STEPS TOWARDS ‘SELF-REFERENTIAL’ NEURAL
LEARNING: A THOUGHT EXPERIMENT
Technical Report CU-CS-627-92

Jirgen Schmidhuber
Department of Computer Science
University of Colorado
Campus Box 430, Boulder, CO 80309

November 11, 1992

Abstract

A major difference between human learning and machine learning is that humans can reflect about
their own learning behavior and adapt it to typical learning tasks in a given environment. To make some
initial theoretical steps toward ‘introspective’ machine learning, I present — as a thought experiment —
a ‘self-referential’ recurrent neural network which can run and actively modify its own weight change
algorithm. The network has special input units for observing its own failures and successes. Each of its
connections has an address. The network has additional special input and output units for sequentially
addressing, analyzing and manipulating all of its own adaptive components (weights), including those
weights responsible for addressing, analyzing and manipulating weights. Due to the generality of the
architecture, there are no theoretical limits to the sophistication of the modified weight change algorithms
running on the network (except for unavoidable pre-wired time and storage constraints). In theory, the
network’s weight matrix can learn not only to change itself, but it can also learn the way it changes
itself, and the way it changes the way it changes itself — and so on ad infinitum. No endless recursion is
involved, however. For one variant of the architecture, I present a simple but general initial reinforcement
learning algorithm. For another variant, I derive a more complex exact gradient-based algorithm for
supervised sequence learning. A disadvantage of the latter algorithm is its computational complexity
per time step which is independent of the sequence length and equals O(nzo,mlognw,m), where nconn 1s
the number of connections. Another disadvantage is the high number of local minima of the unusually
complex error surface. The purpose of my thought experiment, however, is not to come up with the most
efficient or most practical ‘introspective’ or ‘self-referential’ weight change algorithm, but to show that
such algorithms are possible at all.

1 INTRODUCTION

Every machine learning researcher knows that learning algorithms that work well for one class of problems
are not always well suited for a different class. In contrast, humans can reflect about their own learning
behavior and tailor it to the needs of various types of learning problems?.

The first step toward a theory of ‘introspective’ or ‘self-referential’ machine learning? is the design of a
general finite-size hard-wired architecture with ‘self-referential’ potential. The second step is the design of
tnitial learning algorithms that find useful self-manipulating algorithms for the architecture, where ‘useful-
ness’ is strictly defined by performance evaluations provided by the environment.

In the following thought experiment I will choose an artificial recurrent neural network as basis for a
‘self-referential meta-learning’ architecture. Two reasons for this choice are: (a) Generality. Recurrent
neural nets are simple yet powerful — like a Turing machine or a conventional digital computer they can be
programmed to generate arbitrary mappings from input sequences to output sequences (loosely speaking, a
finite network is like a Turing machine with finite tape). This general property will allow us to build a net
that can run its own arbitrarily complex weight change algorithm. (b) Simplicity of avoiding catastrophic
errors. A lisp program that is allowed to change itself may be likely to crash due to catastrophic syntactic
errors (e.g. [4]). It is easy to avoid similar situations in the context of self-changing weight-matrices (the
programs of recurrent nets).

This paper is intended to go beyond certain previous and less general approaches to ‘meta-learning’.
For instance, Chalmer’s recent architecture (like other similar architectures) is based on hierarchical levels
and could not be called ‘self-referential’ — in his case, a genetic algorithm on a higher level tries to find a
simple learning rule for a lower level neural feed-forward network [2]. In the paper at hand, however, I want
to bury all ‘meta-levels’ within the same finite network. In addition, with previous approaches the search
space of possible learning algorithms is usually very limited — Chalmer, for instance, limits his weight change
algorithms to simple linear combinations of certain parameters of his feed-forward network. In contrast, I
do not want to impose any non-trivial limitations on the complexity of evolving learning algorithms.

Outline. The remainder of this paper is structured as follows: Section 2 starts with a general set-up for an
agent interacting with its environment. Then it introduces a finite, ‘self-referential’ architecture that controls
the agent. This architecture involves a recurrent neural-net that can potentially implement any computable
function that maps input sequences to output sequences — the only limitations being unavoidable time and

1Here are some very ‘high-level’ examples of ‘self-referential’ behavior: We can make statements about our own learning
procedures, such as, “Today I am going to sit down and learn 20 Japanese words”. Not only can we talk about, but we can also
manipulate the way we learn. For instance, to a large extent we can choose our own training examples and which associations
we want to memorize. And we actually can learn how to improve our own learning procedures, profitting from previous learning
experiences like this: “When I began learning to juggle, practicing with all three balls was not helpful. But after first practicing
with one, and then with two, I could finally start making use of all three. This time I am going to learn to juggle with three
bottles instead of balls, and I will start with one bottle instead of three”. For many problem classes we develop quite specific
representations and efficient learning strategies. These specific strategies may include certain forms of ‘analogy matching’ (see
[8] for a neural approach to inter-task transfer learning), ‘chunking’, ‘one-shot learning’, ‘active learning’, ‘query learning’ etc.,
but there is much reason to suspect that there are many specific strategies which are not adequately described by any of these
familiar terms After some years of self-observation, I have come to believe that processes for ‘learning how to learn’ frequently
occur on much lower cognitive levels than the ones corresponding to the examples above, though it is often difficult to describe
lower levels in words. Based on these observations, I have come to believe such processes are essential for the scaling behavior
of any realistic big learning system.

?Intuitively speaking, the ultimate goal of research on ‘self-referential’ and ‘introspective’ learning algorithms (as I see it) is
something I would like to call a ‘learning germ’. The ‘germ’is a hypothetical, initially simple, but general learning algorithm
running on realistic finite-size hardware with limited time and storage resources. With a given environment demanding the
solution of certain tasks, the germ gradually refines and specializes itself in a ‘bootstrap’ fashion in order to develop specialized
representations and strategies for attacking typical learning tasks, thereby learning to make ‘optimal’ use of the limited temporal
and storage resources of the unchangeable hardware. The germ might do so by collecting information about typical problems,
the relations between typical problems, and how to use these relations to create efficient ways of solving typical problems. (In
the context of concept learning, this is sometimesreferred to as finding the proper “nductive bias’[3][16].) Specialized strategies
may include but need not be limited to things known as ‘learning by analogy’, ‘learning by chunking’, ‘one-shot learning’, ‘active
learning’, ‘query learning’, etc. I do not claim to have arrived at the ultimate goal. (That’s why the title is “steps toward
‘self-referential’ neural learning” instead of “self-referential neural learning”, and why the word ‘self-referential’ is put between
apostrophes.)

storage constraints imposed by the architecture’s finiteness. These constraints can be extended by simply
adding storage and/or allowing for more processing time. The major novel feature of the system is its ‘self-
referential’ capability. The network is provided with special input units for explicitly observing performance
evaluations. In addition, it is provided with the basic tools for explicitly reading and changing all of its
own adaptive components (weights): It has special output and input units for sequentially addressing,
analyzing and manipulating any weight, including those weights responsible for addressing, analyzing and
manipulating weights. These unconventional properties allow the network (in principle) to compute any
computable function mapping algorithm components and performance evaluations to algorithm modifications
— the only limitations again being unavoidable time and storage constraints. This implies that algorithms
running on that architecture (in principle) can change not only themselves but also the way they change
themselves, and the way they change the way they change themselves, etc., essentially without theoretical
limits to the sophistication (computational power) of the self-modifying algorithms. The architecture should
be viewed as only one of many possible similar architectures (using different schemes for addressing and
manipulating connections). In section 3, initial weight change algorithms will be designed such that the
‘self-referential’ network can learn (possibly self-modifying) algorithms that improve their performance on
given tasks®. The system starts out as tabula rasa. The initial learning procedure favors algorithms that make
sensible use of the ‘introspective’ potential of the hard-wired architecture, where ‘usefulness’ is solely defined
by conventional performance evaluations. For a variant of the network, section 3.1 derives an exact gradient-
based initial algorithm for ‘self-referential’ supervised sequence learning. For another variant, section 3.2
describes an even more general but less informed (and less complex) reinforcement learning algorithm.

The thought experiment presented in this paper is intended to show the theoretical possibility of a certain
kind of ‘self-referential’ neural networks — the systems described herein are not meant to be very practical
ones. For instance, due to the complexity of the activation dynamics of the ‘self-referential’ network to
be described in the next section, the error function to be minimized by the supervised sequence learning
algorithm derived in section 3.1 would probably be riddled with local minima. Another disadvantage of this
algorithm is its computational complexity per time step which is independent of the sequence length and
equals O(n2,,,,10gnconr), Where neonn is the number of connections in the net. The purpose of this paper,
however, is not to come up with the most efficient or most practical ‘introspective’ or ‘self-referential’ weight
change algorithm, but to show that such algorithms are possible at all. More practical variants of the basic
idea will be left for separate papers (e.g. [15]).

2 THE ‘SELF-REFERENTIAL’ SYSTEM

An information processing ‘agent’ is embedded in a general dynamic environment. At a given time step {,
the agent’s time-varying input is ®(¢). Its current output o(t) is computed from previous inputs and may
influence the environmental state. This may in turn affect the environmental inputs. To isolate the essential
information processing aspects of the agent, any ‘motoric effectors’ that influence the environmental state
by interpreting the outputs o(t) are considered to belong to the environment. The same holds for ‘sensory
perceptors’ providing the inputs #(¢). Occasionally, some evaluative mechanism provides a measure of success
or failure, eval(t). eval(t) may be quite informative (like a detailed analysis of what went wrong) or quite
uninformative (like a simple pain or pleasure signal). The agent’s goal is to find action sequences that lead
to ‘desirable’ evaluations, where the environment defines what is ‘desirable’ and what is not. Without loss of
generality, it may be assumed that (¢), o(t), eval(t) are represented as real-valued vectors* with dimensions
N, Moy Neval, TeSPectively.

Obviously, the architecture of the agent constrains the set S of legal algorithms it can perform. This
paper focuses on finite architectures that impose only very general, natural, and essentially unavoidable time

31t should be mentioned that practically all conventional computer architectures do allow ‘self-referential’ algorithms with
essentially unconstrained power. The existing machine learning architectures (implemented on such computers), however, are
more specialized and more restricted.

40f course, only a subset of all real vectors can be represented by any realistic hardware. It should be noted that binary
vectors could be used instead of real-valued ones without losing generality.

and storage limitations on S. A convenient way of designing such an architecture is to use a recurrent neural
network as basic ‘hardware’.

With this network architecture there will be algorithms in S that can produce arbitrary changes for any
component of algorithms in S such that the results of the changes® are algorithms in S. This will be achieved
by (1) providing the network with input units for specifically observing its own failures and successes, (2)
introducing an address for each connection of the network, (3) providing the network with output units
for sequentially addressing all of its own connections (including those connections responsible for addressing
connections), (4) providing input units for analyzing the weights addressed by the network, and (5) providing
output units for manipulating the weights addressed by the network.

Subsection 2.1. will list conventional aspects of the network. Subsection 2.2. will list the novel ‘self-
referential’ features of the net. While reading the remainder of this section, you may wish to refer to figure
1 and to relevant notation listed in table 1.

2.1 CONVENTIONAL ASPECTS OF THE NET

o(t) is computed from 2(7), 7 < ¢, by a discrete time recurrent network with ny > n, input units and n,
non-input units. A subset of the non-input units, the ‘normal’ output units, has a cardinality of n, < ny.

For notational convenience, I will sometimes give different names to the real-valued activation of a
particular unit at a particular time step. z; is the k-th unit in the network. y; is the k-th non-input unit
in the network. #j is the k-th ‘normal’ input unit in the network. o is the k-th ‘normal’ output unit. If u
stands for a unit, then u’s activation at time ¢ is denoted by wu(t). If v(¢) stands for a vector, then v (2) is
the k-th component of v(¢) (this is consistent with the last sentence).

Each input unit has a directed connection to each non-input unit. Each non-input unit has a directed
connection to each non-input unit. Obviously there are (n; 4+ ny)ny = Nconn connections in the network.
The connection from unit j to unit 7 is denoted by w;;. For instance, one of the names of the connection
from the j-th ‘normal’ input unit to the the k-th ‘normal’ output unit is we,e,. w;;’s real-valued weight at
time ¢ is denoted by w;;(t). Before training, all weights w;;(1) are randomly initialized.

The following definitions will look familiar to the reader knowledgeable about conventional recurrent
nets (e.g. [19]). The environment determines the activations of a ‘normal’ input unit ;. The activations
of the remaining input units will be specified in section 2.2, which lists the ‘self-referential’ aspects of the
architecture. For a non-input unit y; we define

nety, (1) =0, Vi > 1:y(t) = fy, (nety, (1)),
Vi >1: mety, (t) =Y wy(t— 1)t —1), (1)

where f; is the activation function of unit ¢. I have not yet specified whether the f; are differentiable and/or
deterministic.

5With previous machine learning approachesI am aware of, the adaptive (non-hardwired) components of the agent algorithms
can be modified only by some hardwired pre-specified and unchangeable learning algorithm. Lenat’s complex EURISKO system
may be an exception to this rule (Lenat reports that his system found heuristics for finding heuristics [4]). EURISKO’s
mechanism, however, has drawn criticism for being notoriously hard to evaluate and for the fact that the programmer interacted
with the system in a way that remained partly opaque. In contrast, the much simpler ‘subsymbolic’ system described here does
not require occasional interventions by the programmer and has clearly defined performance evaluations.

It should be noted that essentially the only general learning algorithm (for any environment) which is guaranteed to find
the ‘most desirable’ algorithms in S is ezhaustive search among all elements of S. The problem with exhaustive search is, of
course, that it tends to be prohibitively inefficient when S is large or when it takes a lot of effort to evaluate elements of S.
For these reasons, many more sophisticated and problem-specific machine learning algorithms have been designed (there are
just too many to start citing them all). The problem-specific algorithms are often much more efficient than general algorithms
like exhaustive search, but usually are limited to a much narrower range of applications. With many problem-specific learning
algorithms, the ‘real’ learning is going on in the researcher who puts a lot of thought into useful input representations and bias,
appropriate problem-specific internal architectures, etc. In turn, sometimes the agent’s remaining ‘learning’ task is reduced to
building a collection of simple statistics. In contrast, the motivation of this paper is to think about learning algorithms that
start out as general algorithms but specialize themselves according to the needs of typical learning tasks.

The current algorithm of the network is given by its current weight matrix (and the current activations).
Note, however, that I have not yet specified how the w;;(t) are computed. In previous recurrent networks,
weight changes are exclusively caused by some fixed learning algorithm with many specific limitations.
For instance, the popular gradient based weight change algorithms (as well as all other known learning
algorithms) suffer from many well-known drawbacks (unsatisfactory scaling behavior, problems with long
time lags, etc.). Again, one would like to have weight change algorithms that are less limited. This motivates
the next section.

2.2 SELF-REFERENTIAL ASPECTS OF THE NET

This section describes yet unspecified interpretations of certain inputs and outputs that make this net the
first ‘self-referential’ neural network with explicit potential control over all adaptive parameters governing
its behavior. Since there may be potentially useful kinds of self-modification that are not yet known,
and since appropriate self-modification procedures might be arbitrarily complex, the network supports any
computable self-modifying algorithm that maps algorithm components and performance evaluations into
algorithm modifications (modulo time and storage limitations).

The following is a list of four unconventional aspects of the resulting system, which should be viewed as
just one example of many similar systems.

1. The network sees performance evaluations. The network receives performance information through
the eval units. The eval units are special input units which are not ‘normal’ input units. evalj is the k-th
eval unit (of neyq such units) in the network. This feature is relatively simple compared to some of the
following features, though it represents an essential contribution for achieving ‘self-referential learning’.

2. Each connection of the net gets an address. One way of doing this which I employ in this paper (but
certainly not the only way) is to introduce a binary address, adr(w;;), for each connection w;;. This will
help the network to do computations concerning its own weights in terms of activations, as will be seen next.

3. The network may analyze any of its weights. anay, is the k-th analyzing unit (of ngne such units) in the
network. The analyzing units are special non-input units which are not ‘normal’ output units. They serve to
indicate which connections the current algorithm of the network (defined by the current weight matrix plus
the current activations) will access next. It is possible to endow the analyzing units with enough capacity
to address any connection, including connections leading to analyzing units. One way of doing this is to set

Nane = cetl(logaeonn) (2)

where ceil(®) returns the first integer > .
A special input unit that is used in conjunction with the analyzing units is called val. val(t) is computed
according to

val(1) =0, Vt>1: val(t+1) = _glllana(t) — adr(w;)||*]wi;(t), (3)
i,J
where ||...|| denotes Euclidean length, and g is a function emitting values between 0 and 1 that determines

how close a connection address has to be to the activations of the analyzing units in order for its weight to
contribute to val at that time. Such a function g might have a narrow peak at 1 around the origin and be
zero (or nearly zero) everywhere else. This would essentially allow the network to pick out a single connection
at a time and obtain its current weight value without receiving ‘cross-talk’ from other weights.®

4. The network may modify any of its wetghts. Some non-input units that are not ‘normal’ output units
or analyzing units are called the modifying units. mody, is the k-th modifying unit (of 7,04 such units) in the

8Note that we need to have a compact form of addressing connections: One might alternatively think of something like ‘one
analyzing unit for each connection’ to address all weights in parallel, but obviously this would not work — we always would end
up with more weights than units and could not obtain ‘self-reference’. It should be noted, however, that the binary addressing
scheme above is by far not the most compact scheme. This is because real-valued activations allow for representing theoretically
unlimited amounts of information in a single unit. For instance, theoretically it is possible to represent arbitrary simultaneous
changes of all weights within a single unit. In practical applications, however, there is nothing like unlimited precision real
values. And the purpose of this paper is not to present the most compact ‘self-referential’ addressing scheme but to present at
least one such scheme.

network. The modifying units serve to address connections to be modified. Again, it is possible to endow the
modifying units with enough capacity to sequentially address any connection, including connections leading
to modifying units. One way of doing this is to set

Tomod = cetl(logzNeonn) (4)

A special output unit used in conjunction with the modifying units is called A. fa should allow both
positive and negative activations of A(t). Together, mod(t) and A(%) serve to explicitly change weights
according to

wij(t+ 1) = wij(t) + A(t) g l|adr(wij) — mod(t)||*]. (5)

Again, if g has a narrow peak at 1 around the origin and is zero (or nearly zero) everywhere else, the network
will be able to pick out a single connection at a time and change its weight without affecting other weights.
It is straight-forward, however, to devise schemes that allow the system to modify more than one weight in
parallel. See again footnote 6.

Together, (1), (3), and (5) make up the hard-wired system dynamics.

There are many ‘self-referential’ networks as above. Let us refer to all units that are neither ‘normal’
input units, eval units, the val input unit, ‘normal’ output units, analyzing units, modifying units, nor the
A unit, as hidden units. There are np, = ny — n, such hidden units. There is an infinity of ways of finding
values n. (denoting the number of addressable connections) satisfying the condition

ne > (np + 1o + 2ceil(logan.) + 1)(np + 1o + 2ceil(logane) + 1+ ny + 1+ Nevar)- (6)
One example where the ‘=’ sign is valid in (6) is given by

Ny = 27777‘0 = Nepal = 4 Nana = Mmod = 11,75 = 5.

2.3 COMPUTATIONAL POWER OF THE NET

Throughout the remainder of this paper, to save indices, I consider a single limited pre-specified time-interval
of discrete time-steps during which the agent interacts with its environment. I assume that the input sequence
observed by the agent during this time has length n¢me = n,n, (where n,,n, € N) and can be divided
into n, equal-sized blocks of length n, during which the input pattern #(¢) does not change. This does not
imply a loss of generality — it just means speeding up the agent’s hardware such that each input pattern
is presented for n, time-steps before the next pattern can be observed. This gives the agent n, time-steps
to do some sequential processing (including immediate weight changes) before seeing a new pattern of the
input sequence. Although the architecture may influence the state of the environment within such a block
of n, time steps, the changes will not affect its input until the beginning of the next block.

With appropriate constant (time-invariant) w;;(t), simple conventional (threshold or semi-linear) activa-
tion functions fj, sufficient np, ‘hidden’ units, and sufficient block-size n,, by repeated application of (1), the

network can compute any function (or combination of functions)

f . {0, 1}‘na:+1+neval+no+nana+nmod+1 N {0, 1}no+nana+nmod+1 (7)

computable within a constant finite number n.y. of machine cycles by a given algorithm running on a given
conventional digital (sequential or parallel) computer with limited temporal and storage resources’. This is
because information processing in conventional computers can be described by the repeated application of
boolean functions that can easily be emulated in recurrent nets as above.

With the particular set-up of section 2.2, at least the A output unit and the val input unit should take
on not only binary values but real values. It is straight-forward, however, to show that the range {0,1} in
(7) may be replaced by R for any unit (by introducing appropriate simple activation functions).

7Or by a given Turing machine operating for limited time (during which it can use only a finite portion of its tape) — or by
a given finite state automaton, for that matter.

ENVI RONVENT

VEI GHT MODI FI CATI ONS

bRy

o(t) mod(t) ;;Zl(t) anal (t)
1 —O—0O0000—

QUTPUT UNI TS

VEI GHT ANALYSI S

H DDEN UNI T;;/
I NPUT UNI TS
X(t+1) eval (t+1) val (t+1)

A 4}

Figure 1: The special input vector eval(t + 1) informs the fully recurrent sequence-processing network (only
two connections are shown) about external performance evaluations. The special outputs ana(t) indicate
which weights are to be read into the special input unit wal. The special outputs mod(t) and A(t) serve to
compute immediate weight changes for the network’s own connections. See text for details.

symbol

description

[|v]| Euclidean length vvTv of vector v
t time index, ranges from 1 to nsime

Tk k-th ‘normal’ input unit

Yk k-th non-input unit

Ok k-th ‘normal’ output unit

2k k-th unit
evaly k-th eval unit (for observing performance evaluations)
anag k-th analyzing unit (for addressing the net’s own connections)
mody, k-th modifying unit (for addressing the net’s own connections)

val special input unit for analyzing current weight values

A special output unit for changing current weight values

u(t)

activation of u at time ¢, if © denotes unit

’Uk(t)

k-th component of v(t), if v(¢) vector (this is consistent with line above)

z(t)

agent’s ‘normal’ input vector at time ¢

o(t)

agent’s ‘normal’ output vector at time ¢

eval(t) environments evaluation of performance at time ¢
ana(t) special output vector indicating connection addresses
mod(t) special output vector indicating connection addresses
Ne dim(z(t)), number of ‘normal’ input units
N, dim(o(t)), number of ‘normal’ output units
Neval dim(eval(t)), number of eval units
nr Ny + Neval + 1, number of all input units
cetl(z) smallest integer > =
Nmod dim(mod(t)) = cetl(logznconn), number of modifying units
Nana dim(ana(t)) = ceil(logznconn), number of analyzing units
Ty Tio + Nana + Nmod + 1, number of non-input units
nh number of hidden units
w5 connection from unit 7 to unit ¢
Nconn ny(ny + nr), number of connections
adr(w;;) address of w;;
g function defining ‘closeness’ of addresses, with narrow peak around origin
val(t +1) > ; 9lllana(t) — adr(wi;)[[*lwi;(t)
wi;(t) weight of w;; at time ¢
(e +1) 0 T A(t) ol [adr(ws) — mod @7]
N, constant block-size, m(t) remains invariant during blocks of length n.,
N number of blocks in sequence

Ntime = NN

number of time steps in sequence

S

set of legal agent algorithms

Table 1: Definitions of symbols describing the ‘self-referential’ architecture.

We now can clearly identify the storage constraint np and the time constraint n, with two parameters,
without having to take care of any additional hardware-specific limitations constraining the computational
power of the net®.

We are left with a general, fixed-size, ‘self-referential’ network with unlimited computational power
(within unavoidable time and storage constraints) that cannot only map arbitrary input sequences onto
arbitrary output sequences but also can (in principle) analyze and change its own weight matrix, including
those parts of the weight matrix that are responsible for analyzing and changing the weight matrix. The
analyzing and modifying process itself may be arbitrarily complex. There are no theoretical limits on the
sophistication of the weight changing algorithms implementable in the network. The same is true for the
algorithm that changes the weight changing algorithm, and the algorithm that changes the algorithm that
changes the weight changing algorithm, etc. This is because every ‘meta-level’ is buried in the same network®.

3 INITIAL LEARNING ALGORITHMS

To find useful ‘self-modifying’ learning algorithms, we need something like an initial learning algorithm.
Certain aspects of the initial learning algorithm may not be modified. There is no way of making everything
adaptive — for instance, algorithms leading to desirable environmental performance evaluations must always
be favored over others. We may not allow the system to change this basic rule of the game. So the hardwired
unchangeable aspects of the initial learning algorithm (alternatives will be given in the following subsections)
will favor algorithms that modify themselves in a useful manner (a manner that leads to ‘more desirable’
evaluations).

An interaction sequence (see section 2.3) actually may be the concatenation of many ‘conventional’
training sequences for conventional recurrent networks. This will (in theory) help our ‘self-referential’ net to
find regularities among solutions for different tasks.

For a variant of the ‘self-referential’ architecture, section 3.1 derives an exact gradient-based algorithm
for supervised learning tasks. For another variant of the architecture, section 3.2 describes a more general
but less informed and less complex reinforcement learning algorithm.

3.1 SUPERVISED LEARNING ALGORITHM

With supervised learning, eval(t) provides information about the desired outputs at certain time steps.
Arbitrary time lags may exist between inputs and later correlated outputs.

For the purposes of this section, f; and g must be differentiable. This will allow us to compute gradient-
based directions for the search in algorithm space.

In what follows, unquantized variables are assumed to take on their mazimal range. For oy (t) there may
be a target value, di(¢), specified at time ¢. Although it is of no significance whatsoever for the following
derivation, in order not to limit the temporal resources of the net unnecessarily, target values dg(¢) may occur
only at the end of the n, blocks with n, time steps (see section 2.3). We set n¢pqr = %o, Which means that
there are as many eval units as there are ‘normal’ output units. The current activation of a particular eval
unit provides information about the error of the corresponding output unit at the previous time step (see

81t should be mentioned that since nconn grows with ng, nena and n,,.q also grow with ny (if they are not chosen large
enough from the beginning). However, nana and n,,,4 grow much slower than np,.

9 There is an alternative without explicit weight changing abilities. Since recurrent nets are general purpose devices with
essentially unlimited computational power (see section 2.3), they may run arbitrary algorithms, including arbitrary learning
algorithms represented in terms of activations instead of weights. Therefore we may use a conventional recurrent net to obtain
a simpler ‘self-referential’ system than the one this paper focuses on, by renouncing the relatively complex, explicit weight-
modifying capabilities (involving ana(t), val(t), mod(t), A(t)). This alternative system, however, cannot explicitly manipulate
all its adaptive parameters. Only a tiny fraction of the system variables, namely the activations (as opposed to activations and
weights), are accessible to self-manipulation. Still, the system is (at least in theory) able to keep self-modifying aspects of its
algorithm in its ectivations. It is important to keep one of the above-mentioned modifications of conventional recurrent nets,
however: We have to reserve a special set of input units for feeding back evaluations eval(t) such that the network receives all
the information about its successes and failures.

equation (11)). We assume that inputs and target values do not depend on previous outputs (via feedback
through the environment).

I will focus on the architecture described in sections 2.1 and 2.2 — the corresponding learning algorithm
for the simpler architecture without explicit weight changing capabilities (footnote 9, section 2.3) is just a
modification of conventional gradient-based algorithms for recurrent nets (e.g. [10], [17], [6], [7], [19]). To
obtain a better overview, let us summarize the system dynamics in compact form:

nety, (1) =0, Vit >1: ai(t) — environment, yi(t) = fy.(nety, (1)),

Vi >1: mety, (t) =Y wy(t— 1) —1), (8)
VES 1wt 1) = wi(t) + A() gl llade(usg) — mod(t)|), 9)
val(1l) =0, Vt>1: wal(t+1) = Zg[”ana(t) — adr(wij)Hz]wij(t), (10)

The following aspect of the system dynamics is specific for supervised learning and therefore has not yet
been defined in previous sections:

evalp(1) =0, Vi>1:evaly(t+1)=dp(t) —or(t) if dr(t) ezists, and 0 else. (11)

Objective function. As with typical supervised sequence-learning tasks, we want to minimize

t

1
Et*(n,n,), where Bt (1) = E E(1), where E(t) = 3 E(evalk (t+1))%
=1 k

Note that elements of algorithm space are evaluated solely by a conventional evaluation function'®.

The following algorithm for minimizing Et°** is partly inspired by (but more complex than) conventional
recurrent network algorithms (e.g. [10], [17], [6], [7], [19]).

Derivation of the algorithm. We use the chain rule to compute weight increments (to be performed after
each training sequence) for all initial weights wqs(1) according to

BEtotal (nr n,)

wab(l) — wab(l) -7n Bwab(l)) (12)

where 77 is a constant positive ‘learning rate’. Thus we obtain an ezact gradient-based algorithm for min-
imizing E*°' under the ‘self-referential’ dynamics given by (8)-(11). To reduce writing effort, I introduce
some short-hand notation partly inspired by [18]:

For all units u and all weights w,; we write

du(t)
Y (1) = ———. 13
pab() Bwab(l) ()
For all pairs of connections (w;;, wqs) We write
_ Owi;(2)

() = Bwa(1)’ (14)

10Tt should be noted that in quite different contexts, previous papers have shown how ‘controller nets’ may learn to perform
appropriate lasting weight changes for a second net [14][5]. However, these previous approaches could not be called ‘self-
referential’ — they all involve at least some weights that can not be manipulated other than by conventional gradient descent.
Attempting to solve a different kind of task, the system described in [9] allows any weight in the system to be manipulated
dynamically, but since new units must be created to do this, only a fraction of the total number of weights can ever be modified
at any time.

10

To begin with, note that

BEtOtal(l) _0 Vis1: BEtOtal(t) _ BEtotal(t _ 1)

dwap(1) C Towa(l) | Owas(1) =D evaly(t + 1)pZ5 (¥). (15)

k
Therefore, the ;gmaining problem is to compute the pJ%(¢), which can be done by incrementally computing
all p2k(t) and ¢2,(¢), as we will see.

At time step 1 we have

ey (1) = 0. (16)

Now let us focus on time steps after the first one. For ¢ >> 1 we obtain the recursion

Pa(t+1) =0, (17)
pzzal" (t+1)= —pg’,; (), if di(2) exists, and 0 otherwise, (18)
Pos(t + Z sy | 9(lana(t) — adr(wig)|P)wi; (1)] =

E{ aer(t)glllana(t) — adr(wi;)||*)] +

wi(t) [g'(lana(t) — adr(wi))|*)2 Y (anam (t) — adrm(wii))p ~(¢) 1 } (19)

m

(where adrp, (w;;) is the m-th bit of w;;’s address),

pip(t+1) = f,, (nety, (t + 1)) Fwa (D) (1(t)wya(t)] =
Ty (nety, (t+ 1)) Y S wya(B)pes(®) + 1(H)als (0), (20)
where
qz,(l) =1 if wa, = wyj, and 0 otherwise, (21)
VE>1: ¢i(t) = ﬁ)+ A(r)g(|lmod(r) — adr(wij)|?)| =
4 2y _
gt —1)+ Fwa() A (t = 1)g(|lmod(t — 1) — adr(wy;)[|) =
g (t = 1) + P (t —)g(||mod(t — 1) — adr(wi;)||*)+

2N (t—1) g'(|[mod(t — 1) — adr(wi;)||*) E[modm(t -1)— adrm(wi])]pz’;:’d (t—1). (22)

m

According to equations (16)-(22), the p{lb(t) and qz,(t) can be updated incrementally at each time step.
This implies that (15) can be updated incrementally at each time step, too. The storage complexity is
independent of the sequence length and equals O(n
O(nzonnlognconn)-

Why is there no endless recursion? Because the algorithm does not really throw away the concept of
gradient descent — actually it performs gradient descent in the initial weights (at the beginning of each

training sequence). That’s where the recursion stops'?

Z wn)- The computational complexity per time step is

11Section 5 will mention a simple alternative, however.

11

Again: The initial learning algorithm uses gradient descent to find weight matrices that minimize a
conventional error function. This is partly done just like with conventional recurrent net weight changing
algorithms. Unlike with conventional networks, however, the network algorithms themselves may choose
to change some of the network weights in a manner unlike gradient descent (possibly by doing something
smarter than that) — but only if this helps to minimize E*°**!. In other words, the ‘self-referential’ aspects
of the architecture may be used by certain ‘self-modifying’ algorithms to generate desirable evaluations.
Therefore the whole system may be viewed as a ‘self-referential’ augmentation of conventional recurrent
nets. Further speed-ups (like the ones in [18], [19], [13]) are possible but not essential for the purposes of
this paper.

3.2 A REINFORCEMENT LEARNING ALGORITHM

If we want to be really general, then we have to focus on reinforcement learning tasks instead of supervised
learning tasks. With general reinforcement learning, o(¢) influences the environmental state and #(¢), and
eval(t) is a scalar or vector, real-valued or binary reinforcement signal. Note that the system may choose
its own inputs and training examples. The agent’s goal is to maximize Y, |leval(t)||*. The ‘credit assign-
ment problem’ may be of arbitrary complexity. Arbitrary time lags may exist between actions and later
consequences. Unlike with supervised learning, no ‘teacher’ tells the network which ‘normal’ outputs to
produce at which time step. There is not even the assumption of a ‘Markovian’ interface between agent and
environment [12]. As a consequence, reinforcement learning algorithms inspired by dynamic programming
(e.g. [1]) will be of no use. This is about the most general setting I can think of.

General settings require general initial learning schemes. The following scheme is a general but simple one
— it pays for its generality by starting out with much less informed weight-changes than the gradient-based
search of section 3.1.

To allow for non-deterministic ‘exploratory’ behavior, I introduce binary'? probabilistic units by defining
the fi as follows: fa is a function that returns values between -1 and 1. For k # A, fi(«) returns 1 with
probability f*(z), and 0 with probability 1 — f*(=), where

1

(=) = Tre=e (23)

Here is a simple, but safe and general, hardwired initial learning scheme.

1. Before training, the initial weights are defined as the current best algorithm. The current best evalua-
tion is defined as minus infinity.

2. Randomly perturb the weights of the current best algorithm to obtain the current algorithm.

3. Test the current algorithm by evaluating its performance on test data.

4. If the evaluation is higher than the current best evaluation, then set the current best evaluation equal
to the current evaluation, and set the current best algorithm equal to the current algorithm.

5. Go to step 2.

Obviously, the scheme does nothing but simple ‘guided’ random search in algorithm space, always keeping
and mutating the best ‘self-referential’ algorithm so far. In the long run, the performance can only improve.
I do not believe that there is a significantly better initial learning algorithm for general environments.

The expectation is, of course, that in environments with (initially unknown) regularities, the system
will eventually discover relationships between similar learning problems, and the self-modifying capabilities
of the architecture will eventually lead to non-random and more informed problem-specific weight-changes.
This expectation is justified because algorithms creating ‘smart’ weight changes (self-modifications) will lead
faster to higher evaluations than ‘dumb’ algorithms, thus being favored over the ‘dumb’ ones.

12 As a consequence, the binary weight addressing scheme of section 2.2 actually is the most compact one. See footnote 6,
section 2.2.

12

4 CONCLUDING REMARKS

In a nutshell, the network I have described can, besides learning to solve problems posed by the environment,
also use its own weights as input data and can learn new algorithms for modifying its weights in response
to the environmental input and evaluations. This effectively embeds a chain of ‘meta-networks’ and ‘meta-
meta-...-networks’ into the network itself.

Bias. This universe does not allow us a bias-free learning architecture. The scheme above includes a lot
of bias: The selection of the basic architecture (indeed, one can find many different ‘self-referential’ architec-
tures, once one starts looking for them), the scheme for addressing connections and talking about algorithm
components, the hardwired basic learning algorithm, etc. The system I have described above certainly does
not reflect the most practical bias for typical learning tasks in typical real-world environments. It should
instead demonstrate that there are ways of making all adaptive parameters of learning systems accessible
to self-manipulation, and that it is possible to come up with reasonable hardwired learning algorithms for
picking ‘good’ self-manipulating algorithms. The system described herein serves simply as a single example
of many similar systems that have the following two things in common: Universal computational power (con-
strained only by unavoidable time and storage limitations), and explicit access to all modifiable algorithm
components.

Biological plausibility. It seems that I cannot explicitly tell each of my 1 synapses to adopt a certain
value. I seem able only to affect my own synapses indirectly — for instance, by somehow actively creating
‘keys’ and ‘entries’ to be associated with each other. Therefore, at first glance, the neural net in my head
appears to embody a different kind of self-reference than the artificial net of section 2.1 and 2.2'2. But
does it really? The artificial net also does not have a concept of its n-th weight. All it can do is to find
out how to talk about weights in terms of activations — without really knowing what a weight is (just like
humans who did not know for a long time what synapses are). Therefore I cannot see any evidence that
brains use fundamentally different kinds of ‘introspective’ algorithms. On the other hand, I am not aware
of any biological evidence supporting the theory that brains have some means for addressing single synapses
by creating appropriate activation patterns .

Ongoing and future research. Due to the complexity of the activation dynamics of the ‘self-referential’
network, one would expect the error function derived in section 3.1 to have many local minima. [15] describes
a variant of the basic idea (involving a biologically more plausible weight manipulating strategy) which is

015

less plagued by the problem of local minima (and whose initial learning algorithm has lower computational
complexity than the one from section 3.1).

A major criticism of the learning algorithms in section 3 is that they are based on the concept of
fixed interaction sequences. All the hard-wired learning algorithms do is find ¢nitial weights leading to
‘desirable’ cumulative evaluations. After each interaction sequence, the final weight-matrix (obtained through
self-modification) is essentially thrown away. A simple alternative would be to run (after each interaction
sequence) the final weight matriz against the best algorithm so far and keep it if it is better'®. Again,
performance cannot get worse but can only improve over time. I would, however, prefer a hypothetical ‘self-
referential’ learning system that is not initially based on the concept of training sequences at all. Instead,
the system should be able to learn to actively segment a single continuous input stream into useful training
sequences. Future research will be directed towards building provably working, hard-wired initial-learning-
algorithms for such hypothetical systems.

Although the systems described in this paper have a mechanism for ‘self-referential’ weight changes, they
must still learn to use this mechanism. Experiments are needed to discover how practical an approach this

13Perhaps an even simpler kind of self-reference, as with the alternative network of footnote 9, section 2.3.

14 As mentioned before, however, this paper does not insist on addressing every weight in the system individually. (See again
footnote 6.) There are many alternative, sensible ways of choosing g and redefining equations (3) and (5) (e.g. [15]).

15With the algorithms of section 3, the weight changes for the initial weights (at the beginning of a training sequence) are
hard-wired. The alternative idea of testing the final weight matrix (at the end of some sequence) against the best previous
weight matrix corresponds to the idea of letting the system change its initial weights, too. With the alternative network from
footnote 9, section 2.3, this would amount to not resetting the activations of the net for the test phase following each training
sequence. This is essential, because the activations at the end of a sequence might represent a useful ‘self-referential’ learning
algorithm (running on a system with essentially constant weights).

13

is. This paper'®, however, presents a thought experiment and does not focus on experimental evaluations;
it is intended only to show the theoretical possibility of certain kinds of ‘self-referential’ weight change
algorithms. Experimental evaluations of alternative ‘self-referential’ architectures (with alternative more
practical self-addressing schemes, e.g. [15]) will be left for the future.

5 ACKNOWLEDGEMENTS

Thanks to Mark Ring, Mike Mozer, Daniel Prelinger, Don Mathis, and Bruce Tesar, for helpful comments
on drafts of this paper. This research was supported in part by a DFG fellowship to the author, as well as
by NSF PYI award IRI-9058450, grant 90—21 from the James S. McDonnell Foundation, and DEC external
research grant 1250 to Michael C. Mozer.

References

[1] A. G. Barto. Connectionist approaches for control. Technical Report COINS Technical Report 89-89,
University of Massachusetts, Amherst MA 01003, 1989.

[2] D. Chalmers. The evolution of learning: An experiment in genetic connectionism. In D. S. Touretzky,
J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc. of the 1990 Connectionist Models Summer
School, pages 81-90. San Mateo, CA: Morgan Kaufmann, 1990.

[3] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learning framework.
Artificial Intelligence, 36:177-221, 1988.

[4] D. Lenat. Theory formation by heuristic search. Machine Learning, 21, 1983.

[5] K. Méller and S. Thrun. Task modularization by network modulation. In J. Rault, editor, Proceedings
of Neuro-Nimes 90, pages 419-432, November 1990.

[6] B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural Computation,
1(2):263-269, 1989.

[7] F.J. Pineda. Time dependent adaptive neural networks. In D. S. Touretzky, editor, Advances in Neural
Information Processing Systems 2, pages 710-718. San Mateo, CA: Morgan Kaufmann, 1990.

[8] L. Y. Pratt. Non-literal transfer of information among inductive learners. In R. J. Mammone and Y. Y.
Zeevi, editors, Neural Networks: Theory and Applications, volume 2. 1992. In press.

[9] M. B. Ring. Incremental development of complex behaviors through automatic construction of sensory-
motor hierarchies. In L. Birnbaum and G. Collins, editors, Machine Learning: Proceedings of the Eighth
International Workshop, pages 343-347. Morgan Kaufmann, 1991.

[10] A.J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical Report
CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.

[11] J. H. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: The
meta-meta-... hook, 1987. Institut fur Informatik, Technische Universitat Miinchen.

[12] J. H. Schmidhuber. Reinforcement learning in markovian and non-markovian environments. In D. S.
Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems
3, pages 500-506. San Mateo, CA: Morgan Kaufmann, 1991.

16 This paper is partly inspired by some older ideas about ‘self-referential learning’ — [11] describes a ‘self-referential’ genetic
algorithm, as well as a few other ‘introspective’ systems.

14

[13]

[14]

[15]

J. H. Schmidhuber. A fixed size storage O(n®) time complexity learning algorithm for fully recurrent
continually running networks. Neural Computation, 4(2):243-248, 1992.

J. H. Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets. Neural
Computation, 4(1):131-139, 1992.

J. H. Schmidhuber. On decreasing the ratio between learning complexity and number of time varying
variables in fully recurrent nets. Technical report, Dept. of Comp. Sci., University of Colorado at
Boulder, 1992. In preparation.

P. Utgoft. Shift of bias for inductive concept learning. In Machine Learning, volume 2. Morgan Kauf-
mann, Los Altos, CA, 1986.

P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model.
Neural Networks, 1, 1988.

R. J. Williams. Complexity of exact gradient computation algorithms for recurrent neural networks.
Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern University, College of Com-
puter Science, 1989.

R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent networks and their
computational complexity. In Back-propagation: Theory, Architectures and Applications. Hillsdale, NJ:
Erlbaum, 1992, in press.

15

