
STEPS TOWARDS `SELF-REFERENTIAL' NEURALLEARNING: A THOUGHT EXPERIMENTTechnical Report CU-CS-627-92J�urgen SchmidhuberDepartment of Computer ScienceUniversity of ColoradoCampus Box 430, Boulder, CO 80309November 11, 1992AbstractA major di�erence between human learning and machine learning is that humans can re
ect abouttheir own learning behavior and adapt it to typical learning tasks in a given environment. To make someinitial theoretical steps toward `introspective' machine learning, I present { as a thought experiment {a `self-referential' recurrent neural network which can run and actively modify its own weight changealgorithm. The network has special input units for observing its own failures and successes. Each of itsconnections has an address. The network has additional special input and output units for sequentiallyaddressing, analyzing and manipulating all of its own adaptive components (weights), including thoseweights responsible for addressing, analyzing and manipulating weights. Due to the generality of thearchitecture, there are no theoretical limits to the sophistication of the modi�ed weight change algorithmsrunning on the network (except for unavoidable pre-wired time and storage constraints). In theory, thenetwork's weight matrix can learn not only to change itself, but it can also learn the way it changesitself, and the way it changes the way it changes itself | and so on ad in�nitum. No endless recursion isinvolved, however. For one variant of the architecture, I present a simple but general initial reinforcementlearning algorithm. For another variant, I derive a more complex exact gradient-based algorithm forsupervised sequence learning. A disadvantage of the latter algorithm is its computational complexityper time step which is independent of the sequence length and equals O(n2connlognconn), where nconn isthe number of connections. Another disadvantage is the high number of local minima of the unusuallycomplex error surface. The purpose of my thought experiment, however, is not to come up with the moste�cient or most practical `introspective' or `self-referential' weight change algorithm, but to show thatsuch algorithms are possible at all.
1

1 INTRODUCTIONEvery machine learning researcher knows that learning algorithms that work well for one class of problemsare not always well suited for a di�erent class. In contrast, humans can re
ect about their own learningbehavior and tailor it to the needs of various types of learning problems1.The �rst step toward a theory of `introspective' or `self-referential' machine learning2 is the design of ageneral �nite-size hard-wired architecture with `self-referential' potential. The second step is the design ofinitial learning algorithms that �nd useful self-manipulating algorithms for the architecture, where `useful-ness' is strictly de�ned by performance evaluations provided by the environment.In the following thought experiment I will choose an arti�cial recurrent neural network as basis for a`self-referential meta-learning' architecture. Two reasons for this choice are: (a) Generality. Recurrentneural nets are simple yet powerful { like a Turing machine or a conventional digital computer they can beprogrammed to generate arbitrary mappings from input sequences to output sequences (loosely speaking, a�nite network is like a Turing machine with �nite tape). This general property will allow us to build a netthat can run its own arbitrarily complex weight change algorithm. (b) Simplicity of avoiding catastrophicerrors. A lisp program that is allowed to change itself may be likely to crash due to catastrophic syntacticerrors (e.g. [4]). It is easy to avoid similar situations in the context of self-changing weight-matrices (theprograms of recurrent nets).This paper is intended to go beyond certain previous and less general approaches to `meta-learning'.For instance, Chalmer's recent architecture (like other similar architectures) is based on hierarchical levelsand could not be called `self-referential' { in his case, a genetic algorithm on a higher level tries to �nd asimple learning rule for a lower level neural feed-forward network [2]. In the paper at hand, however, I wantto bury all `meta-levels' within the same �nite network. In addition, with previous approaches the searchspace of possible learning algorithms is usually very limited { Chalmer, for instance, limits his weight changealgorithms to simple linear combinations of certain parameters of his feed-forward network. In contrast, Ido not want to impose any non-trivial limitations on the complexity of evolving learning algorithms.Outline. The remainder of this paper is structured as follows: Section 2 starts with a general set-up for anagent interacting with its environment. Then it introduces a �nite, `self-referential' architecture that controlsthe agent. This architecture involves a recurrent neural-net that can potentially implement any computablefunction that maps input sequences to output sequences | the only limitations being unavoidable time and1Here are some very `high-level' examples of `self-referential' behavior: We can make statements about our own learningprocedures, such as, \Today I am going to sit down and learn 20 Japanese words". Not only can we talk about, but we can alsomanipulate the way we learn. For instance, to a large extent we can choose our own training examples and which associationswe want to memorize. And we actually can learn how to improve our own learning procedures, pro�tting from previous learningexperiences like this: \When I began learning to juggle, practicing with all three balls was not helpful. But after �rst practicingwith one, and then with two, I could �nally start making use of all three. This time I am going to learn to juggle with threebottles instead of balls, and I will start with one bottle instead of three". For many problem classes we develop quite speci�crepresentations and e�cient learning strategies. These speci�c strategies may include certain forms of `analogy matching' (see[8] for a neural approach to inter-task transfer learning), `chunking', `one-shot learning', `active learning', `query learning' etc.,but there is much reason to suspect that there are many speci�c strategies which are not adequately described by any of thesefamiliar terms After some years of self-observation, I have come to believe that processes for `learning how to learn' frequentlyoccur on much lower cognitive levels than the ones corresponding to the examples above, though it is often di�cult to describelower levels in words. Based on these observations, I have come to believe such processes are essential for the scaling behaviorof any realistic big learning system.2Intuitively speaking, the ultimate goal of research on `self-referential' and `introspective' learning algorithms (as I see it) issomething I would like to call a `learning germ'. The `germ' is a hypothetical, initially simple, but general learning algorithmrunning on realistic �nite-size hardware with limited time and storage resources. With a given environment demanding thesolution of certain tasks, the germ gradually re�nes and specializes itself in a `bootstrap' fashion in order to develop specializedrepresentations and strategies for attacking typical learning tasks, thereby learning to make `optimal' use of the limited temporaland storage resources of the unchangeable hardware. The germ might do so by collecting information about typical problems,the relations between typical problems, and how to use these relations to create e�cient ways of solving typical problems. (Inthe context of concept learning, this is sometimes referred to as �nding the proper `inductive bias' [3][16].) Specialized strategiesmay include but need not be limited to things known as `learning by analogy', `learning by chunking', `one-shot learning', `activelearning', `query learning', etc. I do not claim to have arrived at the ultimate goal. (That's why the title is \steps toward`self-referential' neural learning" instead of \self-referential neural learning", and why the word `self-referential' is put betweenapostrophes.) 2

storage constraints imposed by the architecture's �niteness. These constraints can be extended by simplyadding storage and/or allowing for more processing time. The major novel feature of the system is its `self-referential' capability. The network is provided with special input units for explicitly observing performanceevaluations. In addition, it is provided with the basic tools for explicitly reading and changing all of itsown adaptive components (weights): It has special output and input units for sequentially addressing,analyzing and manipulating any weight, including those weights responsible for addressing, analyzing andmanipulating weights. These unconventional properties allow the network (in principle) to compute anycomputable function mapping algorithm components and performance evaluations to algorithm modi�cations| the only limitations again being unavoidable time and storage constraints. This implies that algorithmsrunning on that architecture (in principle) can change not only themselves but also the way they changethemselves, and the way they change the way they change themselves, etc., essentially without theoreticallimits to the sophistication (computational power) of the self-modifying algorithms. The architecture shouldbe viewed as only one of many possible similar architectures (using di�erent schemes for addressing andmanipulating connections). In section 3, initial weight change algorithms will be designed such that the`self-referential' network can learn (possibly self-modifying) algorithms that improve their performance ongiven tasks3. The system starts out as tabula rasa. The initial learning procedure favors algorithms that makesensible use of the `introspective' potential of the hard-wired architecture, where `usefulness' is solely de�nedby conventional performance evaluations. For a variant of the network, section 3.1 derives an exact gradient-based initial algorithm for `self-referential' supervised sequence learning. For another variant, section 3.2describes an even more general but less informed (and less complex) reinforcement learning algorithm.The thought experiment presented in this paper is intended to show the theoretical possibility of a certainkind of `self-referential' neural networks { the systems described herein are not meant to be very practicalones. For instance, due to the complexity of the activation dynamics of the `self-referential' network tobe described in the next section, the error function to be minimized by the supervised sequence learningalgorithm derived in section 3.1 would probably be riddled with local minima. Another disadvantage of thisalgorithm is its computational complexity per time step which is independent of the sequence length andequals O(n2connlognconn), where nconn is the number of connections in the net. The purpose of this paper,however, is not to come up with the most e�cient or most practical `introspective' or `self-referential' weightchange algorithm, but to show that such algorithms are possible at all. More practical variants of the basicidea will be left for separate papers (e.g. [15]).2 THE `SELF-REFERENTIAL' SYSTEMAn information processing `agent' is embedded in a general dynamic environment. At a given time step t,the agent's time-varying input is x(t). Its current output o(t) is computed from previous inputs and mayin
uence the environmental state. This may in turn a�ect the environmental inputs. To isolate the essentialinformation processing aspects of the agent, any `motoric e�ectors' that in
uence the environmental stateby interpreting the outputs o(t) are considered to belong to the environment. The same holds for `sensoryperceptors' providing the inputs x(t). Occasionally, some evaluative mechanism provides a measure of successor failure, eval(t). eval(t) may be quite informative (like a detailed analysis of what went wrong) or quiteuninformative (like a simple pain or pleasure signal). The agent's goal is to �nd action sequences that leadto `desirable' evaluations, where the environment de�nes what is `desirable' and what is not. Without loss ofgenerality, it may be assumed that x(t); o(t); eval(t) are represented as real-valued vectors4 with dimensionsnx; no; neval, respectively.Obviously, the architecture of the agent constrains the set S of legal algorithms it can perform. Thispaper focuses on �nite architectures that impose only very general, natural, and essentially unavoidable time3It should be mentioned that practically all conventional computer architectures do allow `self-referential' algorithms withessentially unconstrained power. The existing machine learning architectures (implemented on such computers), however, aremore specialized and more restricted.4Of course, only a subset of all real vectors can be represented by any realistic hardware. It should be noted that binaryvectors could be used instead of real-valued ones without losing generality.3

and storage limitations on S. A convenient way of designing such an architecture is to use a recurrent neuralnetwork as basic `hardware'.With this network architecture there will be algorithms in S that can produce arbitrary changes for anycomponent of algorithms in S such that the results of the changes5 are algorithms in S. This will be achievedby (1) providing the network with input units for speci�cally observing its own failures and successes, (2)introducing an address for each connection of the network, (3) providing the network with output unitsfor sequentially addressing all of its own connections (including those connections responsible for addressingconnections), (4) providing input units for analyzing the weights addressed by the network, and (5) providingoutput units for manipulating the weights addressed by the network.Subsection 2.1. will list conventional aspects of the network. Subsection 2.2. will list the novel `self-referential' features of the net. While reading the remainder of this section, you may wish to refer to �gure1 and to relevant notation listed in table 1.2.1 CONVENTIONAL ASPECTS OF THE NETo(t) is computed from x(�); � < t, by a discrete time recurrent network with nI > nx input units and nynon-input units. A subset of the non-input units, the `normal' output units, has a cardinality of no < ny.For notational convenience, I will sometimes give di�erent names to the real-valued activation of aparticular unit at a particular time step. zk is the k-th unit in the network. yk is the k-th non-input unitin the network. xk is the k-th `normal' input unit in the network. ok is the k-th `normal' output unit. If ustands for a unit, then u's activation at time t is denoted by u(t). If v(t) stands for a vector, then vk(t) isthe k-th component of v(t) (this is consistent with the last sentence).Each input unit has a directed connection to each non-input unit. Each non-input unit has a directedconnection to each non-input unit. Obviously there are (nI + ny)ny = nconn connections in the network.The connection from unit j to unit i is denoted by wij. For instance, one of the names of the connectionfrom the j-th `normal' input unit to the the k-th `normal' output unit is wokxj . wij's real-valued weight attime t is denoted by wij(t). Before training, all weights wij(1) are randomly initialized.The following de�nitions will look familiar to the reader knowledgeable about conventional recurrentnets (e.g. [19]). The environment determines the activations of a `normal' input unit xk. The activationsof the remaining input units will be speci�ed in section 2.2, which lists the `self-referential' aspects of thearchitecture. For a non-input unit yk we de�nenetyk(1) = 0; 8t � 1 : yk(t) = fyk (netyk(t));8t > 1 : netyk (t) =Xl wykl(t� 1)l(t � 1); (1)where fi is the activation function of unit i. I have not yet speci�ed whether the fi are di�erentiable and/ordeterministic.5With previousmachine learning approaches I am aware of, the adaptive (non-hardwired) components of the agent algorithmscan be modi�ed only by some hardwired pre-speci�ed and unchangeable learning algorithm. Lenat's complex EURISKO systemmay be an exception to this rule (Lenat reports that his system found heuristics for �nding heuristics [4]). EURISKO'smechanism, however, has drawn criticism for being notoriously hard to evaluate and for the fact that the programmer interactedwith the system in a way that remained partly opaque. In contrast, the much simpler `subsymbolic' system described here doesnot require occasional interventions by the programmer and has clearly de�ned performance evaluations.It should be noted that essentially the only general learning algorithm (for any environment) which is guaranteed to �ndthe `most desirable' algorithms in S is exhaustive search among all elements of S. The problem with exhaustive search is, ofcourse, that it tends to be prohibitively ine�cient when S is large or when it takes a lot of e�ort to evaluate elements of S.For these reasons, many more sophisticated and problem-speci�c machine learning algorithms have been designed (there arejust too many to start citing them all). The problem-speci�c algorithms are often much more e�cient than general algorithmslike exhaustive search, but usually are limited to a much narrower range of applications. With many problem-speci�c learningalgorithms, the `real' learning is going on in the researcher who puts a lot of thought into useful input representations and bias,appropriate problem-speci�c internal architectures, etc. In turn, sometimes the agent's remaining `learning' task is reduced tobuilding a collection of simple statistics. In contrast, the motivation of this paper is to think about learning algorithms thatstart out as general algorithms but specialize themselves according to the needs of typical learning tasks.4

The current algorithm of the network is given by its current weight matrix (and the current activations).Note, however, that I have not yet speci�ed how the wij(t) are computed. In previous recurrent networks,weight changes are exclusively caused by some �xed learning algorithm with many speci�c limitations.For instance, the popular gradient based weight change algorithms (as well as all other known learningalgorithms) su�er from many well-known drawbacks (unsatisfactory scaling behavior, problems with longtime lags, etc.). Again, one would like to have weight change algorithms that are less limited. This motivatesthe next section.2.2 SELF-REFERENTIAL ASPECTS OF THE NETThis section describes yet unspeci�ed interpretations of certain inputs and outputs that make this net the�rst `self-referential' neural network with explicit potential control over all adaptive parameters governingits behavior. Since there may be potentially useful kinds of self-modi�cation that are not yet known,and since appropriate self-modi�cation procedures might be arbitrarily complex, the network supports anycomputable self-modifying algorithm that maps algorithm components and performance evaluations intoalgorithm modi�cations (modulo time and storage limitations).The following is a list of four unconventional aspects of the resulting system, which should be viewed asjust one example of many similar systems.1. The network sees performance evaluations. The network receives performance information throughthe eval units. The eval units are special input units which are not `normal' input units. evalk is the k-theval unit (of neval such units) in the network. This feature is relatively simple compared to some of thefollowing features, though it represents an essential contribution for achieving `self-referential learning'.2. Each connection of the net gets an address. One way of doing this which I employ in this paper (butcertainly not the only way) is to introduce a binary address, adr(wij), for each connection wij. This willhelp the network to do computations concerning its own weights in terms of activations, as will be seen next.3. The network may analyze any of its weights. anak is the k-th analyzing unit (of nana such units) in thenetwork. The analyzing units are special non-input units which are not `normal' output units. They serve toindicate which connections the current algorithm of the network (de�ned by the current weight matrix plusthe current activations) will access next. It is possible to endow the analyzing units with enough capacityto address any connection, including connections leading to analyzing units. One way of doing this is to setnana = ceil(log2nconn) (2)where ceil(x) returns the �rst integer � x.A special input unit that is used in conjunction with the analyzing units is called val. val(t) is computedaccording to val(1) = 0; 8t � 1 : val(t + 1) =Xi;j g[kana(t)� adr(wij)k2]wij(t); (3)where k . . .k denotes Euclidean length, and g is a function emitting values between 0 and 1 that determineshow close a connection address has to be to the activations of the analyzing units in order for its weight tocontribute to val at that time. Such a function g might have a narrow peak at 1 around the origin and bezero (or nearly zero) everywhere else. This would essentially allow the network to pick out a single connectionat a time and obtain its current weight value without receiving `cross-talk' from other weights.64. The network may modify any of its weights. Some non-input units that are not `normal' output unitsor analyzing units are called the modifying units. modk is the k-th modifying unit (of nmod such units) in the6Note that we need to have a compact form of addressing connections: One might alternatively think of something like `oneanalyzing unit for each connection' to address all weights in parallel, but obviously this would not work | we always would endup with more weights than units and could not obtain `self-reference'. It should be noted, however, that the binary addressingscheme above is by far not the most compact scheme. This is because real-valued activations allow for representing theoreticallyunlimited amounts of information in a single unit. For instance, theoretically it is possible to represent arbitrary simultaneouschanges of all weights within a single unit. In practical applications, however, there is nothing like unlimited precision realvalues. And the purpose of this paper is not to present the most compact `self-referential' addressing scheme but to present atleast one such scheme. 5

network. The modifying units serve to address connections to be modi�ed. Again, it is possible to endow themodifying units with enough capacity to sequentially address any connection, including connections leadingto modifying units. One way of doing this is to setnmod = ceil(log2nconn) (4)A special output unit used in conjunction with the modifying units is called 4. f4 should allow bothpositive and negative activations of 4(t). Together, mod(t) and 4(t) serve to explicitly change weightsaccording to wij(t+ 1) = wij(t) +4(t) g[kadr(wij)�mod(t)k2]: (5)Again, if g has a narrow peak at 1 around the origin and is zero (or nearly zero) everywhere else, the networkwill be able to pick out a single connection at a time and change its weight without a�ecting other weights.It is straight-forward, however, to devise schemes that allow the system to modify more than one weight inparallel. See again footnote 6.Together, (1), (3), and (5) make up the hard-wired system dynamics.There are many `self-referential' networks as above. Let us refer to all units that are neither `normal'input units, eval units, the val input unit, `normal' output units, analyzing units, modifying units, nor the4 unit, as hidden units. There are nh = ny � no such hidden units. There is an in�nity of ways of �ndingvalues nc (denoting the number of addressable connections) satisfying the conditionnc � (nh + no + 2ceil(log2nc) + 1)(nh + no + 2ceil(log2nc) + 1 + nx + 1+ neval): (6)One example where the `=' sign is valid in (6) is given bynx = 27; no = neval = 4; nana = nmod = 11; nh = 5:2.3 COMPUTATIONAL POWER OF THE NETThroughout the remainder of this paper, to save indices, I consider a single limited pre-speci�ed time-intervalof discrete time-steps during which the agent interacts with its environment. I assume that the input sequenceobserved by the agent during this time has length ntime = nsnr (where ns; nr 2 N) and can be dividedinto ns equal-sized blocks of length nr during which the input pattern x(t) does not change. This does notimply a loss of generality | it just means speeding up the agent's hardware such that each input patternis presented for nr time-steps before the next pattern can be observed. This gives the agent nr time-stepsto do some sequential processing (including immediate weight changes) before seeing a new pattern of theinput sequence. Although the architecture may in
uence the state of the environment within such a blockof nr time steps, the changes will not a�ect its input until the beginning of the next block.With appropriate constant (time-invariant) wij(t), simple conventional (threshold or semi-linear) activa-tion functions fk, su�cient nh `hidden' units, and su�cient block-size nr, by repeated application of (1), thenetwork can compute any function (or combination of functions)f : f0; 1gnx+1+neval+no+nana+nmod+1 ! f0; 1gno+nana+nmod+1 (7)computable within a constant �nite number ncyc of machine cycles by a given algorithm running on a givenconventional digital (sequential or parallel) computer with limited temporal and storage resources7 . This isbecause information processing in conventional computers can be described by the repeated application ofboolean functions that can easily be emulated in recurrent nets as above.With the particular set-up of section 2.2, at least the 4 output unit and the val input unit should takeon not only binary values but real values. It is straight-forward, however, to show that the range f0; 1g in(7) may be replaced by R for any unit (by introducing appropriate simple activation functions).7Or by a given Turing machine operating for limited time (during which it can use only a �nite portion of its tape) | or bya given �nite state automaton, for that matter. 6

x(t+1) eval(t+1) val(t+1)

anal(t)mod(t) (t)o(t)

HIDDEN UNITS

INPUT UNITS

OUTPUT UNITS

W
E
I
G
H
T

M
O
D
I
F
I
C
A
T
I
O
N
S

W
E
I
G
H
T

A
N
A
L
Y
S
I
S

E
N
V
I
R
O
N
M
E
N
T

Figure 1: The special input vector eval(t+1) informs the fully recurrent sequence-processing network (onlytwo connections are shown) about external performance evaluations. The special outputs ana(t) indicatewhich weights are to be read into the special input unit val. The special outputs mod(t) and 4(t) serve tocompute immediate weight changes for the network's own connections. See text for details.7

symbol descriptionkvk Euclidean length pvT v of vector vt time index, ranges from 1 to ntimexk k-th `normal' input unityk k-th non-input unitok k-th `normal' output unitzk k-th unitevalk k-th eval unit (for observing performance evaluations)anak k-th analyzing unit (for addressing the net's own connections)modk k-th modifying unit (for addressing the net's own connections)val special input unit for analyzing current weight values4 special output unit for changing current weight valuesu(t) activation of u at time t, if u denotes unitvk(t) k-th component of v(t), if v(t) vector (this is consistent with line above)x(t) agent's `normal' input vector at time to(t) agent's `normal' output vector at time teval(t) environments evaluation of performance at time tana(t) special output vector indicating connection addressesmod(t) special output vector indicating connection addressesnx dim(x(t)), number of `normal' input unitsno dim(o(t)), number of `normal' output unitsneval dim(eval(t)), number of eval unitsnI nx + neval + 1, number of all input unitsceil(x) smallest integer � xnmod dim(mod(t)) = ceil(log2nconn), number of modifying unitsnana dim(ana(t)) = ceil(log2nconn), number of analyzing unitsny no + nana + nmod + 1, number of non-input unitsnh number of hidden unitswij connection from unit j to unit inconn ny(ny + nI), number of connectionsadr(wij) address of wijg function de�ning `closeness' of addresses, with narrow peak around originval(t+ 1) Pi;j g[kana(t)� adr(wij)k2]wij(t)wij(t) weight of wij at time twij(t+ 1) wij(t) +4(t) g[kadr(wij)�mod(t)k2]nr constant block-size, x(t) remains invariant during blocks of length nrns number of blocks in sequencentime = nrns number of time steps in sequenceS set of legal agent algorithmsTable 1: De�nitions of symbols describing the `self-referential' architecture.8

We now can clearly identify the storage constraint nh and the time constraint nr with two parameters,without having to take care of any additional hardware-speci�c limitations constraining the computationalpower of the net8.We are left with a general, �xed-size, `self-referential' network with unlimited computational power(within unavoidable time and storage constraints) that cannot only map arbitrary input sequences ontoarbitrary output sequences but also can (in principle) analyze and change its own weight matrix, includingthose parts of the weight matrix that are responsible for analyzing and changing the weight matrix. Theanalyzing and modifying process itself may be arbitrarily complex. There are no theoretical limits on thesophistication of the weight changing algorithms implementable in the network. The same is true for thealgorithm that changes the weight changing algorithm, and the algorithm that changes the algorithm thatchanges the weight changing algorithm, etc. This is because every `meta-level' is buried in the same network9.3 INITIAL LEARNING ALGORITHMSTo �nd useful `self-modifying' learning algorithms, we need something like an initial learning algorithm.Certain aspects of the initial learning algorithm may not be modi�ed. There is no way of making everythingadaptive | for instance, algorithms leading to desirable environmental performance evaluations must alwaysbe favored over others. We may not allow the system to change this basic rule of the game. So the hardwiredunchangeable aspects of the initial learning algorithm (alternatives will be given in the following subsections)will favor algorithms that modify themselves in a useful manner (a manner that leads to `more desirable'evaluations).An interaction sequence (see section 2.3) actually may be the concatenation of many `conventional'training sequences for conventional recurrent networks. This will (in theory) help our `self-referential' net to�nd regularities among solutions for di�erent tasks.For a variant of the `self-referential' architecture, section 3.1 derives an exact gradient-based algorithmfor supervised learning tasks. For another variant of the architecture, section 3.2 describes a more generalbut less informed and less complex reinforcement learning algorithm.3.1 SUPERVISED LEARNING ALGORITHMWith supervised learning, eval(t) provides information about the desired outputs at certain time steps.Arbitrary time lags may exist between inputs and later correlated outputs.For the purposes of this section, fk and g must be di�erentiable. This will allow us to compute gradient-based directions for the search in algorithm space.In what follows, unquantized variables are assumed to take on their maximal range. For ok(t) there maybe a target value, dk(t), speci�ed at time t. Although it is of no signi�cance whatsoever for the followingderivation, in order not to limit the temporal resources of the net unnecessarily, target values dk(t) may occuronly at the end of the ns blocks with nr time steps (see section 2.3). We set neval = no, which means thatthere are as many eval units as there are `normal' output units. The current activation of a particular evalunit provides information about the error of the corresponding output unit at the previous time step (see8It should be mentioned that since nconn grows with nh, nana and nmod also grow with nh (if they are not chosen largeenough from the beginning). However, nana and nmod grow much slower than nh.9There is an alternative without explicit weight changing abilities. Since recurrent nets are general purpose devices withessentially unlimited computational power (see section 2.3), they may run arbitrary algorithms, including arbitrary learningalgorithms represented in terms of activations instead of weights. Therefore we may use a conventional recurrent net to obtaina simpler `self-referential' system than the one this paper focuses on, by renouncing the relatively complex, explicit weight-modifying capabilities (involving ana(t); val(t);mod(t);4(t)). This alternative system, however, cannot explicitly manipulateall its adaptive parameters. Only a tiny fraction of the system variables, namely the activations (as opposed to activations andweights), are accessible to self-manipulation. Still, the system is (at least in theory) able to keep self-modifying aspects of itsalgorithm in its activations. It is important to keep one of the above-mentioned modi�cations of conventional recurrent nets,however: We have to reserve a special set of input units for feeding back evaluations eval(t) such that the network receives allthe information about its successes and failures. 9

equation (11)). We assume that inputs and target values do not depend on previous outputs (via feedbackthrough the environment).I will focus on the architecture described in sections 2.1 and 2.2 | the corresponding learning algorithmfor the simpler architecture without explicit weight changing capabilities (footnote 9, section 2.3) is just amodi�cation of conventional gradient-based algorithms for recurrent nets (e.g. [10], [17], [6], [7], [19]). Toobtain a better overview, let us summarize the system dynamics in compact form:netyk (1) = 0; 8t � 1 : xk(t) environment; yk(t) = fyk(netyk (t));8t > 1 : netyk (t) =Xl wykl(t� 1)l(t� 1); (8)8t � 1 : wij(t+ 1) = wij(t) +4(t) g[kadr(wij)�mod(t)k2]; (9)val(1) = 0; 8t � 1 : val(t + 1) =Xi;j g[kana(t)� adr(wij)k2]wij(t); (10)The following aspect of the system dynamics is speci�c for supervised learning and therefore has not yetbeen de�ned in previous sections:evalk(1) = 0; 8t � 1 : evalk(t + 1) = dk(t) � ok(t) if dk(t) exists; and 0 else: (11)Objective function. As with typical supervised sequence-learning tasks, we want to minimizeEtotal(nrns); where Etotal(t) = tX�=1E(�); where E(t) = 12Xk (evalk(t+ 1))2:Note that elements of algorithm space are evaluated solely by a conventional evaluation function10.The following algorithm for minimizing Etotal is partly inspired by (but more complex than) conventionalrecurrent network algorithms (e.g. [10], [17], [6], [7], [19]).Derivation of the algorithm. We use the chain rule to compute weight increments (to be performed aftereach training sequence) for all initial weights wab(1) according towab(1) wab(1)� �@Etotal(nrns)@wab(1) ; (12)where � is a constant positive `learning rate'. Thus we obtain an exact gradient-based algorithm for min-imizing Etotal under the `self-referential' dynamics given by (8)-(11). To reduce writing e�ort, I introducesome short-hand notation partly inspired by [18]:For all units u and all weights wab we writepuab(t) = @u(t)@wab(1) : (13)For all pairs of connections (wij ; wab) we writeqijab(t) = @wij(t)@wab(1) : (14)10It should be noted that in quite di�erent contexts, previous papers have shown how `controller nets' may learn to performappropriate lasting weight changes for a second net [14][5]. However, these previous approaches could not be called `self-referential' | they all involve at least some weights that can not be manipulated other than by conventional gradient descent.Attempting to solve a di�erent kind of task, the system described in [9] allows any weight in the system to be manipulateddynamically, but since new units must be created to do this, only a fraction of the total number of weights can ever be modi�edat any time. 10

To begin with, note that@Etotal(1)@wab(1) = 0; 8t > 1 : @Etotal(t)@wab(1) = @Etotal(t� 1)@wab(1) �Xk evalk(t+ 1)pokab(t): (15)Therefore, the remaining problem is to compute the pokab(t), which can be done by incrementally computingall pzkab(t) and qijab(t), as we will see.At time step 1 we have pzkab(1) = 0: (16)Now let us focus on time steps after the �rst one. For t � 1 we obtain the recursionpxkab (t+ 1) = 0; (17)pevalkab (t+ 1) = �pokab(t); if dk(t) exists; and 0 otherwise; (18)pvalab (t + 1) =Xi;j @@wab(1) [g(kana(t) � adr(wij)k2)wij(t)] =Xi;j f qijab(t)g[kana(t)� adr(wij)k2)] +wij(t) [g0(kana(t)� adr(wij)k2)2Xm (anam(t)� adrm(wij))panamab (t)] g (19)(where adrm(wij) is the m-th bit of wij's address),pykab(t+ 1) = f 0yk(netyk (t+ 1))Xl @@wab(1) [l(t)wykl(t)] =f 0yk(netyk (t+ 1))Xl wykl(t)plab(t) + l(t)qyklab (t); (20)where qijab(1) = 1 if wab = wij; and 0 otherwise; (21)8t > 1 : qijab(t) = @@wab(1) "wij(1) +X�<t4(�)g(kmod(�) � adr(wij)k2)# =qijab(t� 1) + @@wab(1) 4 (t� 1)g(kmod(t � 1)� adr(wij)k2) =qijab(t� 1) + p4ab(t� 1)g(kmod(t � 1)� adr(wij)k2)+24 (t� 1) g0(kmod(t � 1)� adr(wij)k2)Xm [modm(t � 1)� adrm(wij)]pmodmab (t� 1): (22)According to equations (16)-(22), the pjab(t) and qijab(t) can be updated incrementally at each time step.This implies that (15) can be updated incrementally at each time step, too. The storage complexity isindependent of the sequence length and equals O(n2conn). The computational complexity per time step isO(n2connlognconn).Why is there no endless recursion? Because the algorithm does not really throw away the concept ofgradient descent | actually it performs gradient descent in the initial weights (at the beginning of eachtraining sequence). That's where the recursion stops11.11Section 5 will mention a simple alternative, however. 11

Again: The initial learning algorithm uses gradient descent to �nd weight matrices that minimize aconventional error function. This is partly done just like with conventional recurrent net weight changingalgorithms. Unlike with conventional networks, however, the network algorithms themselves may chooseto change some of the network weights in a manner unlike gradient descent (possibly by doing somethingsmarter than that) | but only if this helps to minimize Etotal. In other words, the `self-referential' aspectsof the architecture may be used by certain `self-modifying' algorithms to generate desirable evaluations.Therefore the whole system may be viewed as a `self-referential' augmentation of conventional recurrentnets. Further speed-ups (like the ones in [18], [19], [13]) are possible but not essential for the purposes ofthis paper.3.2 A REINFORCEMENT LEARNING ALGORITHMIf we want to be really general, then we have to focus on reinforcement learning tasks instead of supervisedlearning tasks. With general reinforcement learning, o(t) in
uences the environmental state and x(t), andeval(t) is a scalar or vector, real-valued or binary reinforcement signal. Note that the system may chooseits own inputs and training examples. The agent's goal is to maximize Pt keval(t)k2. The `credit assign-ment problem' may be of arbitrary complexity. Arbitrary time lags may exist between actions and laterconsequences. Unlike with supervised learning, no `teacher' tells the network which `normal' outputs toproduce at which time step. There is not even the assumption of a `Markovian' interface between agent andenvironment [12]. As a consequence, reinforcement learning algorithms inspired by dynamic programming(e.g. [1]) will be of no use. This is about the most general setting I can think of.General settings require general initial learning schemes. The following scheme is a general but simple one| it pays for its generality by starting out with much less informed weight-changes than the gradient-basedsearch of section 3.1.To allow for non-deterministic `exploratory' behavior, I introduce binary12 probabilistic units by de�ningthe fk as follows: f4 is a function that returns values between -1 and 1. For k 6= 4, fk(x) returns 1 withprobability f�(x), and 0 with probability 1� f�(x), wheref�(x) = 11 + e�x : (23)Here is a simple, but safe and general, hardwired initial learning scheme.1. Before training, the initial weights are de�ned as the current best algorithm. The current best evalua-tion is de�ned as minus in�nity.2. Randomly perturb the weights of the current best algorithm to obtain the current algorithm.3. Test the current algorithm by evaluating its performance on test data.4. If the evaluation is higher than the current best evaluation, then set the current best evaluation equalto the current evaluation, and set the current best algorithm equal to the current algorithm.5. Go to step 2.Obviously, the scheme does nothing but simple `guided' random search in algorithm space, always keepingand mutating the best `self-referential' algorithm so far. In the long run, the performance can only improve.I do not believe that there is a signi�cantly better initial learning algorithm for general environments.The expectation is, of course, that in environments with (initially unknown) regularities, the systemwill eventually discover relationships between similar learning problems, and the self-modifying capabilitiesof the architecture will eventually lead to non-random and more informed problem-speci�c weight-changes.This expectation is justi�ed because algorithms creating `smart' weight changes (self-modi�cations) will leadfaster to higher evaluations than `dumb' algorithms, thus being favored over the `dumb' ones.12As a consequence, the binary weight addressing scheme of section 2.2 actually is the most compact one. See footnote 6,section 2.2. 12

4 CONCLUDING REMARKSIn a nutshell, the network I have described can, besides learning to solve problems posed by the environment,also use its own weights as input data and can learn new algorithms for modifying its weights in responseto the environmental input and evaluations. This e�ectively embeds a chain of `meta-networks' and `meta-meta-...-networks' into the network itself.Bias. This universe does not allow us a bias-free learning architecture. The scheme above includes a lotof bias: The selection of the basic architecture (indeed, one can �nd many di�erent `self-referential' architec-tures, once one starts looking for them), the scheme for addressing connections and talking about algorithmcomponents, the hardwired basic learning algorithm, etc. The system I have described above certainly doesnot re
ect the most practical bias for typical learning tasks in typical real-world environments. It shouldinstead demonstrate that there are ways of making all adaptive parameters of learning systems accessibleto self-manipulation, and that it is possible to come up with reasonable hardwired learning algorithms forpicking `good' self-manipulating algorithms. The system described herein serves simply as a single exampleof many similar systems that have the following two things in common: Universal computational power (con-strained only by unavoidable time and storage limitations), and explicit access to all modi�able algorithmcomponents.Biological plausibility. It seems that I cannot explicitly tell each of my 1015 synapses to adopt a certainvalue. I seem able only to a�ect my own synapses indirectly | for instance, by somehow actively creating`keys' and `entries' to be associated with each other. Therefore, at �rst glance, the neural net in my headappears to embody a di�erent kind of self-reference than the arti�cial net of section 2.1 and 2.213. Butdoes it really? The arti�cial net also does not have a concept of its n-th weight. All it can do is to �ndout how to talk about weights in terms of activations | without really knowing what a weight is (just likehumans who did not know for a long time what synapses are). Therefore I cannot see any evidence thatbrains use fundamentally di�erent kinds of `introspective' algorithms. On the other hand, I am not awareof any biological evidence supporting the theory that brains have some means for addressing single synapsesby creating appropriate activation patterns 14.Ongoing and future research. Due to the complexity of the activation dynamics of the `self-referential'network, one would expect the error function derived in section 3.1 to have many local minima. [15] describesa variant of the basic idea (involving a biologically more plausible weight manipulating strategy) which isless plagued by the problem of local minima (and whose initial learning algorithm has lower computationalcomplexity than the one from section 3.1).A major criticism of the learning algorithms in section 3 is that they are based on the concept of�xed interaction sequences. All the hard-wired learning algorithms do is �nd initial weights leading to`desirable' cumulative evaluations. After each interaction sequence, the �nal weight-matrix (obtained throughself-modi�cation) is essentially thrown away. A simple alternative would be to run (after each interactionsequence) the �nal weight matrix against the best algorithm so far and keep it if it is better15. Again,performance cannot get worse but can only improve over time. I would, however, prefer a hypothetical `self-referential' learning system that is not initially based on the concept of training sequences at all. Instead,the system should be able to learn to actively segment a single continuous input stream into useful trainingsequences. Future research will be directed towards building provably working, hard-wired initial-learning-algorithms for such hypothetical systems.Although the systems described in this paper have a mechanism for `self-referential' weight changes, theymust still learn to use this mechanism. Experiments are needed to discover how practical an approach this13Perhaps an even simpler kind of self-reference, as with the alternative network of footnote 9, section 2.3.14As mentioned before, however, this paper does not insist on addressing every weight in the system individually. (See againfootnote 6.) There are many alternative, sensible ways of choosing g and rede�ning equations (3) and (5) (e.g. [15]).15With the algorithms of section 3, the weight changes for the initial weights (at the beginning of a training sequence) arehard-wired. The alternative idea of testing the �nal weight matrix (at the end of some sequence) against the best previousweight matrix corresponds to the idea of letting the system change its initial weights, too. With the alternative network fromfootnote 9, section 2.3, this would amount to not resetting the activations of the net for the test phase following each trainingsequence. This is essential, because the activations at the end of a sequence might represent a useful `self-referential' learningalgorithm (running on a system with essentially constant weights).13

is. This paper16, however, presents a thought experiment and does not focus on experimental evaluations;it is intended only to show the theoretical possibility of certain kinds of `self-referential' weight changealgorithms. Experimental evaluations of alternative `self-referential' architectures (with alternative morepractical self-addressing schemes, e.g. [15]) will be left for the future.5 ACKNOWLEDGEMENTSThanks to Mark Ring, Mike Mozer, Daniel Prelinger, Don Mathis, and Bruce Tesar, for helpful commentson drafts of this paper. This research was supported in part by a DFG fellowship to the author, as well asby NSF PYI award IRI{9058450, grant 90{21 from the James S. McDonnell Foundation, and DEC externalresearch grant 1250 to Michael C. Mozer.References[1] A. G. Barto. Connectionist approaches for control. Technical Report COINS Technical Report 89-89,University of Massachusetts, Amherst MA 01003, 1989.[2] D. Chalmers. The evolution of learning: An experiment in genetic connectionism. In D. S. Touretzky,J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc. of the 1990 Connectionist Models SummerSchool, pages 81{90. San Mateo, CA: Morgan Kaufmann, 1990.[3] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework.Arti�cial Intelligence, 36:177{221, 1988.[4] D. Lenat. Theory formation by heuristic search. Machine Learning, 21, 1983.[5] K. M�oller and S. Thrun. Task modularization by network modulation. In J. Rault, editor, Proceedingsof Neuro-Nimes '90, pages 419{432, November 1990.[6] B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural Computation,1(2):263{269, 1989.[7] F. J. Pineda. Time dependent adaptive neural networks. In D. S. Touretzky, editor, Advances in NeuralInformation Processing Systems 2, pages 710{718. San Mateo, CA: Morgan Kaufmann, 1990.[8] L. Y. Pratt. Non-literal transfer of information among inductive learners. In R. J. Mammone and Y. Y.Zeevi, editors, Neural Networks: Theory and Applications, volume 2. 1992. In press.[9] M. B. Ring. Incremental development of complex behaviors through automatic construction of sensory-motor hierarchies. In L. Birnbaum and G. Collins, editors, Machine Learning: Proceedings of the EighthInternational Workshop, pages 343{347. Morgan Kaufmann, 1991.[10] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical ReportCUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.[11] J. H. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: Themeta-meta-... hook, 1987. Institut f�ur Informatik, Technische Universit�at M�unchen.[12] J. H. Schmidhuber. Reinforcement learning in markovian and non-markovian environments. In D. S.Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems3, pages 500{506. San Mateo, CA: Morgan Kaufmann, 1991.16This paper is partly inspired by some older ideas about `self-referential learning' | [11] describes a `self-referential' geneticalgorithm, as well as a few other `introspective' systems. 14

[13] J. H. Schmidhuber. A �xed size storage O(n3) time complexity learning algorithm for fully recurrentcontinually running networks. Neural Computation, 4(2):243{248, 1992.[14] J. H. Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets. NeuralComputation, 4(1):131{139, 1992.[15] J. H. Schmidhuber. On decreasing the ratio between learning complexity and number of time varyingvariables in fully recurrent nets. Technical report, Dept. of Comp. Sci., University of Colorado atBoulder, 1992. In preparation.[16] P. Utgo�. Shift of bias for inductive concept learning. In Machine Learning, volume 2. Morgan Kauf-mann, Los Altos, CA, 1986.[17] P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model.Neural Networks, 1, 1988.[18] R. J. Williams. Complexity of exact gradient computation algorithms for recurrent neural networks.Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern University, College of Com-puter Science, 1989.[19] R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent networks and theircomputational complexity. In Back-propagation: Theory, Architectures and Applications. Hillsdale, NJ:Erlbaum, 1992, in press.

15

