Practical Applications of Algorithm GUESS next up previous contents
Next: Consequences for Physics Up: Temporal Complexity Previous: Speed Prior-Based Inductive Inference

Practical Applications of Algorithm GUESS

Algorithm GUESS is almost identical to a probabilistic search algorithm used in previous work on applied inductive inference [#!Schmidhuber:95kol!#,#!Schmidhuber:97nn!#]. The programs generated by the previous algorithm, however, were not bitstrings but written in an assembler-like language; their runtimes had an upper bound, and the program outputs were evaluated as to whether they represented solutions to externally given tasks.

Using a small set of exemplary training examples, the system discovered the weight matrix of an artificial neural network whose task was to map input data to appropriate target classifications. The network's generalization capability was then tested on a much larger unseen test set. On several toy problems it generalized extremely well in a way unmatchable by traditional neural network learning algorithms.

The previous papers, however, did not explicitly establish the above-mentioned relation between ``optimal'' resource bias and GUESS.

Juergen Schmidhuber

Related links: In the beginning was the code! - Zuse's thesis - Life, the universe, and everything - Generalized Algorithmic Information - Speed Prior - The New AI