems. Trans Am Math Soc. 1953;74:358–66.

39. Rosenbloom PS, Laird JE, Newell A. The SOAR papers.
Cambridge: MIT Press; 1993.

40. Samuel AL. Some studies in machine learning using the game of
checkers. IBM J Res Dev. 1959;3:210–29.

41. Schmidhuber J. Evolutionary principles in self-referential learning.
Diploma thesis, Institut für Informatik, Technische Universität
München; 1987.

42. Schmidhuber J. Dynamische neuronale Netze und das fundamentale
raumzeitliche Lernproblem. Dissertation, Institut für Informatik,
Technische Universität München; 1990.

43. Schmidhuber J. Reinforcement learning in Markovian and non-
Markovian environments. In: Lippman DS, Moody JE, Touretzky
DS, editors. Advances in neural information processing systems 3
(NIPS 3). San Francisco, CA: Morgan Kaufmann; 1991. p. 500–6.

44. Schmidhuber J. A self-referential weight matrix. In: Proceedings
of the international conference on artificial neural networks.
Amsterdam: Springer; 1993. p. 446–51.

45. Schmidhuber J. Discovering solutions with low Kolmogorov
complexity and high generalization capability. In: Prieditis A,
Russell S, editors. Machine learning: Proceedings of the twelfth
international conference. San Francisco, CA: Morgan Kaufmann
Publishers; 1995. p. 488–96.

46. Schmidhuber J. A computer scientist’s view of life, the universe, and
everything. In: Freksa C, JantzenM, Valk R, editors. Foundations of
computer science: potential-theory-cognition, vol 1337. Lecture
Notes in Computer Science. Berlin: Springer; 1997. p. 201–8.

47. Schmidhuber J. Discovering neural nets with low Kolmogorov
complexity and high generalization capability. Neural Netw.
1997;10(5):857–73.

48. Schmidhuber J. Algorithmic theories of everything. Technical
Report IDSIA-20-00, quant-ph/0011122, IDSIA,Manno (Lugano),
Switzerland. Sections 1–5: see [50]; Section 6: see [51]; 2000.

49. Schmidhuber J. Sequential decision making based on direct
search. In: Sun R, Giles CL, editors. Sequence learning: para-
digms, algorithms, and applications. Lecture Notes on AI 1828.
Berlin: Springer; 2001.

50. Schmidhuber J. Hierarchies of generalized Kolmogorov com-
plexities and nonenumerable universal measures computable in
the limit. Int J Found Comput Sci. 2002;13(4):587–612.

51. Schmidhuber J. The speed prior: a new simplicity measure yielding
near-optimal computable predictions. In: Kivinen J, Sloan RH,
editors. Proceedings of the 15th annual conference on computa-
tional learning theory (COLT 2002). Lecture Notes in Artificial
Intelligence. Sydney, Australia: Springer; 2002. p. 216–28.

192 Cogn Comput (2009) 1:177–193

123

52. Schmidhuber J. Bias-optimal incremental problem solving. In:
Becker S, Thrun S, Obermayer K, editors. Advances in neural
information processing systems 15 (NIPS 15). Cambridge, MA:
MIT Press; 2003. p. 1571–8.

53. Schmidhuber J. Towards solving the grand problem of AI. In:
Quaresma P, Dourado A, Costa E, Costa JF, editors. Soft com-
puting and complex systems. Coimbra, Portugal: Centro
Internacional de Mathematica; 2003. p. 77–97. Based on [58].

54. Schmidhuber J. Optimal ordered problem solver. Mach Learn.
2004;54:211–54

56. Schmidhuber J. Completely self-referential optimal reinforce-
ment learners. In: Duch W, Kacprzyk J, Oja E, Zadrozny S,
editors. Artificial neural networks: biological inspirations—IC-
ANN 2005. LNCS 3697. Berlin, Heidelberg: Springer-Verlag.
2005. p. 223–33 (Plenary talk).

56. Schmidhuber J. Gödel machines: towards a technical justification
of consciousness. In: Kudenko D, Kazakov D, Alonso E, editors.
Adaptive agents and multi-agent systems III. LNCS 3394. Berlin:
Springer Verlag; 2005. p. 1–23.

57. Schmidhuber J. Gödel machines: fully self-referential optimal
universal self-improvers. In: Goertzel B, Pennachin C, editors.
Artificial general intelligence. Berlin: Springer Verlag; 2006.
p. 199–226. Preprint available as arXiv:cs.LO/0309048.

58. Schmidhuber J. The new AI: general & sound & relevant for
physics. In: Goertzel B, Pennachin C, editors. Artificial general
intelligence. Berlin: Springer; 2006. p. 175–98. Also available as
TR IDSIA-04-03, arXiv:cs.AI/0302012.

59. Schmidhuber J. Randomness in physics. Nature. 2006;439(3):392
(Correspondence).

60. Schmidhuber J. 2006: Celebrating 75 years of AI—history and
outlook: the next 25 years. In: Lungarella M, Iida F, Bongard J,
Pfeifer R, editors. 50 Years of artificial intelligence, vol LNAI
4850. Berlin, Heidelberg: Springer; 2007. p. 29–41.

61. Schmidhuber J. Alle berechenbaren Universen (All computable
universes). Spektrum der Wissenschaft Spezial (German edition
of Scientific American) 2007;(3):75–9.

62. Schmidhuber J. NewmillenniumAI and the convergence of history.
In: Duch W, Mandziuk J, editors. Challenges to computational
intelligence, vol 63. Studies inComputational Intelligence, Springer;
2007. p. 15–36. Also available as arXiv:cs.AI/0606081.

63. Schmidhuber J, Zhao J, Schraudolph N. Reinforcement learning
with self-modifying policies. In: Thrun S, Pratt L, editors. Learning
to learn. Netherland: Kluwer; 1997. p. 293–309.

64. Schmidhuber J, Zhao J, Wiering M. Shifting inductive bias with
success-story algorithm, adaptive Levin search, and incremental
self-improvement. Mach Learn. 1997;28:105–30.

65. Schmidhuber J, Graves A, Gomez F, Fernandez S, Hochreiter S.
How to learn programs with artificial recurrent neural networks.
Cambridge: Cambridge University Press; 2009 (in preparation).

66. Seth AK, Izhikevich E, Reeke GN, and Edelman GM. Theories
and measures of consciousness: an extended framework. Proc
Natl Acad Sci USA. 2006;103:10799–804.

67. Siegelmann HT, Sontag ED. Turing computability with neural
nets. Appl Math Lett. 1991;4(6):77–80.

68. Skolem T. Logisch-kombinatorische Untersuchungen über
Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem
Theorem über dichteMengen. Skrifter utgit av Videnskapsselskapet
in Kristiania, I, Mat.-Nat. Kl., N; 1919;4:1–36.

69. Sloman A, Chrisley RL. Virtual machines and consciousness. J
Conscious Stud 2003;10(4–5):113–72.

70. Solomonoff RJ. A formal theory of inductive inference. Part I. Inf
Control. 1964;7:1–22.

71. Solomonoff RJ. Complexity-based induction systems. IEEE
Trans Inf Theory. 1978;IT-24(5):422–32.

72. Solomonoff RJ. Progress in incremental machine learning—pre-
liminary report for NIPS 2002 workshop on universal learners
and optimal search; revised September 2003. Technical Report
IDSIA-16-03, Lugano: IDSIA; 2003.

73. Sutton R, Barto A. Reinforcement learning: an introduction.
Cambridge, MA: MIT Press; 1998.

74. Turing AM. On computable numbers, with an application to
the Entscheidungsproblem. Proc Lond Math Soc Ser 2. 1936;41:
230–67.

75. Utgoff P. Shift of bias for inductive concept learning. In: Mi-
chalski R, Carbonell J, Mitchell T, editors. Machine learning, vol
2. Los Altos, CA: Morgan Kaufmann; 1986. p. 163–90.

76. Wolpert DH, Macready WG. No free lunch theorems for search.
IEEE Trans Evolution Comput. 1997; 1.

77. Zuse K. Rechnender Raum. Elektronische Datenverarbeitung 1967;
8:336–44.

78. Zuse K. Rechnender Raum. Friedrich Vieweg & Sohn, Braun-
schweig, 1969. [English translation: Calculating Space]. MIT
Technical Translation AZT-70-164-GEMIT. Cambridge, MA:
Massachusetts Institute of Technology (Proj. MAC); 1970.

Cogn Comput (2009) 1:177–193 193

123

	Ultimate Cognition Á la G—del
	Abstract
	Introduction and Outline
	Overview/Basic Ideas/Limitations
	Set-up and Formal Goal
	Basic Idea of G—del Machine
	Proof Techniques and an O()-Optimal Initial Proof Searcher
	Limitations of G—del Machines

	Essential Details of One Representative G—del Machine
	Proof Techniques
	Important Instructions Used by Proof Techniques

	Global Optimality Theorem
	Globally Optimal Self-Changes, Given u and \mathcal A Encoded in p
	Global Optimality and Recursive Meta-Levels
	Rewriting the Utility Function
	Alternative Relaxed Target Theorem
	How Difficult is it to Prove Target Theorems?
	What About Non-Computable Environments?

	Bias-Optimal Proof Search
	Online Universal Search in Proof Space
	How a Surviving Proof Searcher may Use the Optimal Ordered Problem Solver to Solve Remaining Proof Search Tasks

	Discussion and Previous Work
	Possible Types of G—del Machine Self-Improvements
	Example Applications
	Probabilistic G—del Machine Hardware
	Relations to Previous Work
	G—del Machine Versus Universal Search
	G—del Machine Versus Aixi
	G—del Machine Versus Hsearch and Aixi(t,l)
	G—del Machine Versus Oops
	G—del Machine Versus Success-Story Algorithm and Other Metalearners

	G—del Machines and Consciousness
	No Free Lunch?

	Summary
	Concluding Remarks: General AI and Cognitive Computation Becoming a Formal Science
	Acknowledgments
	References

